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Abstract

Given partitions λ = (λ1, . . . , λr) and µ = (µ1, . . . , µr) of n with λ1, µ1 6 s, define λ̆ = (s −
λr, . . . , s−λ1), µ̆ = (s−µr, . . . , s−µ1). We prove that dimF HomFSn (S λ, S µ) = dimF HomFSrs−n (S λ̆, S µ̆),
where F is any field of odd characteristic,Sn is the symmetric group on n letters and S λ is the Specht
module for FSn. Our proof remains within the context of representations of Sn, via the combina-
torics of Young tableaux.

1 Introduction

Throughout this paper we let n and r be fixed non-negative integers. Let Sn denote the symmetric
group on n letters. For any partition λ of n, one defines a Specht module S λ over any field F. If F has
infinite characteristic, then the Specht modules are irreducible and afford all irreducible representations
of FSn as λ varies over the set of partitions of n. If the characteristic of F is finite, then the Specht
modules are no longer irreducible in general; if λ is p-regular (that is, λ does not have p equal positive
parts) and char(F) = p, then S λ

F has an irreducible cosocle Dλ
F, and every irreducible FSn-module

arises in this way. The structures of the Specht modules in prime characteristic are of great interest,
and in particular one would like to determine the decomposition numbers [S λ : Dµ] and the spaces
HomFSn(S λ, S µ) of FSn-homomorphisms between Specht modules. These seem to be problems of
similar difficulty, and neither of them is close to being solved. Many more results are known about the
decomposition numbers than about Hom-spaces, which is in some sense surprising, since in principle
we have an algorithm (see [6, p. 102]) for computing HomFSn(S λ, S µ).

Particularly useful results concerning decomposition numbers are James’s row and column removal
theorems [7], and Donkin’s generalisations of these [3]. These have been known for some time, but
only recently have the analogous results for homomorphisms between Specht modules been proved.
Specifically, the author and Lyle proved in [4] that if λ and µ have the same first part and we define
λ̄ = (λ2, λ3, . . . ) and µ̄ = (µ2, µ3, . . . ), then

dimFHomFSn(S λ, S µ) = dimFHomFSn−λ1
(S λ̄, S µ̄),

provided the characteristic of F is not 2. They proved a similar result for column removal, and a gener-
alisation (analogous to Donkin’s result). Another result which demonstrates the existence of homomor-
phisms between Specht modules in certain cases is the Carter–Payne theorem [2] (and slight generali-
sations due to the author and Martin [5]). But, apart from a few special cases, this seems to be all that
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is known about homomorphisms between Specht modules. In this paper we prove the following new
result, which provides a new proof of the row and column removal results.

Theorem 1.1. Suppose λ and µ are partitions of n with at most r parts and with λ1, µ1 6 s, and define

λ̆ = (s − λr, . . . , s − λ1), µ̆ = (s − µr, . . . , s − µ1).

Then, if F is any field whose characteristic is not 2, we have

dimFHomFSn(S λ, S µ) = dimFHomFSrs−n(S λ̆, S µ̆).

In fact, this result is quite easy to prove if we translate it to the context of representations of general
linear groups; we outline this argument below. The object of the present paper is to provide an elemen-
tary proof entirely within the context of the symmetric group. As with the results in [4], we develop
the combinatorics relating to semi-standard homomorphisms; however, the proof of the present result is
slightly more subtle than for the results in [4], and in particular we are not able to provide an explicit
bijection in terms of semi-standard homomorphisms.

Theorem 1.1 is false in characteristic 2: if we take λ = (1, 1), µ = (2, 0), r = 2 and s = 3, then we
have λ̆ = (2, 2), µ̆ = (3, 1). There is a non-zero homomorphism from S (1,1) to S (2,0) over the field of two
elements, but no such from S (2,2) to S (3,1).

A corresponding result is true (even in characteristic 2) for decomposition numbers, namely [S λ :
Dµ] = [S λ̆ : Dµ̆] if µ and µ̆ are both (char(F))-regular. The author has not been able to find this result in
print, and is grateful to Gordon James for communicating a proof.

1.1 A simple proof of Theorem 1.1 using rational representations of the general linear
group

Here we briefly indicate how the main theorem may be proved by translating it to the general linear
group setting; a similar method may be used to prove the decomposition number result. Let n, r, λ and µ
be as above. Then we have the usual Weyl module ∆(λ) and dual Weyl module ∇(λ) for GLr(F). Since
we are assuming that char(F) is odd, we have

dimFHomFSn(S λ, S µ) = dimFHomFGLr(F)(∆(λ),∆(µ))

by [1, Theorem 3.7]. So it remains to prove that

dimFHomFGLr(F)(∆(λ),∆(µ)) = dimFHomFGLr(F)(∆(λ̆),∆(µ̆)).

In fact, ∆(ν) and ∇(ν) are defined for any r-tuple (ν1, . . . , νr) of integers with ν1 > . . . > νr. If we let det
denote the one-dimensional determinant representation of GLr(F), then we have ∆(ν1 + 1, . . . , νr + 1) �
∆(ν) ⊗ det. We also have

∆(ν)◦ � ∇(ν)

and

∆(ν)∗ � ∇(−νr,−νr−1, . . . ,−ν1),

where M◦ and M∗ denote the contravariant dual and usual linear dual of a module respectively (corre-
sponding to the anti-automorphisms A 7→ AT and A 7→ A−1 of GLr(F)). So we have

∆(λ̆) � (∆(λ)∗)◦ ⊗ det⊗s
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and similarly for ∆(µ̆), and the result follows, since (− ⊗ det) is a category equivalence on the rational
GLr(F)-modules.

The author is very grateful to the referee for outlining this proof, which readily generalises to q-Schur
algebras and Iwahori–Hecke algebras.

1.2 Background and notation

We take our notation and most of our results from James’s book [6], whch remains the essential
reference for the representation theory of the symmetric groups. Note, however, that we write maps on
the left.

Given a composition λ of n, the Young diagram [λ] for λ is defined to be the subset

{(i, j) | j 6 λi}

of N2, whose elements are usually called nodes. The Young diagram is usually drawn using a × for each
node, with i increasing down the page and j increasing from left to right. A λ-tableau is a function from
[λ] to N, and unless specified otherwise is a bijection from [λ] to {1, . . . , n}. We think of a λ-tableau as
‘[λ] with nodes replaced by integers’. We define ‘row equivalence’ relation ∼row on the set of λ-tableaux
by saying that s ∼row t if t can be obtained from s by permuting the entries of each row; similarly,
we define the ‘column equivalence’ relation ∼col. We say that a λ-tableau is standard if its entries are
increasing along rows and down columns.

An equivalence class of λ-tableaux under ∼row is called a λ-tabloid; we denote by {t} the tabloid
containing t. The set of λ-tabloids is acted upon in an obvious way by Sn, and we define Mλ to be the
corresponding permutation module. If λ is a partition, then for a tableau t we define the polytabloid

et =
∑
s∼colt

(−1)st{s} ∈ Mλ,

where (−1)st is the sign of the permutation sending s to t. We define the Specht module S λ 6 Mλ to be
the span of the polytabloids.

Write λ′ for the partition conjugate to λ, that is, λ′ = (λ′1, λ
′
2, . . . ) with λ′i = max{ j | λ j > i}.

1.2.1 The Garnir relations

Let λ be a partition, and t a λ-tableau. Let X be a subset of the ith column of t, and Y a subset of
the (i + 1)th column of t. We define SX to be the subgroup of Sn fixing the complement of X pointwise,
and make similar definitions for SY and SX∪Y . We identify SX ×SY with the subgroup of SX∪Y fixing
X (and hence also Y) setwise.

Let σ1, . . . , σk be right coset representatives of SX ×SY in SX∪Y , and define

GX,Y =

k∑
i=1

(−1)σiσi,

where (−1)σ is the sign of the permutation σ.

Theorem 1.2. [6, Theorem 7.2] If |X ∪ Y | > λ′i , then GX,Yet = 0.
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1.2.2 Semi-standard homomorphisms

Let λ be a partition of n, and µ a composition of n. We now construct a basis for HomFSn(S λ,Mµ) in
the case where F does not have characteristic 2. To do this, we consider tableaux with repeated entries.
Specifically, we say that a λ-tableau has type µ if it contains µi entries equal to i, for each i. We let
T (λ, µ) denote the set of such tableaux. Note that we still use the equivalence relations ∼row and ∼col for
tableaux in T (λ, µ).

In order to construct homomorphisms from S λ to Mµ, we use an isomorphic copy of Mµ depending
on a fixed λ-tableau t. Define a bijection from the set of µ-tabloids to T (λ, µ) by mapping

{s} 7−→ T,

where, for each node x of [λ], T(x) is the number of the row of s in which t(x) lies. By means of this
bijection, we may take T (λ, µ) as a basis for Mµ.

Now, given T ∈ T (λ, µ), define ΘT : Mλ → Mµ by

{t} 7−→
∑
S∼rowT

S,

extending homomorphically. Define Θ̂T to be the restriction of ΘT to S λ.
We call a tableau T ∈ T (λ, µ) semi-standard if its entries are weakly increasing along the rows and

strictly increasing down the columns, and we write T0(λ, µ) for the set of semi-standard λ-tableaux of
type µ. We then have the following, due to Carter and Lusztig [1].

Theorem 1.3. [6, Theorem 13.13] If the characteristic of F is not 2, then the set

{Θ̂T | T ∈ T0(λ, µ)}

is a basis for HomFSn(S λ,Mµ).

1.2.3 Multipolytabloids

Suppose that µ is a partition of n, and that I = {I1, . . . , Im} is a partition of the set {1, . . . , n}. We
define an equivalence relation ∼I on the set of µ-tableaux by putting s ∼I u if and only if u = πs where
π ∈ Sn preserves the partition I. (We shall be considering the case where Ii is the set of entries in the ith
column of a λ-tableau t; then we shall have s ∼I u if and only if u = πs for π in the column stabiliser of
t.)

Given a µ-tableau s, define
CI(s) = {u | s ∼I u}

and let {u1, . . . , ua} be a transversal of the ∼col equivalence classes in CI(s). Now define the multipoly-
tabloid

eI
s =

a∑
j=1

(−1)su jeu j .

We may use multipolytabloids to describe the images of homomorphisms between Specht modules,
but first we make a more restrictive definition, slightly differently from [4]. Let λ be a partition, and let tλ

be the λ-tableau with entries 1, . . . , λ′1 down the first column, λ′1 +1, . . . , λ′2 down the second column and
so on. Let Ii be the set of numbers appearing in the ith column of tλ, and say that the multipolytabloid
eI
s is rectified if s is a standard tableau with no two elements of Ii in the same row, for any i.

Given an element x of an FSn-module M and a subset S of {1, . . . , n}, we say that x is alternating in
the elements of S if for any a, b ∈ S we have (a b)x = −x.
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Proposition 1.4. Suppose that an element x of S µ is alternating in the elements of each Ii. Then x is a
linear combination of rectified multipolytabloids.

Proof. We may use the proof of [4, Proposition 4.4], even though the statement of that result is weaker.
By expressing x in terms of standard polytabloids, we guarantee that each multipolytabloid eI

s we sub-
tract from x has s standard; the fact that the elements of each Ii occur in distinct rows of s is also already
given. �

2 An isomorphic copy of S µ̆

In order to prove Theorem 1.1, it will turn out to be much easier to work with a copy of S µ̆ (contained
in a copy of Mµ̆). Define µ◦ to be the composition (s − µ1, . . . , s − µr), i.e. µ̆ with parts in reverse order.
Then Mµ◦ � Mµ̆, and we construct a copy of S µ̆ inside Mµ◦ as follows. Let bµ◦e be the subset

{(i, j) | i 6 r, µi < j 6 s}

of N2, i.e. the Young diagram of µ̆ rotated through 180◦ about
(

r+1
2 , s+1

2

)
. We define µ◦-tableaux, -

tabloids and -polytabloids using this diagram exactly as for partitions, and we let Rµ
◦

6 Mµ◦ be the span
of the µ◦-polytabloids. By [8, 2.1] we then have Rµ

◦

� S µ̆. We shall henceforth work entirely with µ◦

rather than µ̆.
We also fix from now on the λ-tableau tλ as defined in 1.2.3, i.e. with the numbers 1, . . . , n arranged

in order down successive columns. We define tλ̆ similarly.

Example. Suppose λ = (4, 3) and µ = (3, 3, 1), and take r = 3, s = 5 so that λ̆ = (5, 2, 1), µ̆ = (4, 2, 2).
Then we have

t
λ = 1 3 5 7

2 4 6 , t
λ̆ =

1 4 6 7 8
2 5
3

, bµ◦e =
× ×
× ×

× × × ×
.

3 Tableau combinatorics

Recall the definition of semi-standard tableaux from 1.2.2. We now make some similar definitions.
A tableau is column standard if its entries are strictly increasing down columns. We write Tc(λ, µ)

for the set of column standard λ-tableaux of type µ.
A tableau is row standard if its entries are strictly increasing along rows. We write Tr(λ, µ) for the

set of row standard λ-tableaux of type µ.
A tableau is transpose semi-standard if its entries are strictly increasing along rows and weakly

increasing down columns. We write T1(λ, µ) for the set of transpose semi-standard λ-tableaux of type µ.
We shall be working with the sets Tc(λ, µ), Tc(λ̆, µ◦), Tr(µ, λ′) and Tr(µ◦, (λ̆)′). In particular, we

wish to construct natural bijections between these four sets.
Given T ∈ Tc(λ, µ), let T[i] ⊆ {1, . . . , r} be the set of entries in the ith column of T. Now define T̆[i]

to be the complement in {1, . . . , r} of T[s + 1 − i], and let T̆ be the column standard λ̆-tableau with the
elements of T̆[i] in its ith column, for each i.

Given T ∈ Tr(µ, λ′), let T〈i〉 ⊆ {1, . . . , s} be the set of entries in the ith row of T. Now define

T〈i〉 = {s + 1 − a | a ∈ T〈i〉},

and define Ť to be the row standard µ◦-tableau with

Ť〈i〉 = {1, . . . , s} = T〈i〉
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for each i.
Given T ∈ Tc(λ, µ), define T́ to be the row standard µ-tableau such that there is an entry equal to i

in row j of T́ if and only if there is an entry equal to j in column i of T. Similarly, given T ∈ Tc(λ̆, µ◦),
define T̀ to be the row standard µ◦-tableau which has an i in its jth row if and only if T has a j in its ith
column.

Lemma 3.1.
1. The map T 7→ T́ is a bijection from Tc(λ, µ) to Tr(µ, λ′).

2. The map T 7→ T̀ is a bijection from Tc(λ̆, µ◦) to Tr(µ◦, (λ̆)′).

3. The map T 7→ T̆ is a bijection from Tc(λ, µ) to Tc(λ̆, µ◦) which restricts to a bijection T0(λ, µ) →
T0(λ̆, µ◦).

4. The map T 7→ Ť is a bijection fromTr(µ, λ′) toTr(µ◦, (λ̆)′) which restricts to a bijectionT1(µ, λ′)→
T1(µ◦, (λ̆)′).

5. For T ∈ Tc(λ, µ), we have `̆T = ˇ́T.

Proof. The types of the tableaux T́, T̀, T̆, Ť are easily verified, and the constructions are easily seen to be
invertible. (5) is also easily checked, so it remains to prove the relative clauses in (3) and (4); we prove
the first of these.

Suppose T ∈ Tc(λ, µ), and for each i, j define zTi j to be the number of entries less than or equal to j
in the ith column of T. The condition that T is semi-standard is then equivalent to

zTi j > zT(i+1) j

for all 1 6 i < s and 1 6 j 6 r. But this is the same as saying that the number of integers less than or
equal to j which do not appear in the ith column of T is at most the number of integers less than or equal
to j which do not appear in the (i + 1)th column, i.e.

zT̆(s+1−i) j 6 zT̆(s−i) j

for all i and j. Hence T̆ is semi-standard. Similarly, T is semi-standard whenever T̆ is. �

Example. Take λ, µ, r and s as in the last example. Then, if

T = 1 1 2 1
2 2 3 ,

we have
T̆ =

1 2 1 3 3
2 3
3

, T́ =
1 2 4
1 2 3
3

, `̆T = ˇ́T =
1 3
1 2

1 2 4 5
.

Given a µ-tableau s (of type (1n)), define the µ-tableau Ts of type λ′ by replacing each entry of s with
the number of the column in which it appears in tλ. Now we choose a µ-tabloid corresponding to each
S ∈ Tc(λ, µ). Given S, let rS be the row standard µ-tableau such that {rS} corresponds to S via tλ as in
1.2.2 (or, to put it another way, so that TrS = Ś). Make corresponding definitions for λ̆ and µ◦, with rS̆
the µ◦-tableau corresponding to S̆. The following lemma will be important.

Lemma 3.2. Suppose S, U ∈ Tc(λ, µ). Then

(−1)rSrU = (−1)rS̆rŬ .
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Proof. We continue to use the notation S[i] for the set of entries in the ith column of S. We say that S
and U are close if for some i there are a ∈ S[i] \ S[i + 1] and b ∈ S[i + 1] \ S[i] such that:

U[i] = S[i] ∪ {b} \ {a};

U[i + 1] = S[i + 1] ∪ {a} \ {b};

U[k] = S[k] whenever k , i, i + 1.

Claim. There exists a chain S = S0, S1, . . . , SN = U such that S j−1 and S j are close for all j.

Proof. Assuming S , U, let i be minimal such that S[i] , U[i], and take a ∈ S[i] \ U[i] and
b ∈ U[i] \ S[i]. Since S, U are tableaux of the same type, there must be an entry equal to b in
column l of S, for some l > i. By swapping entries between columns l and l − 1, then between
columns l − 1 and l − 2 and so on, we may find a chain S = S0, S1, . . . , SM where

• S j−1 and S j are close for all j,

• SM[k] = S[k] for all k < i, and

• SM[i] = S[i] ∪ {b} \ {a}.

Now replace S with SM and proceed by (downwards) induction on i and |S[i] ∩ U[i]|. �

In view of this claim, and since we have (−1)rSrT(−1)rTrU = (−1)rSrU for any S, T, U, we may assume
that S and U are close. Let a and b be as above; by interchanging S and U if necessary, we may assume
that a < b.

Let a = a0 < a1 < · · · < ap be the elements of S[i] which lie between a and b, and let x, . . . , x + p
be the numbers which occupy the corresponding positions in column i of tλ. Let b0 < b1 < · · · < bq = b
be the elements of S[i + 1] which lie between a and b, and let y, . . . , y + q be the numbers which occupy
the corresponding positions in column i + 1 of tλ. Then the permutation which takes rS to rU is simply
the cycle

(x + p x + p − 1 . . . x + 1 x y y + 1 . . . y + q − 1 y + q),

which has signature (−1)p+q+1.
Now consider S̆ and Ŭ. We have

Ŭ[s − i] = S̆ ∪ {b} \ {a},

Ŭ[s − i + 1] = S̆[s − i + 1] ∪ {a} \ {b},

Ŭ[k] = S̆[k] whenever k , s − i, s − i + 1.

As above we find that the sign of the permutation taking rS̆ to rŬ is (−1)p̃+q̃+1, where

p̃ =
∣∣∣S̆[s − i] ∩ {a, . . . , b}

∣∣∣, q̃ =
∣∣∣S̆[s − i + 1] ∩ {a, . . . , b}

∣∣∣.
But {1, . . . , r} is the disjoint union of S[i] and S̆[s−i+1], so that p+q̃ = b−a+1. Similarly, q+ p̃ = b−a+1,
so that we have

(−1)p̃+q̃+1 = (−1)2b−2a+2−p−q+1

= (−1)p+q+1. �
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4 Comparing the images of semi-standard homomorphisms

The usual way to obtain information about homomorphisms between Specht modules is to combine
Theorem 1.3 with the Kernel Intersection Theorem [6, Corollary 17.18], which expresses S µ as the
intersection of the kernels of certain homomorphisms ψd,t : Mµ → Mν. This does not seem to be
particularly easy to apply to our result, and so we adopt a slightly different approach. Define

Θλµ = 〈θ(etλ) | θ ∈ HomFSn(S λ,Mµ)〉.

Since S λ is generated by etλ [6, 4.5], we have

dimFHomFSn(S λ, S µ) = dimF(Θλµ ∩ S µ).

In this section, we shall compare Θλµ with Θλ̆µ◦ , which is defined analogously.
Let T (λ, µ) be a basis for Mµ as in 1.2.2, using the λ-tableau t = tλ. Now define the subspace

Aλµ = {x ∈ Mµ | x is alternating in the elements of each column of tλ}

of Mµ, and define Aλ̆µ◦ 6 Mµ◦ similarly. Then Θλµ 6 Aλµ, since for θ ∈ HomFSn(S λ,Mµ) and a, b in the
same column of tλ we have

(a b)θ(etλ) = θ((a b)etλ) = θ(−etλ) = −θ(etλ).

Similarly, Θλ̆µ◦ 6 Aλ̆µ◦ . We aim to construct a vector space isomorphism Aλµ → Aλ̆µ̆ which restricts to
an isomorphism Θλµ → Θλ̆µ◦ .

4.1 A basis for Aλµ

Suppose a ∈ Aλµ, and write a =
∑
T∈T (λ,µ) aTT, with aT ∈ F. The condition that a is alternating in the

elements of each column of tλ is equivalent to

aT = (−1)STaS whenever S ∼col T,

where (−1)ST is the sign of any column permutation taking S to T. Hence we may easily find a basis for
Aλµ; we assume henceforth that char(F) , 2.

Lemma 4.1. For T ∈ Tc(λ, µ), define
ET =

∑
S∼colT

(−1)STS.

Then the set
{ET | T ∈ Tc(λ, µ)}

is a basis for Aλµ.

We may therefore construct a vector space isomorphism Aλµ → Aλ̆µ◦ by means of the bijection
Tc(λ, µ)→ Tc(λ̆, µ◦) given by T 7→ T̆. Define the linear map φ : Aλµ → Aλ̆µ◦ by

φ : ET 7−→ ET̆.
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Given the second statement of Lemma 3.1(3), we might hope that the vector space isomorphism

Θλµ −→ Θλ̆µ◦

Θ̂T(etλ) 7−→ Θ̂T̆(etλ̆)

is a restriction of φ. This is not the case in general, and we have to find the appropriate restriction of φ
differently.

Recall the dominance order [6, Definition 13.8] on Tc(λ, µ): we write S B T if T can be obtained
from S by interchanging entries w and x, where w < x and w belongs to an earlier column of S than x;
then we extend Q to a partial order on Tc(λ, µ). It is easily seen that S Q T if and only if S̆ Q T̆.

Proposition 4.2. Suppose that T ∈ Tc(λ, µ) is not semi-standard. Then there exist T1, . . . , Tl ∈ Tc(λ, µ)
and c1, . . . , cl ∈ F such that:

• Ti B T for all i;

• if a =
∑
S∈Tc(λ,µ) aSES is any element of Θλµ, then

aT + c1aT1 + · · · + claTl = 0;

• if b =
∑
U∈Tc(λ̆,µ◦) bUEU is any element of Θλ̆µ◦ , then

bT̆ + c1bT̆1
+ · · · + clbT̆l

= 0.

Proof. We use an idea from the proof of [6, Lemma 13.12], which uses the Garnir relations to show that
the semi-standard homomorphisms span HomFSn(S λ,Mµ). We must find Garnir relations which are ‘the
same’ for T and T̆.

Write T ji for the jth entry in the ith column of T. Because T is not semi-standard, we have T ji > T j(i+1)
for some i, j; let i, j be such that this holds but Tmi 6 Tm(i+1) for m < j. Suppose T j(i+1) = d.

Now, using the proof of Lemma 3.1(3), we find that d appears in the (s + 1 − i)th column of T̆, say
T̆k(s+1−i) = d, and that T̆k(s−i) > T̆k(s+1−i). Let X be the set of entries in positions j, . . . , λ′i of column
i of tλ, and Y the set of entries in positions 1, . . . , j of column i + 1. Let X̆ be the set of entries in
positions k, . . . , r − λ′i+1 of column s − i of tλ̆, and Y̆ the set of entries in positions 1, . . . , k of column
s + 1 − i. We are going to use the Garnir elements GX,Y and GX̆,Y̆ , but we need to choose our coset
representatives carefully. Given a right coset σ(SX ×SY ) of SX ×SY in SX∪Y , let x1 < · · · < xb be the
elements of X mapped to elements of Y by σ−1, and y1 < · · · < yb the elements of Y mapped to elements
of X by σ−1. Clearly these determine σ(SX × SY ) but are independent of σ. Choose the involution
(x1 b1)(x2 b2) . . . (xb yb) as the coset representative for σ(SX × SY ). Because the coset representatives
σ1, . . . , σa so chosen are involutions, they also form a set of left coset representatives for SX × SY in
SX∪Y .

Now define GX,Y as in 1.2.1. We have |X ∪ Y | = λ′i + 1, and so GX,Yetλ = 0. If a = θ(etλ) with θ a
homomorphism from S λ to Mµ, then we have

0 = θ(GX,Yetλ) = GX,Ya;

in particular, the coefficient of T in GX,Ya is zero. If we write a in terms of the basis T (λ, µ) for Mµ, say
a =

∑
S∈T (λ,µ) αSS, then we have

(−1)σ1ασ1T + · · · + (−1)σaασaT = 0
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(since σm = σ−1
m for each m). Now if the tableau σmT has two identical entries in some column, then

ασmT = 0, and so we let S0, . . . , Sl be the tableaux among σ1T, . . . , σaT which have distinct entries in
each column. Let T0, . . . , Tl be the tableaux in Tc(λ, µ) such that Tm ∼col Sm for each m. Then, assuming
S0 = T0 = T, we have

0 = aT + (−1)TS1(−1)S1T1aT1 + · · · + (−1)TSl(−1)SlTlaTl ,

where TSm is the number of entries moved from column i to column i + 1 to get from T to Sm, and
(−1)SmTm is the sign of the column permutation taking Sm to Tm.

In fact, we may easily describe T1, . . . , Tl. A permutation σm simply interchanges some subset of X
with some subset of Y of the same size. And so (recalling that we write T[i] for the set of entries in the
ith column of T) a tableau σmT is obtained by interchanging A and B, where A is a subset of T[i] which
consists of integers greater than d, B is a subset of T[i + 1] consisting of integers which are at most d,
and |A| = |B|. The tableau σmT then has distinct entries in each column if and only if A is disjoint from
T[i + 1] and B is disjoint from T[i].

Now consider T̆. Notice that a set A of integers greater than d is a subset of T[i] disjoint from T[i + 1]
if and only if it is a subset of T̆[s − i] disjoint from T̆[s + 1 − i], while a set B of integers equal to or less
than d is a subset of T[i + 1] disjoint from T[i] if and only if it is a subset of T̆[s + 1 − i] disjoint from
T̆[s − i]. So if we repeat the above procedure with λ̆, µ◦ in place of λ, µ and let S̆1, . . . , S̆l and T̆1, . . . , T̆m

be the tableaux obtained, then T̆1, . . . , T̆l are in one-to-one correspondence with T1, . . . , Tl via the pairs
(A, B); without loss, assume that Tm and T̆m correspond in this way, for each m. Moreover, notice that we
have (−1)TSm = (−1)|A| = (−1)T̆S̆m for each m. So it suffices to prove that (−1)SmTm = (−1)S̆mT̆m for each
m. Now (−1)SmTm is the sign of the permutation required to put columns i and i + 1 of Sm in ascending
order; column i of Sm is the same as column i of T, except that the elements a1 < · · · < ax of A are
replaced with the elements b1 < · · · < bx of B in order. So the number of transpositions required to put
this column in ascending order is

x∑
y=1

∣∣∣(T[i] \ A) ∩ {by + 1, . . . , ay − 1}
∣∣∣.

Similarly, the signature of the permutation required to put the entries of column i + 1 of Sm in order is

x∑
y=1

∣∣∣(T[i + 1] \ B) ∩ {by + 1, . . . , ay − 1}
∣∣∣.

And so, letting Cy = {by + 1, . . . , ay − 1} \ (A ∪ B), we have

(−1)SmTm = (−1)
∑x

y=1|T[i]∩Cy|+|T[i+1]∩Cy|.

Similarly we have
(−1)S̆mT̆m = (−1)

∑x
y=1|T̆[s−i]∩Cy|+|T̆[s+1−i]∩Cy|;

but ∣∣∣T̆[s − i] ∩Cy
∣∣∣ +

∣∣∣T̆[s + 1 − i] ∩Cy
∣∣∣ =

∣∣∣({1, . . . , r} \ T[i]) ∩Cy
∣∣∣ +

∣∣∣({1, . . . , r} \ T[i + 1]) ∩Cy
∣∣∣

= 2|Cy| − |T[i] ∩Cy| − |T[i + 1] ∩Cy|

≡ |T[i] ∩Cy| + |T[i + 1] ∩Cy| (mod 2),

and so (−1)SmTm = (−1)S̆mT̆m . �
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Corollary 4.3. φ restricts to a vector space isomorphism Θλµ → Θλ̆µ◦ .

Proof. The dominance order guarantees that the relations

aT = c1aT1 + · · · + claTl

of Proposition 4.2 are linearly independent; since the number of such relations is the number of non-
semi-standard tableaux in Tc(λ, µ), and the dimension of Θλµ is the number of semi-standard tableaux,
it follows that Θλµ is precisely the subspace of Aλµ satisfying these relations. A similar statement holds
for Θλ̆µ◦ . But by Proposition 4.2, φ maps the relations for Θλµ to those for Θλ̆µ◦ , and hence φ(Θλµ) =

Θλ̆µ◦ . �

For later use, we wish to express Corollary 4.3 as a statement purely about column standard tableaux.
The next lemma follows immediately from the definitions.

Lemma 4.4. If T ∈ T0(λ, µ) and we write

Θ̂T(etλ) =
∑

S∈Tc(λ,µ)

aSES,

then we have
aS =

∑
R∈T (λ,µ)
T∼rowR∼colS

(−1)RS.

Now the following is simply a re-casting of Corollary 4.3.

Proposition 4.5. Let M be the matrix over F with rows indexed by the set Tc(λ, µ), and columns indexed
by the set T (λ, µ), and in which the (S, T)-entry is∑

R∈T (λ,µ)
T∼rowR∼colS

(−1)RS.

Let M̆ be the matrix over F with rows indexed by the set Tc(λ̆, µ◦), and columns indexed by the set
T (λ̆, µ◦), and in which the (S, T)-entry is ∑

R∈T (λ̆,µ◦)
T∼rowR∼colS

(−1)RS.

Then, under the correspondence S ↔ S̆ between rows of M and rows of M̆, the span of the columns of
M equals the span of the columns of M̆.

5 The intersection of Aλµ with S µ

In this section and the next, we complete the proof of Theorem 1.1 by showing that the map φ :
Aλµ → Aλ̆µ◦ also restricts to a linear isomorphism (Aλµ∩S µ)→ (Aλ̆µ◦ ∩Rµ

◦

), by using multipolytabloids
to describe these intersections.

Recall the notation and definitions of 1.2.3. Notice that if eI
s is a rectified multipolytabloid, then

the µ-tableau Ts is transpose semi-standard; every T ∈ T1(µ, λ′) arises in this way, and if two different
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µ-tableaux s1 and s2 give the same element Ts1 = Ts2 of T1(µ, λ′), then eI
s1

= ±eI
s2

. Given T ∈ T1(µ, λ′),
we choose such an s, and write eT = eI

s.
We would like to know the coefficient of each basis element ES in a given multipolytabloid eT. Recall

the tableau rS from Section 3; the coefficient of ES in any element a of Aλµ equals the coefficient of {rS}
in a (when expressed as a linear combination of tabloids), and similarly for ES̆ and {rS̆}. So we examine
the coefficients of the tabloids {rS} in the multipolytabloids eT. The following lemma follows from the
definitions.

Lemma 5.1. Let eI
s be a multipolytabloid, with u1, . . . , ua representatives of ∼col classes as in 1.2.3. Then

the coefficient of a µ-tabloid {r} in eI
s equals

a∑
i=1

(−1)sui
∑

ui∼colu∼rowr

(−1)uui .

We would like to express Lemma 5.1 using µ-tableaux of type λ′. Take S ∈ Tc(λ, µ) and let rS be as
above; suppose also that eI

s = eT for T ∈ T1(µ, λ′). Notice that if ui ∼col u ∼row rS, then T ∼col Tu ∼row
TrS = Ś; moreover, if T ∼col U ∼row Ś, then there is a unique i and a unique u such that ui ∼col u ∼row rS

and U = Tu. In this case, we have (−1)UŚ = (−1)urS .
So we find that the coefficient of {rS} in eT = eI

s is

(−1)srS
∑

U∈T (µ,λ′)
T∼colU∼rowŚ

(−1)UŚ. (1)

We perform the same calculation with λ̆, µ◦ in place of λ, µ: for S ∈ Tc(λ, µ), let rS̆ be the row
standard µ◦-tableau corresponding to S̆, and for T ∈ T1(µ, λ′) let eŤ = eI

ŝ
be the µ◦-multipolytabloid

corresponding to Ť, with ŝ some standard µ◦-tableau. Then the coefficient of {rS̆} in eŤ is

(−1)ŝrS̆
∑

U∈T (µ◦,(λ̆)′)
Ť∼colU∼row

`̆S

(−1)U
`̆S. (2)

Now we are able to prove the main result of this section.

Proposition 5.2. φ restricts to a linear isomorphism (Aλµ ∩ S µ)→ (Aλ̆µ◦ ∩ Rµ
◦

).

Proof. Let N be the matrix with columns indexed by transpose semi-standard µ-tableaux of type λ′, and
rows indexed by column standard λ-tableaux of type µ, and in which the entry in column T and row S
is the coefficient of ES in eT. Let N̆ be the matrix with columns indexed by transpose semi-standard µ◦-
tableaux of type (λ̆)′ and rows indexed by column standard λ̆-tableaux of type µ◦, and in which the entry
in column Ť and row S̆ is the coefficient of ES̆ in eŤ. We need to show that, under the correspondence
S↔ S̆ between rows of N and rows of N̆, the column spaces of N and N̆ are equal.

We re-label the rows of N, replacing S ∈ Tc(λ, µ) with Ś ∈ Tr(µ, λ′). Similarly, re-label the rows of
N̆, replacing S with S̀. By Lemma 3.1(5), the rows of N and N̆ now correspond via S↔ Š.

Now choose and fix some V ∈ Tr(µ, λ′), and then for each S ∈ Tr(µ, λ′) multiply row S of N by
(−1)rVrS , and multiply row Š of N̆ by (−1)rV̌rŠ . By Lemma 3.2, a row of N gets multiplied by the same
factor as the corresponding row of N̆, and so this operation does not affect whether the column spaces
of N and N̆ coincide. We also multiply the columns of N and N̆ by ±1 (which will not affect the column
space): multiply column T of N by (−1)srV , where eT = eI

s, and similarly for N̆.
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Using expressions (1) and (2), we find that after these operations the entry in column T and row S of
N is ∑

U∈T (µ,λ′)
T∼colU∼rowS

(−1)US

and the entry in column T and row S of N̆ is ∑
U∈T (µ◦,(λ̆)′)
T∼colU∼rowS

(−1)US.

Now the fact that N and N̆ have the same column space follows from Proposition 4.5 by taking the
transposes of all tableaux. �

6 The proof of Theorem 1.1

Proof of Theorem 1.1. φ is a linear isomorphism Aλµ → Aλ̆µ◦ which restricts to linear isomorphisms

Θλµ −→ Θλ̆µ◦

and
(Aλµ ∩ S µ) −→ (Aλ̆µ◦ ∩ Rµ

◦

),

and hence to a linear isomorphism

(Θλµ ∩ S µ) −→ (Θλ̆µ◦ ∩ Rµ
◦

).

But, as stated at the start of Section 4, we have

dimF(Θλµ ∩ S µ) = dimFHomFSn(S λ, S µ).

Similarly,
dimF(Θλ̆µ◦ ∩ Rµ

◦

) = dimFHomFSrs−n(S λ̆,Rµ
◦

).

But Rµ
◦

and S µ̆ are isomorphic FSrs−n-modules, are so we are done. �

We now deduce the row removal theorem in [4].

Corollary 6.1. [4, Proposition 4.1] Suppose F is a field of odd characteristic and that λ and µ are
partitions of n with λ1 = µ1. Define λ̄ = (λ2, λ3, . . . ) and µ̄ = (µ2, µ3, . . . ). Then

dimFHomFSn(S λ, S µ) = dimFHomFSn−λ1
(S λ̄, S µ̄).

Proof. Take r > λ′1, µ
′
1 and s > λ1, and define λ̆ and µ̆ as in Theorem 1.1. If we ˘̄λ and ˘̄µ similarly, but

using r − 1 and s, then in fact we have λ̆ = ˘̄λ and µ̆ = ˘̄µ. The result now follows from Theorem 1.1. �

We may deduce the column removal theorem similarly, but it seems unlikely that one can deduce
the generalised version [4, Theorem 2.1].
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