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Abstract

Let F be a field, n a non-negative integer, λ a partition of n and Sλ the corresponding Specht
module for the Iwahori–Hecke algebra HF,q(Sn). James and Mathas conjecture a necessary and
sufficient condition on λ for Sλ to be irreducible. We prove the sufficiency of this condition in the
case where F has infinite characteristic and also in the case where q = 1.

1 Introduction

In the representation theory of finite groups, it is useful to know which ordinary irreducible
representations remain irreducible modulo a prime p. For the symmetric group Sn, this amounts to
determining which Specht modules are irreducible over a field of characteristic p. The group algebra
of Sn is a special case (namely, the case q = 1) of the Iwahori–Hecke algebra HF,q(Sn), and we may
ask the more general question of which Specht modules for the latter algebra are irreducible modules.
James and Mathas conjecture a necessary and sufficient condition in the case q , −1, and the purpose
of this paper is to prove the sufficiency of this condition in the case q = 1 and in the case where F has
infinite characteristic.

Given a fieldF, let q be an invertible element ofF. For a positive integer n, define the Iwahori–Hecke
algebraHF,q(Sn) to be associative F-algebra with generators T1, . . . ,Tn−1 and relations

T2
i = q + (q − 1)Ti (1 6 i 6 n − 1)

TiT j = T jTi (1 6 i < j − 1 6 n − 2)

TiTi+1Ti = Ti+1TiTi+1 (1 6 i 6 n − 2).

We writeHn forHF,q(Sn); of course, if q = 1 thenHn is isomorphic to the group algebra FSn.
Let p be the characteristic of F, and define

e = inf{d > 0 | 1 + q + · · · + qd−1 = 0};

thus e equals p if q = 1, and e is the multiplicative order of q in F otherwise. For a positive integer h,
define

νe,p(h) =

0 (e = ∞ or e - h)

(1 + νp( h
e )) (∞ > e | h).

As usual, νp(h) denotes the largest power of p dividing h if p is finite, while ν∞(h) is always taken to
be zero.
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If e is infinite, then Hn is semi-simple [13, Corollary 3.44], so we are concerned with the case
where e is finite. For each partition λ = (λ1, λ2, . . . ) of n, one defines a Specht module Sλ forHn; when
q = 1, the Specht modules are p-modular reductions of the ordinary irreducible representations ofSn.
In this paper we are interested in determining whether Sλ is irreducible as anHn-module.

Given a node (a, b) of the Young diagram [λ] (i.e. a pair of positive integers such that b 6 λa), we
define hλ(a, b) to be the (a, b)-hook length in [λ], i.e.

hλ(a, b) = λa − b + λ′b − a + 1.

Then the conjecture made by James and Mathas may be stated as follows.

Conjecture 1.1. [13, Conjecture 5.47] Suppose e , 2, and let λ be a partition of n. Then the Specht
module Sλ for Hn is reducible if and only if the Young diagram [λ] contains nodes (a, b), (a, y) and
(x, b) such that

νe,p(hλ(a, b)) > 0

and
νe,p(hλ(x, b)) , νe,p(hλ(a, b)) , νe,p(hλ(a, y)).

We shall refer to a partition not satisfying the condition of Conjecture 1.1 an (e, p)-JM-partition.
Carter’s Criterion [13, Proposition 5.40] says that Conjecture 1.1 holds in the case where λ is e-regular;
combining this with [13, Exercise 3.14], we find that the conjecture also holds when λ is e-restricted.
We shall refer to an e-regular (e, p)-JM-partition as an (e, p)-Carter partition, and to an e-restricted
(e, p)-JM-partition as a conjugate (e, p)-Carter partition.

The representation theory ofHn is closely related to that of another F-algebra, namely the q-Schur
algebra Sq(d,n). For the latter algebra one defines a Weyl module ∆(λ) for each partition λ of n, and
one may ask when ∆(λ) is irreducible. This question is better understood than the corresponding
question for Specht modules; this is due to the fact that there are simple Sq(d,n)-modules L(λ) for all
partitions λ, and L(λ) occurs as the cosocle of ∆(λ). We quote the classification of irreducible Weyl
modules here, since we shall need it later.

Proposition 1.2. [13, Proposition 5.39] Let λ be a partition of n, and let ∆(λ) be the corresponding
Weyl module for the q-Schur algebra Sq(n,n). Then ∆(λ) is irreducible if and only if λ is a conjugate
(e, p)-Carter partition.

We comment briefly on the ‘if’ half of Conjecture 1.1. Building on the work of Lyle [11], the present
author has proved this [6] in the case q = 1. This would generalise for arbitrary q given appropriate
q-analogues of the Carter–Payne theorem [2, p. 425, Theorem] and the column removal theorem [7,
Theorem 2.3] for homomorphisms between Specht modules. Lyle and Mathas [12] have submitted a
proof of the latter.

The question of which Specht modules are irreducible in the case e = 2 seems to be a rather
different one. In the case where λ is 2-regular, Carter’s Criterion still applies, and this gives an
answer for the case where λ is 2-restricted as well. But very little seems to be known about whether
Sλ is reducible when λ is neither 2-regular nor 2-restricted, except in the symmetric group case p = 2,
where James and Mathas [9] show that the only such λ for which Sλ is irreducible is (22).

We now indicate the layout of this paper. For the remainder of this introduction, we summarise
the background details we shall need. In Section 2 we translate the combinatorial condition in
Conjecture 1.1 to the context of the abacus. This enables us to show in Section 3 that the Specht
module corresponding to a partition satisfying the irreducibility criterion of Conjecture 1.1 may be
induced to a Rouquier block in a nice way. Finally in Section 4 we prove the ‘only if’ part of Conjecture
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1.1 for Rouquier blocks in the cases q = 1 and p = ∞ by examining the decomposition numbers for
these blocks in these cases. The results of Sections 2 and 3 hold for arbitrary e and p, and it is only in
Section 4 where we require that e , 2 and that either e = p or p = ∞. Section 4 would generalise to all
e, p (with e , 2) given an appropriate q-analogue of Turner’s result [14] describing the decomposition
matrix for a Rouquier block.

1.1 Representation theory ofHn

Mathas’s book [13] provides an excellent introduction to the representation theory ofHn; we take
most of our notation from there, although we use the Specht modules given by Dipper and James in
[5]; the ‘Specht module’ Sλ defined in [13] is in fact the dual of the Specht module Sλ

′

defined in [5].
For now,F and q are arbitrary, with e and p be as above; in Section 4 we shall exclude the case where

e = 2. In the case where e is infinite,Hn is semi-simple, the Specht modules are irreducible, and {Sλ |
λ ` n} is a complete set of irreducible modules forHn. In the case where e is finite, the Specht modules
are no longer necessarily irreducible. If λ is an e-regular partition (that is, does not have e equal non-
zero parts), then Sλ has an irreducible cosocle Dλ, and the set {Dλ

| λ an e-regular partition of n} is a
complete set of irreducible modules forHn. The decomposition matrix forHn records the composition
multiplicities dλµ = [Sλ : Dµ].

Throughout this paper we shall write λ′ to denote the partition conjugate to λ, and ∅ for the
partition of zero.

1.1.1 The abacus

Since all Specht modules are irreducible in the case where e is infinite, we assume from now on
that e is finite; partitions are then conveniently represented on an abacus. Given a partition λ and an
integer r greater than or equal to the number of non-zero parts of λ, we define the beta-numbers

βi = λi + r − i

for i = 1, . . . , r. Now we take an abacus with e vertical runners, numbered 0, . . . , e−1 from left to right,
and with the ith position on runner j (counting from the top) labelled with the integer ej + i. Given
a set of beta-numbers for λ, we place a bead at position βi on the abacus for each i, and we call the
resulting configuration an abacus display for λ.

Given an abacus display for λ, let κ be the partition whose abacus display is obtained by moving
all the beads as far up their runners as they will go. κ is called the e-core of λ, and Nakayama’s
Conjecture [13, Corollary 5.38] says that the Specht modules Sλ and Sµ lie in the same block ofHn if
and only if λ and µ have the same e-core. If Sλ lies in a block B of Hn, we abuse notation by saying
that λ lies in B. κ is a partition of n − ew for some w which we call the e-weight of λ; it is easy to see
that two partitions lying in the same block have the same e-weight, and we say that the block has this
e-weight as well. We shall talk of ‘an abacus for the block B’, meaning simply an abacus with fixed
numbers of beads on the various runners, at unspecified positions on those runners. If an abacus for
the block C has one bead fewer on runner i than the abacus for B and one bead more on runner j, then
we shall refer to C as ‘the block obtained by moving a bead from runner i to runner j’.

Given an abacus display for λ, we let λ[i] denote the number of beads on runner i. The e-core of λ,
and hence the block in which Sλ lies, are determined by the integers λ[0], . . . , λ[e−1]. We also write λi

j

for the number of unoccupied positions above the jth lowest bead on runner i; then λ(i) = (λi
1, λ

i
2, . . . )

is a partition, and we refer to the sequence (λ(0), . . . , λ(e − 1)) as the e-quotient of λ. Note that λ is
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determined by its e-core and e-quotient, and that the sum of all the parts of the e-quotient of λ equals
the e-weight of λ.

Example. Suppose e = 5, and let λ = (11, 102, 9, 45, 3, 1). Then the abacus displays for λ and its e-core
on an abacus with 25 beads are u u u u uu u u u uu u u uu uu u u u uu u uu

,

u u u u uu u u u uu u u u uu u u uu u uu uu .

So the 5-core of λ is (6, 5, 3, 22, 1), and the 5-quotient is ((12), (1), (2, 1), (1), (2)).

Note that different choices of abacus display for a partition λ (that is, different choices of r) will
give different values of λ[i] and different e-quotients. Specifically, if the display for λ on an abacus
with r beads gives values

(λ[0], . . . , λ[e−1]) = (l0, . . . , le−1)

and e-quotient (σ0, . . . , σe−1), then the display for λ on an abacus with r + es + t beads (where s > 0 and
e > t > 0) will give

(λ[0], . . . , λ[e−1]) = (le−t + s + 1, . . . , le−1 + s + 1, l0 + s, . . . , le−t−1 + s)

and e-quotient (σe−t, . . . , σe−1, σ0, . . . , σe−t−1).
Given an abacus display for a partition λ, it is easy to find an abacus display for λ′: simply take a

sufficiently large integer a, and use an abacus in which the number of beads on runner i is a − λ[e−1−i]

for each i. Then λ′ has a display on this abacus, with e-quotient (λ(e − 1)′, . . . , λ(0)′). To express this
another way, take an abacus display for λ, replace each bead with an empty space and vice versa, and
then rotate the abacus through 180◦.

1.1.2 The Branching Rule

Hn−r is a subalgebra ofHn in a natural way, and in factHn is free as anHn−r-module; accordingly,
there are induction and restriction functors

IndHn : Hn−r-mod −→ Hn-mod, ResHn−r : Hn-mod −→ Hn−r-mod.

If B is a block of Hn−r, then we write ResB M to denote the projection of ResHn−r M onto B; similarly,
we write IndB M.

The effect of these functors on Specht modules is well understood. We cite the relevant result in
the case r = 1; the general case may be obtained by applying this recursively. Suppose that B is a
block ofHn, and take an abacus for B. Given 0 6 i 6 e − 1, let C be the block ofHn−1 whose abacus is
obtained from that of B by moving a bead from runner i to runner i − 1 (where we reduce modulo e).
Given a partition λ in B, say that a bead in the abacus display for λ is i-removable if it lies on runner i
(at position i + ae, say) and there is no bead at position i + ae−1. Let λ1, . . . , λs be the distinct partitions
that may be obtained from λ by moving an i-removable bead at position i + ea to position i + ea − 1
for some a. Similarly, given a partition µ in C, say that a bead is i-addable if it lies on runner i − 1 (at
position i + ae− 1, say) and there is no bead at position i + ae. Let µ(1), . . . , µ(t) be the distinct partitions
that may be obtained by moving an i-addable bead from position i + ea − 1 to position i + ea.

Theorem 1.3. The branching rule [13, Corollary 6.2] Let λ and µ be as above. Then:

1. the module ResC Sλ has a filtration in which the factors are Sλ
1
, . . . ,Sλ

s
;

2. the module IndB Sµ has a filtration in which the factors are Sµ
(1)
, . . . ,Sµ

(t)
.
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1.1.3 Rouquier blocks

We say that a block B ofHn is Rouquier if it has an abacus display in which the number of beads
on runner i exceeds the number of beads on runner i− 1 by at least w− 1 for i = 1, . . . , e− 1, where w is
the e-weight of B. Rouquier blocks are well understood; in particular, their decomposition numbers
are known in the case p = ∞ and the case q = 1.

Remark. Our definition of Rouquier blocks is slightly unusual. Some authors (e.g. Chuang and Tan
in [4]) define a Rouquier block to have exactly w− 1 more beads on runner i than runner i− 1, so that
there is exactly one Rouquier block for each weight w. Others define a Rouquier block to be any block
with an abacus such that, for 0 6 i < j 6 e − 1, either there are at least w − 1 more beads on runner
j than runner i or there are at least w more beads on runner i than runner j; with this definition, the
Rouquier blocks from a class under the Scopes equivalence. The blocks we have specified all lie in
this equivalence class, and our definition is more convenient for our purposes.

Given a Rouquier block B, fix an abacus for B as above, and let λ be a partition in B, with e-quotient
(λ(0), . . . , λ(e − 1)). Note that λ is e-regular if and only if λ(0) = ∅.

Given partitions α, β, γ, let cαβγ be the corresponding Littlewood–Richardson coefficient, which we
interpret as zero if |α| , |β| + |γ|.

The following is due to Chuang and Tan [3, Theorem 1.1], and independently Leclerc and Miyachi
[10, Corollary 10]; in the case e = 2, the result was first proved by James and Mathas [8, Theorem 2.5].

Theorem 1.4. Suppose B is a Rouquier block of Hn with p = ∞, and that λ and µ are partitions in B
with e-quotients (λ(0), λ(1), . . . , λ(e − 1)) and (∅, µ(1), . . . , µ(e − 1)) respectively. Then

[Sλ : Dµ] =
∑ e−1∏

i=0

cλ(i)
τ(i)σ(i+1)

e−1∏
j=1

cµ( j)
σ( j)′τ( j),

where the sum is over all choices of partitions σ(1), . . . , σ(e− 1), τ(1), . . . , τ(e− 1), and we interpret τ(0)
and σ(e) as ∅.

For the case where q = 1 and p > w, the decomposition numbers are known to be the same as those
described by Theorem 1.4 [4]. In the case p 6 w (where the defect group of the block is non-abelian),
Turner has found the decomposition matrix; this is found by post-multiplying the decomposition
matrix by an ‘adjustment matrix’ which is itself the decomposition matrix for a certain tensor product
of Schur algebras.

Theorem 1.5. [14, Theorem 29] Suppose q = 1, and suppose B is a Rouquier block ofHn = FSn. If λ
and µ are partitions in B with e-quotients (λ(0), λ(1), . . . , λ(e−1)) and (∅, µ(1), . . . , µ(e−1)) respectively,
define

δλµ =
∑ e−1∏

i=0

cλ(i)
τ(i)σ(i+1)

e−1∏
j=1

cµ( j)
σ( j)′τ( j),

as in Theorem 1.4. If ν is an e-regular partition in B with e-quotient (∅, ν(1), . . . , ν(e − 1)), define

εµν =


∏e−1

i=1 [∆(µ(i)′) : L(ν(i)′)] (if |µ(i)| = |ν(i)| for all i)
0 (otherwise),

where ∆(µ(i)′) and L(ν(i)′) are modules for the Schur algebra S(n,n) over F. Then

[Sλ : Dν] =
∑
µ

δλµεµν,

summing over all e-regular partitions µ in B.
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2 JM-partitions on the abacus

Given an (e, p)-JM-partition, we examine its abacus display; this turns out to be easy to describe.
Let λ be a partition, and take an abacus display for λ.

Proposition 2.1. The following are equivalent.

1. λ is an (e, p)-JM-partition.

2. There exist some i and j such that:

(a) λ(k) = ∅whenever i , k , j;

(b) if position i + ea on runner i is unoccupied, then any position b > i + ea not on runner i is
unoccupied;

(c) if position j + ec on runner j is occupied, then any position d < j + ec not on runner j is
occupied;

(d) λ(i) is a (p, p)-Carter partition;

(e) λ( j) is a conjugate (p, p)-Carter partition.

Proof. We begin by proving that (1) implies (2). Suppose λ is an (e, p)-JM-partition. Suppose that
there exist i, a, c such that c > a, position i + ea is unoccupied and position i + ec is occupied. Then we
claim that either

1. every position b > i + ea not on runner i is unoccupied, or

2. every position d < i + ec not on runner i is occupied.

Suppose that the bead at position i + ec corresponds to the beta-number βx, while the empty space
at position i + ea lies between the beads corresponding to the beta-numbers βy and βy+1. This means
that if we set

z = y − x − e(a − c) + λx + 1,

then λy+1 < z 6 λy and the (x, z)-hook length in [λ] is e(c − a); in particular, it is divisible by e. Since
λ is an (e, p)-JM-partition, either hλ(w, z) is divisible by e for w = 1, 2, . . . , y, or hλ(x,w) is divisible by e
for w = 1, 2, . . . , λx. We shall assume that former; the latter case is dealt with by replacing λ with λ′.

Now the hook length hλ(i, z) equals λi − z + y− i + 1, which equals βi − r + y− z + 1, and so the fact
that the hook lengths hλ(1, z), . . . , hλ(y, z) are all congruent modulo e implies that the beta-numbers
β1, . . . , βy are all congruent modulo e. So the corresponding beads (which are precisely those beads at
positions greater than i + ea) all lie on the same runner, which must be runner i. This proves the claim.

Clearly there can be at most one value of i such that possibility (1) above occurs, and at most
one value i such that possibility (2) occurs. So we have proved (2a)–(2c), and it remains to prove the
claims concerning λ(i) and λ( j). If p = ∞, then there is nothing to prove, since any partition is an
(∞,∞)-Carter partition; so assume that p is finite. We need only address λ(i); λ( j) may be dealt with
by replacing λ with its conjugate.

Write τ = λ(i), and suppose for a contradiction that τ is not a (p, p)-Carter partition. This means
that there are nodes (a, c) and (b, c) of [τ] such that

νp(hτ(a, c)) , νp(hτ(b, c)),

i.e.
νp(τa − c + τ′c − a + 1) , νp(τb − c + τ′c − b + 1).
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Suppose τ has l non-zero parts, and let N be the number of unoccupied spaces less than the position
occupied by the bead corresponding to βl. Then

λl = N,

λl−1 = N + e(τl−1 − τl) + e − 1,

λl−2 = N + e(τl−2 − τl) + 2(e − 1),
...

λ1 = N + e(τ1 − τl) + (l − 1)(e − 1).

We write
d = N − eτl + (e − 1)(l − τ′c − 1) + ec,

and we claim that
νe,p(hλ(a, d)) , νe,p(hλ(b, d)).

First of all we need to know that λ′d = τ′c; this follows easily from the definition of d. Hence we have

hλ(a, d) = λa − d + τ′c − a + 1

= e(τa − c + τ′c − a + 1)

= e(hτ(a, c))

and similarly
hλ(b, d) = e(hτ(b, c)).

And so
νe,p(hλ(a, d)) = 1 + νp(hτ(a, c)) , 1 + νp(hτ(b, c)) = νe,p(hλ(b, d)).

This completes the proof that (1) implies (2).
For the other direction, suppose thatλhas an abacus configuration as described in (2), and suppose

that hλ(a, c) is divisible by e, say hλ(a, c) = es. This means that there is an unoccupied space exactly s
spaces above the bead corresponding to the beta-number βa on the same runner. Hence this bead
must lie either on runner i or runner j. We shall suppose that it lies on runner i (the case where it lies
on runner j may be addressed by replacing λ with its conjugate). We claim that, for b = 1, . . . , λ′c we
have

νe,p(hλ(b, c)) = νe,p(hλ(a, c)).

Write d = λ′c. By condition (2b), we find that the beads corresponding to β1, . . . , βd all lie on runner i.
So, if we let M be the number of unoccupied spaces less than βd on the abacus, then we have

λd = M,

λd−1 = M + e(τd−1 − τd) + e − 1,
...

λ1 = M + e(τ1 − τd) + (d − 1)(e − 1).

Put y = τa − s + d − a + 1; then we claim that, for x = 1, . . . , d,

hλ(x, c) = ehτ(x, y);

this will then be sufficient, since τ is a (p, p)-Carter partition, so we have

νe,p(hλ(x, c)) = 1 + νp(hτ(x, y)) = 1 + νp(hτ(a, y)) = νe,p(hλ(a, c)).

First we claim that τ′y = d; this follows easily from the fact that λ′c = d. Verifying the above equality
is then a formality. �
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3 Induction to Rouquier blocks

In this section we show that the Specht module corresponding to a JM-partition induces ‘nicely’
to some Rouquier block.

Suppose r > 0 and that an abacus for a block B of Hn has r more beads on runner i − 1 than on
runner i (or, in the case i = 0, r− 1 more beads on runner e− 1 than runner i). Thus if λ is any partition
in B then

λ[i] =

λ[i−1]
− r (i > 1)

λ[e−1]
− r + 1 (i = 0).

Let C be the block ofHn+r whose abacus is obtained from that for B by moving r beads from runner
i − 1 to runner i. That is, if λ is any partition in B and µ any partition in C then

µ[ j] =


λ[ j] + r ( j = i)
λ[ j]
− r ( j ≡ i − 1 (mod e))

λ[ j] (otherwise).

We say that B and C are adjacent; it is clear that adjacency is independent of the abacus display chosen
for B. The following easy lemma will be crucial.

Lemma 3.1. Let B be a block ofHn. Then there exist n = n0 < n1 < · · · < ns and blocks B = B0,B1, . . . ,Bs

ofHn0 ,Hn1 , . . . ,Hns respectively such that Bi−1 and Bi are adjacent for i = 1, . . . , s and Bs is a Rouquier
block.

Proof. Choose an abacus display for B and suppose that for some 1 6 i 6 e − 1 there are more beads
on runner i − 1 than on runner i. We may swap runners i − 1 and i to reach the abacus display of a
block to which B is adjacent. We can repeat this procedure until the numbers of beads on the runners
of the abacus display increase from left to right; suppose the number of beads on runner j is now b j
for each j. If bi − bi−1 is strictly less than w − 1 for some i, then take a display for the same block but
with e− i more beads; the number of beads on runner j is now b j+i + 1 for j = 0, . . . , e− i− 1, and b j−e+i
for j = e− i, . . . , e− 1. Now we repeat the procedure at the start of this proof, and successively pass to
adjacent blocks so that the numbers of beads on the runners increase from left to right. The number
of beads of runner j of the abacus for the resulting block will then be b j if j 6 i − 1, or b j + 1 if j > i.
We may repeat this process until the number of beads on runner i exceeds the number of beads on
runner i − 1 by at least w − 1 for each i. �

Example. Suppose e = 3, and that B is the block of weight 3 with 3-core (1). An abacus display for
this block is u u uu u uu u uu .
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We construct a sequence B = B0, . . . ,B7 as follows:

B0 =

u u uu u uu u uu , B1 =

u u uu u uu u uu =

u u uu u uu u uu uu , B2 =

u u uu u uu u uu uu, B3 =

u u uu u uu u uu uu =

u u uu u uu u uu uu uu ,

B4 =

u u uu u uu u uu uu uu, B5 =

u u uu u uu u uu uu uu =

u u uu u uu u uu uu uuu , B6 =

u u uu u uu u uu uu uuu , B7 =

u u uu u uu u uu uu uuu.
Now we look at the induction between adjacent blocks of Specht modules corresponding to JM-

partitions. For modules M, N, we write M ∼ mN to indicate that M has a filtration with m factors all
isomorphic to N.

Lemma 3.2. Suppose that B and C are blocks ofHn andHn+r respectively and are adjacent. If λ is an
(e, p)-JM-partition lying in B, then there is an (e, p)-JM-partition µ in C such that

IndC Sλ ∼ r!Sµ, ResB Sµ ∼ r!Sλ.

Proof. Suppose that C is obtained from B by moving r beads from runner k − 1 to runner k. Choose
integers i and j as in Proposition 2.1(2). We claim that λ has no k-removable beads, which will
guarantee that it has exactly r k-addable beads. Since there are more beads on runner k − 1 than on
runner k, we cannot have k = i or k − 1 = j. Now suppose that there is a k-removable bead at position
k + ea. If there is an unoccupied space at position k + eb for some b < a, then we have λ(k) , ∅, so
that k = j. But then by (2c) of Proposition 2.1 there is a bead at position k + ea − 1; contradiction. If
there is a bead at position k + ec − 1 for some c > a, then λ(k − 1) , ∅, so k − 1 = i. But then by (2b) of
Proposition 2.1 there is no bead at position k+ea; contradiction. If there is neither an unoccupied space
on runner k above k + ea nor a bead on runner k − 1 below k + ea − 1, then λ[k] > λ[k−1]; contradiction.

So λ has r k-addable beads and no k-removable beads; let µ be the partition obtained by moving
each of the k-addable beads one place to its right. Then µ has r k-removable beads and no k-addable
beads, and so by Theorem 1.3 we have

IndC Sλ ∼ r!Sµ, ResB Sµ ∼ r!Sλ.

Propoerties (2a)–(2e) in Proposition 2.1 may easily be checked for µ, and the proof is complete. �

Lemma 3.3. Suppose B and C are blocks ofHn andHn+r respectively, and M and N are modules such
that

IndC M ∼ mN, ResB N ∼ mM.

Then M is irreducible if and only if N is.

Proof. Suppose that S is a composition factor of cosoc(N). Then, by Frobenius Reciprocity [1, Propo-
sition 3.3.1],

HomHn(M,ResB S) � HomHn+r(IndC M,S) , 0;

in particular, ResB S , 0. Similarly any composition factor T of soc(N) has ResB T , 0. If N is
reducible, then the socle and cosocle of N between them contain at least two composition factors, and
so ResB N ∼ mM has at least 2m composition factors, by the exactness of ResB. So M is reducible.
Similarly, M reducible implies N reducible. �
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Corollary 3.4. The ‘only if’ part of Conjecture 1.1 holds if and only if it holds for Rouquier blocks.

Proof. Suppose λ is an (e, p)-JM-partition lying in a block B, and let B1, . . . ,Bs be as in Lemma 3.1. By
Lemma 3.2, there are (e, p)-JM-partitions λ = λ0, λ1, . . . , λs lying in blocks B1, . . . ,Bs respectively, such
that

IndBi Sλ
i−1
∼ ri!Sλ

i
, ResBi−1 Sλ

i
∼ ri!Sλ

i−1

for i = 1, . . . , s, where r1, . . . , rs are some positive integers. By Lemma 3.3, Sλ is irreducible if and only
if Sλ

s
is. �

4 Conjecture 1.1 holds for Rouquier blocks

To complete the proof of the ‘only if’ part of Conjecture 1.1 in the case p = ∞ and the case q = 1,
we use Theorems 1.4 and 1.5. Let B be a Rouquier block of Hn, with an abacus as described in
Section 1.1.3.

Lemma 4.1. Let λ be a partition in B, with e-quotient (λ(0), . . . , λ(e−1)). Then λ is an (e, p)-JM-partition
if and only if λ(0) is a conjugate (p, p)-Carter partition, λ(e − 1) is a (p, p)-Carter partition and λ(i) = ∅

for 0 < i < e − 1.

Proof. This is immediate from Proposition 2.1. �

Proposition 4.2. Suppose that p = ∞, e > 2 and λ is an (e,∞)-JM-partition lying in B. Then Sλ is
irreducible.

Proof. We need to show that there is an e-regular partition ν in B such that [Sλ : Dµ] is 1 when µ = ν
and 0 otherwise. Now

[Sλ : Dµ] =
∑ e−1∏

i=0

cλ(i)
τ(i)σ(i+1)

e−1∏
j=1

cµ( j)
σ( j)′τ( j);

if this is non-zero, then, since λ(1) = · · · = λ(e − 2) = ∅, we must have

τ(1) = σ(2) = τ(2) = σ(3) = · · · = τ(e − 2) = σ(e − 1) = ∅.

Since e > 2, we must then have

µ(1) = σ(1)′ = λ(0)′, µ(e − 1) = τ(e − 1) = λ(e − 1)

and µ(i) = ∅ for 1 < i < e − 1. This defines µ uniquely, and we get [Sλ : Dµ] = 1 in this case. �

Proposition 4.3. Suppose that q = 1, e > 2 and λ is an (e, p)-JM-partition lying in B. Then Sλ is
irreducible.

Proof. For an e-regular partition ν, we have

[Sλ : Dν] =
∑
µ

δλµεµν,

as in Theorem 1.5. By the argument in the proof of Proposition 4.2, there is a unique e-regular
partition µ such that δλµ > 0, namely the partition with e-quotient (∅, λ(0)′,∅, . . . ,∅, λ(e− 1)), and for
this partition µ we have δλµ = 1. We must show that there is a unique e-regular partition ν such that
εµν > 0, and that εµν = 1 in this case.
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We have

εµν =


∏e−1

i=1 [∆(µ(i)′) : L(ν(i)′)] (if |µ(i)| = |ν(i)| for all i)
0 (otherwise),

so for εµν > 0 we require |ν(i)| = |µ(i)| for all i. If this holds, then

εµν = [∆(ν(1)′) : L(µ(1)′)][∆(ν(e − 1)′) : L(µ(e − 1)′)].

Now by Lemma 4.1 µ(1)′ = λ(0) and µ(e−1)′ = λ(e−1)′ are conjugate (p, p)-Carter partitions, and so by
Proposition 1.2 the product of these decomposition numbers is 1 if ν(1) = µ(1) and ν(e − 1) = µ(e − 1),
and 0 otherwise. The proof is complete. �
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