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Abstract

We prove analogues of (Donkin’s generalisations of) James’s row and column removal theorems,
in the context of homomorphisms between Specht modules for symmetric groups.

1 Introduction

In [4], James proves two theorems regarding the decomposition numbers for the symmetric groups;
these concern the removal of a row or a column from a partition diagram. These results are generalised
by Donkin in [2]. In trying to understand the structure of Specht modules, the homomorphism spaces
HomkSn(S λ, S µ) are of similar interest to the decomposition numbers, and here we prove analogues of
Donkin’s results in this context.

For the remainder of this section, we recall some basic results and establish notation. In Section
2 we state our main results, and examine their interdependence; it turns out that we need only prove
the generalised row removal theorem, which we do in Section 3. Finally, in Section 4, we consider the
representation of homomorphisms in terms of polytabloids, and attempt to describe our results in this
way.

Similar results ought to be true for homomorphisms between Weyl modules for general linear groups.
Certainly a simple column removal theorem is true (even in characteristic two), since adding a column
to the Young diagram corresponds to tensoring with the determinant representation. Such a result would
not immediately imply our results, however, since spaces of homomorphisms are not preserved under
the Schur functor.

It is also unclear whether corresponding results hold for representations of finite general linear
groups in non-defining characteristic; partial results are obtained in the second author’s doctoral the-
sis [5].

∗The authors were financially supported by the EPSRC while this research took place. They would also like to thank the
London Mathematical Society for organising the ‘Durham symposium on representations of finite groups and related algebras’,
at which some of this research was undertaken.
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1.1 Definitions and notation

Throughout this paper, we assume that k is a field of characteristic not two, and we let Sn denote
the symmetric group on n letters. We are interested in the space of kSn-homomorphisms between the
Specht modules S λ and S µ, for λ and µ partitions of n.

We take our notation from James’s book [3], from which we also recall some useful results. Recall
that a composition of n is a sequence λ = (λ1, λ2, . . . ) of non-negative integers summing to n, and that a
composition λ is a partition if λ1 > λ2 > . . . . Write |λ| = n. We define the Young diagram

[λ] = {(i, j) | j 6 λi} ⊂ N
2.

Note that the Young diagram is conventionally drawn with i increasing down the page. For example, the
Young diagram of the partition (4, 2, 1) is

× × × ×
× ×
×

.

Accordingly, we shall refer to lower rows of [λ] to mean those corresponding to higher values of i.
Let λ be a composition of n. A λ-tableau is a bijection from [λ] to {1, . . . , n} (or occasionally some

other specified set of size n), which we shall regard as ‘[λ] with the nodes replaced by the elements of
{1, . . . , n}’. The row equivalence relation ∼row is defined on the set of λ-tableaux in an obvious way, and
column equivalence ∼col is defined similarly. An equivalence class of λ-tableaux under ∼row is called a
λ-tabloid, and we denote by {t} the tabloid containing t. The set of tableaux and the set of tabloids are
acted upon in a natural way by Sn, and we let Mλ be the kSn-module which has the set of λ-tabloids as
a basis. If x ∈ Mλ and I ⊆ {1, . . . , n}, we say that x is alternating in the elements of I if x(a b) = −x for
all a, b ∈ I with a < b. If λ is a partition, then for a tableau t we define the polytabloid

et =
∑
s∼colt

(−1)st{s} ∈ Mλ,

where (−1)st is the signature of the permutation sending s to t. We define the Specht module S λ 6 Mλ

to be the k-span of all λ-polytabloids.
We are interested in homomorphisms between such modules. In order to define some of these, we

extend our definition of tableaux, allowing them to have repeated entries. Specifically, if λ and µ are
compositions of n, a λ-tableau of type µ is a diagram obtained by replacing the nodes of [λ] with µ1 1s,
µ2 2s, and so on. We let T (λ, µ) denote the set of λ-tableaux of type µ. The relations ∼row and ∼col are
defined in the obvious way on T (λ, µ).

Let t be a fixed λ-tableau (of type (1n)). Given a λ-tableau S of type µ, we define dt(S ) to be any
µ-tableau in which i ∈ {1, . . . , n} appears in row j, where i and j occupy corresponding positions in t and
S . This defines dt(S ) up to ∼row equivalence, and thus defines {dt(S )} uniquely.

Now, for each T ∈ T (λ, µ), we define a homomorphism

ΘT : Mλ −→ Mµ

by stipulating that

{t} 7−→
∑

S∼rowT

{dt(S )}

and extending linearly. Note that ΘT only depends on the ∼row equivalence class of T .
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A particular set of such homomorphisms gives us a new characterisation of the Specht module S λ,
which will prove very useful. Let d be a positive integer, and choose t such that 0 6 t < λd+1. Define ν
by

νi =


λi + λi+1 − t (i = d)
t (i = d + 1)
λi (otherwise).

Let T be the λ-tableau with all entries in row i equal to i, except for i = d + 1, when there are λd+1 − t
entries equal to d and t entries equal to d + 1. T is then a λ-tableau of type ν, and we write ψd,t for the
homomorphism ΘT : Mλ → Mν. (We may omit to mention ν, since it is determined by λ, d and t.) We
then have the following.

Theorem 1.1 ([3], Corollary 17.18). If λ is a partition of n, then

S λ =
⋂
d>1

λd+1−1⋂
t=0

ker(ψd,t).

We are also interested in homomorphisms from S λ, when λ is a partition. Accordingly, we let
Θ̂T : S λ → Mµ be the restriction of ΘT to S λ. We say that a λ-tableau T of type µ is semistandard if
its entries are non-decreasing along each row and strictly increasing down each column. We let T0(λ, µ)
denote the set of semistandard λ-tableaux of type µ. For example, we have

T0((5, 2), (3, 2, 2)) =
{

1 1 1 2 2
3 3 , 1 1 1 2 3

2 3 , 1 1 1 3 3
2 2

}
.

The following result is originally due to Carter and Lusztig [1].

Theorem 1.2 ([3], Theorem 13.13). If λ is a partition of n and µ a composition of n, and if k is a field of
characteristic not two, then the set {Θ̂T | T ∈ T0(λ, µ)} is a basis for HomkSn(S λ,Mµ).

This has the following corollary, which we shall use. Recall that, for compositions λ and µ, we say
that λ dominates µ (and write λ Q µ) if

j∑
i=1

λi >

j∑
i=1

µi

for all j.

Corollary 1.3. If λ is a partition of n, and µ a composition of n with λ S µ, then HomkSn(S λ,Mµ) = 0.

Proof. It is easily seen that there are no semistandard λ-tableaux of type µ unless λ Q µ. �

We end this introduction with a few items of notation. For a partition λ of n, λ′ will denote the
conjugate partition, that is,

λ′i = max{ j | λ j > i}.

M∗ will denote the dual of any module M, and sgn will denote the one-dimensional signature represen-
tation of kSn. All tensor products will be taken over k.
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2 The main results

Our main theorem is as follows.

Theorem 2.1. Let k be any field with characteristic not equal to two. Suppose λR and µR are partitions
of l, each with at most s non-zero parts, and λB and µB are partitions of m with λB

1 , µ
B
1 6 r. Let

n = rs + l + m, and define the partitions

λ = (r + λR
1 , . . . , r + λR

s , λ
B
1 , λ

B
2 , . . . ),

µ = (r + µR
1 , . . . , r + µR

s , µ
B
1 , µ

B
2 , . . . ).

Then, as k-vector spaces,

HomkSn(S λ, S µ) � HomkSl(S
λR
, S µR

) ⊗ HomkSm(S λB
, S µB

).

In fact, we shall prove the following two theorems, which are direct analogues of Donkin’s results.

Theorem 2.2. Let k be any field with characteristic not equal to two. Let λ and µ be partitions of n, and
suppose that for some s we have

λ1 + · · · + λs = µ1 + · · · + µs.

Define

λT = (λ1, . . . , λs),

λB = (λs+1, λs+2, . . . ),

µT = (µ1, . . . , µs),

µB = (µs+1, µs+2, . . . ).

Then, putting m = |λB| = |µB|, we have

HomkSn(S λ, S µ) � HomkSn−m(S λT
, S µT

) ⊗ HomkSm(S λB
, S µB

)

as k-vector spaces.

Theorem 2.3. Let k be any field with characteristic not equal to two. Let λ and µ be partitions of n, and
suppose that for some r we have

λ′1 + · · · + λ′r = µ′1 + · · · + µ′r.

Define

λL =
(

min(λ1, r),min(λ2, r), . . .
)
,

λR =
(

max(λ1 − r, 0),max(λ2 − r, 0), . . .
)
,

µL =
(

min(µ1, r),min(µ2, r), . . .
)
,

µR =
(

max(µ1 − r, 0),max(µ2 − r, 0), . . .
)
.

Then, putting l = |λR| = |µR|, we have

HomkSn(S λ, S µ) � HomkSn−l(S
λL
, S µL

) ⊗ HomkSl(S
λR
, S µR

)

as k-vector spaces.
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The partitions λR, λL, λT, λB appearing in these theorems may be viewed pictorially as follows:

λR

λB

λT

λB

λR

λL

.

Proposition 2.4. Theorems 2.2 and 2.3 together are equivalent to Theorem 2.1.

Proof. First of all, assume Theorem 2.1, and suppose that λT, µT, λB and µB are as in Theorem 2.2. If
either λT

s > µT
s or λB

1 < µB
1 , then λ S µ and either λT S µT or λB S µB, so that both vector spaces in

Theorem 2.2 are zero. So we may assume λT
s 6 µ

T
s and λB

1 > µ
B
1 . Put r = λT

s , l = n − m − rs, and define

λR = (λT
1 − r, . . . , λT

s − r), µR = (µT
1 − r, . . . , µT

s − r);

then λR, µR, λB, µB satisfy the conditions of Theorem 2.1. So we have

HomkSn(S λ, S µ) � HomkSl(S
λR
, S µR

) ⊗ HomkSm(S λB
, S µB

)

by Theorem 2.1, and we need only show that

HomkSn−m(S λT
, S µT

) � HomkSl(S
λR
, S µR

).

But Theorem 2.1 implies (replacing λB and µB with the partition of zero) that

HomkSn−m(S λT
, S µT

) � HomkSl(S
λR
, S µR

) ⊗ HomkS0(S (0), S (0))

� HomkSl(S
λR
, S µR

) ⊗ k

� HomkSl(S
λR
, S µR

).

Theorem 2.3 is deduced from Theorem 2.1 similarly.
Conversely, assume Theorems 2.2 and 2.3 and the conditions of Theorem 2.1. The conditions of

Theorem 2.2 hold, with

λT = (λR
1 + r, . . . , λR

s + r), µT = (µR
1 + r, . . . , µR

s + r);

by Theorem 2.3 (with λL = µL = (rs)) we have

HomkSl(S
λR
, S µR

) � HomkSl+rs(S
λT
, S µT

);

now Theorem 2.2 gives the conclusion of Theorem 2.1. �

Fortunately (and unlike the corresponding results for decomposition numbers), we only need to
prove one of Theorems 2.2 and 2.3.

Proposition 2.5. Theorems 2.2 and 2.3 are equivalent.

We need the following result from [3].
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Proposition 2.6 ([3], Theorem 8.15). Let sgn denote the alternating representation of the symmetric
group. Then, for any λ and any field k,

S λ′ ⊗ sgn � (S λ)∗.

From this we prove the following.

Corollary 2.7. For any partitions λ and µ we have

HomkSn(S λ′ , S µ′) � HomkSn(S µ, S λ).

Proof. Since sgn is one-dimensional, we have

HomkSn(M ⊗ sgn,N ⊗ sgn) � HomkSn(M,N)

for any modules M,N. So we have

HomkSn(S λ′ , S µ′) � HomkSn(S λ′ ⊗ sgn, S µ′ ⊗ sgn)

� HomkSn((S λ)∗, (S µ)∗)

� HomkSn(S µ, S λ). �

Proof of Proposition 2.5. If λ and µ satisfy the conditions of Theorem 2.2, then λ′ and µ′ satisfy the
conditions of Theorem 2.3, with r = s, l = m and with

(λ′)L = (λT)′,

(λ′)R = (λB)′,

(µ′)L = (µT)′,

(µ′)R = (µB)′.

So we have

HomkSn(S µ′ , S λ′) � HomkSn(S λ, S µ)

and

HomkSn−m(S µ′L , S λ′L) ⊗ HomkSm(S µ′R , S λ′R) � HomkSn−m(S λT
, S µT

) ⊗ HomkSm(S λB
, S µB

)

by Corollary 2.7. �

Remark. It is not clear to what extent our results hold in characteristic two. The crucial point is the
failure of Theorem 1.2, but in fact some our later arguments (in the proofs of Propositions 3.2 and 3.4)
rely on the characteristic not being two. An unmodified version of Theorem 2.1 in characteristic two is
false: put r = 1,s = 2 and

λR = (1, 1), µR = (2), λB = µB = (0).
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Then
HomF2S4(S λ, S µ) = HomF2S4(S (2,2), S (3,1)) = 0,

while
HomF2S2(S (1,1), S (2)) � HomF2S0(S (0), S (0)) � F2.

However, the authors suspect that Theorem 2.1 holds in characteristic two when λ is 2-regular.

3 The proof of theorem 2.2

We shall prove Theorem 2.2 using Theorem 1.1: given homomorphisms V : S λT
→ S µT

and W :
S λB
→ S µB

, we shall define a homomorphism (V,W) : S λ → Mµ and show that (V,W)ψd,t = 0 for all d
and t, so that the image of (V,W) lies in S µ; we proceed similarly in the other direction.

Let λ be a partition of n and ν a composition of n with λ1 + · · · + λs = ν1 + · · · + νs = n − m. Define
λT and λB as in Theorem 2.2, and νT and νB analogously.

Definition. Suppose that R ∈ T (λT, νT) has entry xi
j in position i of row j and S ∈ T (λB, νB) has entry

yi
j in position i of row j. Define (R, S ) to be the λ-tableau of type ν with entry zi

j in position i of row j,
where

zi
j =

xi
j ( j 6 s)

yi
j + s ( j > s).

For example, if
R =

1 1 1 1 1 2
2 2 2 3
3 3 3

, S =
1 1 2
2 3
3

,

then

(R, S ) =

1 1 1 1 1 2
2 2 2 3
3 3 3
4 4 5
5 6
6

.

Lemma 3.1. If R and S are semistandard, then so is (R, S ), and {(R, S ) |R ∈ T0(λT, νT), S ∈ T0(λB, νB)}
is precisely the set of semistandard λ-tableaux of type ν.

Proof. The first statement is clear. Suppose T is a semistandard λ-tableau of type ν with entry zi
j in

position i of row j. Then the entries of T strictly increase down the columns, so that for j > s we
have that zi

j > s. Since the number |νT| of entries less than or equal to s equals the number |λT| of
positions in rows 1, . . . , s, it also is also true that zi

j 6 s for j 6 s. So the top s rows of T constitute a
λT-tableau of type νT (which is clearly semistandard), and a similar statement holds for the lower rows. �

Definition. Suppose

V =
∑

R∈T0(λT,νT)

aRΘ̂R ∈ HomkSn−m(S λT
,MνT

)

and

W =
∑

S∈T0(λB,νB)

bS Θ̂S ∈ HomkSm(S λB
,MνB

).
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Define (V,W) ∈ HomkSn(S λ,Mν) by

(V,W) =
∑

R

∑
S

aRbS Θ̂(R,S ).

Proposition 3.2. Suppose U ∈ T (λT, νT) and S ∈ T0(λB, νB). Then

Θ̂(U,S ) = (Θ̂U , Θ̂S ).

In order to prove this, we need a lemma.

Lemma 3.3. Let t be a λ-tableau, π ∈ Sn an element of the column stabiliser of t, and θ : S λ → M any
kSn-homomorphism. Then

etθπ = ε(π)etθ.

Proof. We have etπ = ε(π)et, so that

ε(π)etθ = (etπ)θ

= (etπ)θ

= etθπ

since θ is a kSn-homomorphism. �

Proof of Proposition 3.2. By Theorem 1.2, we may write

Θ̂U =

a∑
i=1

ciΘ̂Ri

with R1, . . . ,Ra semistandard. We then need to prove that

Θ̂(U,S ) =

a∑
i=1

ciΘ̂(Ri,S ).

We apply both homomorphisms to an arbitrary λ-polytabloid et, and compare coefficients of an arbitrary
ν-tabloid {u}. Note that if π is in the column stabiliser of t, then

(etΘ̂(U,S ))π = (ε(π))etΘ̂(U,S )

and

(et(Θ̂U , Θ̂S ))π = (ε(π))et(Θ̂U , Θ̂S ),

by Lemma 3.3.
Suppose first that there are distinct numbers a and b in the same row of u and the same column of

t. Then the coefficient of {u} in the image of et under both maps is equal to the coefficient of {u} in the
image of et(a b), and hence must be zero. We may therefore assume that the entries of any column of t
occur in distinct rows of u.
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For each c > 1, let tc,1, tc,2, . . . be the numbers in column c of t, with tc,1 < tc,2 < . . . . Then there is a
unique element π of the column stabiliser of t such that, in uπ, the entry tc,i+1 occurs in a lower row than
tc,i for any i and any c. This means that none of the entries tc,s+1, tc,s+2, . . . can occur in rows 1, . . . , s. So
rows 1, . . . , s of uπ contain only entries tc,i for i 6 s; but the number of such entries is |λT|, and so all tc,i
with i 6 s occur in rows 1, . . . , s of uπ. By replacing u with uπ, we may simply assume that u has this
property.

Let tT be the λT-tableau consisting of the first s rows of t, and tB the λB-tableau consisting of the
remaining rows, and define uT and uB similarly. Then {uT} is a tabloid with entries in the same set as tT,
and {uB} is a tabloid with entries in the same set as tB. So the coefficient of {u} in etΘ̂(U,S ) equals

(coefficient of {uT} in etTΘ̂U) × (coefficient of {uB} in etBΘ̂S )

=

a∑
i=1

ci(coefficient of {uT} in etTΘ̂Ri) × (coefficient of {uB} in etBΘ̂S )

= coefficient of {u} in et

 a∑
i=1

ciΘ̂(Ri,S )

. �

A similar argument proves the following.

Proposition 3.4. Suppose U ∈ T0(λT, νT) and S ∈ T (λB, νB). Then

Θ̂(U,S ) = (Θ̂U , Θ̂S ).

Now we suppose that λ and µ are as in Theorem 2.2.

Lemma 3.5. If V ∈ HomkSn−m(S λT
,MµT

) and W ∈ HomkSn(S λB
,MµB

), then

(V,W)ψd,t =

(Vψd,t,W) (d < s)

(V,Wψd−s,t) (d > s).

Proof. We deal with the case where d < s; the other case follows similarly. By linearity, we need only
show that

(Θ̂R, Θ̂S )ψd,t = (Θ̂Rψd,t, Θ̂S )

for R ∈ T0(λT, µT), S ∈ T0(λB, µB). Let Ud,t be the set of row standard λT-tableaux which may be
obtained from R by replacing λd+1 − t entries equal to d + 1 with ds. Let U ∈ Ud,t and suppose that U
contains aUi entries equal to d in row i while R contains bi entries equal to d in row i. Then

(Θ̂Rψd,t, Θ̂S ) =

 ∑
U∈Ud,t

∏
i

(
aUi

bi

)
Θ̂U , Θ̂S

 =
∑

U∈Ud,t

∏
i

(
aUi

bi

)
Θ̂(U,S )

by Proposition 3.2 and

(Θ̂R, Θ̂S )ψd,t = Θ̂(R,S )ψd,t =
∑

U∈Ud,t

∏
i

(
aUi

bi

)
Θ̂(U,S )

as required. �
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Lemma 3.6. Suppose V ∈ HomkSn−m(S λT
, S µT

) and W ∈ HomkSm(S λB
, S µB

). Then (V,W) ∈ HomkSn(S λ, S µ).

Proof. We have that (V,W) ∈ HomkSn(S λ, S µ) if (V,W)ψd,t = 0 for all d and t. Let ν be the composition
such that ψd,t : Mµ → Mν.

If d = s then (since λ1 + · · · + λs = µ1 + · · · + µs) we have λ S ν and so Hom(S λ,Mν) = 0. Hence
(V,W)ψd,t = 0.

If d < s then by Lemma 3.5 we have

(V,W)ψd,t = (Vψd,t,W),

which is zero, since the image of V lies in S µT
. Similarly for d > s. �

Definition. Let

φ : HomkSn−m(S λT
,MµT

) ⊗ HomkSm(S λB
,MµB

) −→ HomkSn(S λ,Mµ)

be given by

V ⊗W 7−→ (V,W).

Note that φ is a linear bijection, by Lemma 3.1 and Proposition 3.2.

Theorem 3.7. Let φ̂ denote the restriction of φ to HomkSn−m(S λT
, S µT

) ⊗HomkSm(S λB
, S µB

). Then φ̂ is a
bijection between HomkSn−m(S λT

, S µT
) ⊗ HomkSm(S λB

, S µB
) and HomkSn(S λ, S µ).

Proof. Lemma 3.6 shows that if V ⊗ W ∈ HomkSn−m(S λT
, S µT

) ⊗ HomkSm(S λB
, S µB

) then (V ⊗ W)φ̂ ∈
HomkSn(S λ, S µ). Also since φ is injective, we have that φ̂ is injective. It remains only to show that φ̂ is
surjective.

Suppose that {Ai | i ∈ I} is a basis of HomkSn−m(S λT
, S µT

) and that {B j | j ∈ J} is a basis of HomkSm(S λB
, S µB

).
Let

Z =
∑

R∈T0(λT,µT)

∑
S∈T0(λB,µB)

cR,S (Θ̂R, Θ̂S ) ∈ HomkSn(S λ, S µ).

Then
(∑

R

∑
S

cR,S (Θ̂R, Θ̂S )
)
ψd,t = 0 for all d. When d > s, this gives

∑
R

∑
S

(Θ̂R, cR,S Θ̂Sψd−s,t) = 0.

Since φ is injective, we get ∑
S

cR,S Θ̂Sψd−s,t = 0

for every R, so that
∑
S

cR,S Θ̂S ∈ HomkSm(S λB
, S µB

) for every R. Writing

∑
S

cR,S Θ̂S =
∑
j∈J

αR, jB j
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for αR, j ∈ k, we have ∑
j∈J

∑
R

αR, j(Θ̂R, B j)

ψd,t = 0

for all d < s. The injectivity of φ gives ∑
R

αR, jΘ̂Rψd,t = 0

for every j when d < s, so that ∑
R

αR, jΘ̂R ∈ HomkSn−m(S λT
, S µT

).

Writing
∑
R
αR, jΘ̂R =

∑
i∈I
βi, jAi for each j, we have

Z =
∑
i∈I

∑
j∈J

βi, j(Ai, B j) = Z′φ̂,

where
Z′ =

∑
i, j

βi, j(Ai ⊗ B j).

This completes the proof of Theorem 2.2, and hence of Theorem 2.1. �

4 Expressing homomorphisms in terms of polytabloids

Given a homomorphism θ : S λ → S µ, it is often useful to have a description of the action of θ in
terms of polytabloids, i.e.

et 7−→
∑

s

cses

for a λ-tableau t, and µ-tableaux s. We address this for Theorem 2.1; in particular, given such descrip-
tions of homomorphisms S λR

→ S µR
and S λB

→ S µB
, we provide one for the corresponding homomor-

phism S λ → S µ. We do this in two stages: first for Theorem 2.3 and then for the following special case
of Theorem 2.2, which may be regarded as an ordinary row removal theorem for homomorphisms.

Proposition 4.1. Let ν and ξ be partitions of m with ν1, ξ1 6 r, and define

ν = (r, ν1, ν2, . . . ), ξ = (r, ξ1, ξ2, . . . ).

Then
HomkSm+r (S

ν, S ξ) � HomkSm(S ν, S ξ).

It is easily shown (by modifying the proof of Proposition 2.4) that Theorem 2.3 and Proposition 4.1
are together equivalent to Theorem 2.1.

We begin by addressing Theorem 2.3, which is fairly easily dealt with. Let λL, λR, µL and µR be
as in Theorem 2.3. Given a λL-tableau T L and a λR-tableau T R (with any entries), define the λ-tableau
T L|T R simply by juxtaposing T L and T R. For λL- and λR-tabloids uL and uR, define uL|uR similarly,
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and extend this to the whole of Mλ, so that if xL =
∑

uL cuLuL is a linear combination of λL-tabloids on
{1, . . . , n − l}, and xR =

∑
uR cuRuR is a linear combination of λR-tabloids on {n − l + 1, . . . , n}, then we

define
xL|xR =

∑
uL,uR

cuLcuRuL|uR;

we make similar definitions for µL- and µR-tableaux and tabloids. It is then clear that for a µL-tableau tL

on {1, . . . , n − l}, and a µR-tableau tR on {n − l + 1, . . . , n}, we have

etL |tR = etL |etR .

We now assume that λL Q µL and λR Q µR; there is no loss in doing this, since otherwise all the
homomorphism spaces involved are zero. We require the following lemma.

Lemma 4.2. Suppose T L is a semistandard λL-tableau of type µL and that T R is a semistandard λR-
tableau of type µR. Suppose also that S is a row permutation of T L|T R in which each column has
distinct entries. Then S = UL|UR for some row permutations UL and UR of T L and T R respectively.

Proof. Let s be the number of non-zero parts of µR. Then, since we are assuming λL Q µL and λR Q µR,
we have

λL
1 = · · · = λL

s = µL
1 = · · · = µL

s = r,

and we know that the number of non-zero parts of λR is at most s.
So, for 1 6 i 6 s, every entry of the ith row of T L equals i. We must therefore show that the ith row

of S begins with r entries equal to i, for all such i. Suppose we have shown this for i = s, s−1, . . . , j + 1,
and consider row j. The entries of T R are all at most s, while the entries in row j of S are all at least
j (since T L and T R are semistandard). So the first r entries of row j of S all lie between j and s. But
none of them can be greater than j, since then S would have equal entries in some column. The result
follows. �

Now suppose T L is a semistandard λL-tableau of type µL, and T R a semistandard λR-tableau of type
µR. In order to calculate the image of a λ-polytabloid under Θ̂T L |T R , we need only consider row permu-
tations of T L|T R in which each column has distinct entries. By Lemma 4.2, any such row permutation is
of the form UL|UR, where UL and UR are row permutations of T L and T R respectively. For a λL-tableau
tL on {1, . . . , n − l} and a λR-tableau tR on {n − l + 1, . . . , n}, this gives us

(etL |tR)Θ̂T L |T R =
(
(etL)Θ̂T L

)∣∣∣((etR)Θ̂T R
)
.

Hence we have the following.

Theorem 4.3. Let tL be a λL-tableau on {1, . . . , n− l}, and tR a λR-tableau on {n− l + 1, . . . , n}. Suppose
that

θL =
∑

T L∈T0(λL,µL)

cT LΘ̂T L

is a homomorphism from S λL
to MµL

with

(etL)θL =
∑
sL

dsLesL ,
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for some µL-tableaux sL on {1, . . . , n − l}, and some cT L , dsL ∈ k, and similarly suppose that

θR =
∑

T R∈T0(λR,µR)

cT RΘ̂T R

is a homomorphism from S λR
to MµR

with

(etR)θR =
∑
sR

dsResR ,

for µR-tableaux sR on {n − l + 1, . . . , n}.
Then the homomorphism

θ =
∑

T L∈T0(λL,µL)

∑
T R∈T0(λR,µR)

cT LcT RΘ̂T L |T R

satisfies
(etL |tR)θ =

∑
sL

∑
sR

dsLdsResL |sR;

in particular, the image of θ lies in the Specht module S µ.

Now we turn our attention to Proposition 4.1; this is rather more complicated, and requires additional
notation. Given a ν- or ξ-tableau t on {1, . . . ,m}, recall the definition of ν and ξ from Proposition 4.1, and
define the ν- or ξ-tableau t by adding a row with entries m+1, . . . ,m+r in order. Given a homomorphism
θ : S ν → S ξ with

(et)θ =
∑

s

cses,

we would like to find a homomorphism θ : S ν → S ξ with

(et)θ =
∑

s

cses.

Unfortunately, this does not work in general. We must express the image (et)θ in a particular way.
Suppose that I = {I1, . . . , Ir} is a partition of the set {1, . . . ,m}. We define an equivalence relation

∼I on ξ-tableaux by putting s ∼I u if and only if for each i, the elements of Ii between them occupy the
same positions in s as in u. (We shall be considering the case where t is a ν-tableau, and Ii the set of
entries of the ith column of t. Then we shall have s ∼I u if and only if u = sπ for some π ∈ C(t).)

Given a ξ-tableau s, define
CI(s) = {u | s ∼I u},

and let {u1, . . . , ua} be a transversal of the ∼col equivalence classes in CI(s). Now define the multipoly-
tabloid

eI
s =

a∑
j=1

(−1)su jeu j .

Remarks.
1. The multipolytabloid is constructed in order to be alternating in the elements of each Ii; in partic-

ular, eI
s = 0 if any two elements of some Ii lie in the same row of s.
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2. Since eu = (−1)uvev whenever u ∼col v, the multipolytabloid eI
s is independent of the choice of

u1, . . . , ua.

We shall use multipolytabloids to describe the images of homomorphisms between Specht modules,
but in fact we shall need to be slightly more stringent. We say that the multipolytabloid eI

s is rectified if
the elements of Ii occur in the first i columns of s, for each i.

Proposition 4.4. Suppose that an element x of S ξ is alternating in the elements of each Ii. Then x can
be expressed as a linear combination of rectified multipolytabloids eI

s.

Proof. By permuting the elements of {1, . . . ,m}, we may assume that the sets Ii are intervals in increasing
order, i.e. that if a ∈ Ii, b ∈ I j with i < j, then a < b.

Recall the lexicographic order on ξ-tabloids: {s} 6 {u} if the least entry which does not lie in the
same row of s as of u lies in a higher row of s. Write {s} < {u} if {s} 6 {u} and {s} , {u}. This gives a
total order on ξ-tabloids. By putting s 6 u if {s} 6 {u}, we obtain a partial order on the set of ξ-tableaux,
and a total order on the set of standard ξ-tableaux. We shall need the following crucial fact (which is
weak form of [3, Lemma 8.3]): for any tableau t and any standard tableau s with t < s, the tabloid {t}
does not occur in the polytabloid es.

Express x as a linear combination of standard polytabloids, and suppose that es is the first standard
polytabloid (with respect to the order 6) appearing with a non-zero coefficient c. We claim that eI

s is
rectified, and that the first standard polytabloid occurring in x − ceI

s is later with respect to the order 6
than s. This is then sufficient, since x − ceI

s is alternating in the elements of each Ii, and so by induction
can expressed as a linear combination of rectified multipolytabloids.

To prove the claim, we assert that for each i, the entries of Ii occur in increasing rows of s, that is, if
a, b ∈ Ii with a < b, then a occurs in a strictly higher row of s than b does. By the fact stated above, the
tabloid {s} occurs in x with coefficient c, and no tabloid {t} with t < s occurs. For a, b ∈ Ii, the tabloid
{s}(a b) occurs in x with coefficient −c, and so we must have {s} < {s}(a b), i.e. a must appear in a
strictly higher row of s than b does. So the elements of Ii occur in distinct rows of s, and this (together
with the fact that s is standard) tells us that eI

s is rectified: the elements of I1 occur as the first |I1| entries
of column 1 of s; the elements of I2 each occur either in the first column of s or immediately to the right
of an element of I1, and so on.

Now consider the effect of subtracting the multipolytabloid eI
s from x. The above description of s

shows us that we may choose s = u1, . . . , ua to be standard; since the elements of Ii lie in increasing
rows of s, we have s < u2, . . . , ua, so that the first standard polytabloid occurring in x − ceI

s is later than
s. �

Given this proposition, we may find the expression we seek for θ : S ν → S ξ in terms of polytabloids.
For a semistandard ν-tableau T of type ξ, define the semistandard ν-tableau T of type ξ by adding 1 to
each entry of T , and then adding a row of r 1s at the top.

Given a tableau t, let I(t)i be the set of entries in the ith column of t. Let I(t) = {I(t)1, I(t)2, . . . }.

Theorem 4.5. Let ν and ξ be as in Proposition 4.1, and suppose that

θ =
∑

T∈T0(ν,ξ)

cT Θ̂T

is a homomorphism with image lying inside the Specht module S ξ. Then there exist rectified ξ-multipolytabloids
eI(t)

s and coefficients ds such that
(et)θ =

∑
s

dse
I(t)
s
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and such that the homomorphism
θ =

∑
T∈T0(ν,ξ)

cT Θ̂T

satisfies
(et)θ =

∑
s

dse
I(t)
s ;

in particular, the image of θ lies in the Specht module S ξ.

Proof. The polytabloid et, and hence its image (et)θ, are alternating in the entries of each I(t)i by defini-
tion, so by Proposition 4.4 (et)θ can be described as a linear combination of rectified multipolytabloids.
So we need only prove the last equation, by comparing the coefficient of an arbitrary ξ-tabloid {r} on
each side.

Both sides of the equation are alternating in the entries of each I(t)i by construction, so we may
assume that the entries of I(t)i occur in distinct rows of r, for each i. This means that the first row
of r must contain exactly one element of each I(t)i; by the alternating property, we may assume these
elements are m + 1, . . . ,m + r, i.e. that r = q for some ξ-tableau q. It is clear that the coefficient of {q}
in (et)Θ̂T equals the coefficient of {q} in (et)Θ̂T for every T , so it suffices to show that the coefficient of

{q} in eI(t)
s equals the coefficient of {q} in eI(t)

s . If we let u1, . . . , ua be the tableaux used in the definition

of eI(t)
s , then (since eI(t)

s is rectified) the entry m + i occurs in the first i columns of u j for each i, j. So
the only way {r} can occur in eu j is if m + i lies in column i of u j for each i; let u j1 , . . . , u jb be the set of
such u j. We may assume that the entries m + 1, . . . ,m + r lie in the first row of u jl , i.e. that u jl = vl for
some ξ-tableau vl. Furthermore, we may choose v1, . . . , vb to be a possible set of tableaux used in the
definition of eI(t)

s , i.e.

eI(t)
s =

b∑
l=1

(−1)svlevl .

Then we see that the coefficient of {r} in uil equals the coefficient of {q} in vl, which gives the result. �
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