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Abstract

In positive characteristic, the Specht modules S λ corresponding to partitions λ are not necessar-
ily irreducible, and understanding their structure is vital to understanding the representation theory
of the symmetric group. In this paper, we address the related problem of finding the spaces of ho-
momorphisms between Specht modules. Indeed in [2], Carter and Payne showed that the space of
homomorphisms from S λ to S µ is non-zero for certain pairs of partitions λ and µ where the Young
diagram for µ is obtained from that for λ by moving several nodes from one row to another. We also
consider partitions of this type, and, by explicitly examining certain combinations of semi-standard
homomorphisms, we are able to give a constructive proof of the Carter–Payne theorem and to gen-
eralise.

1 Introduction

Let k be a field, and let Sn denote the symmetric group on n letters. If the characteristic of k is infi-
nite, the irreducible representations ofSn over k are afforded by the Specht modules S λ, as λ ranges over
the set of partitions of n. If the characteristic of k is prime, the S λ are no longer necessarily simple, and
understanding their structure is vital to understanding the representation theory of the symmetric group
over field of prime characteristic; for example, determining the decomposition numbers – the simple
composition factors of the Specht modules – is widely regarded as the central problem in the subject. In
this paper, we address the related issue of finding the spaces of homomorphisms between Specht mod-
ules. In [2], Carter and Payne showed, using corresponding results from the theory of algebraic groups
based on the seminal work of Carter and Lusztig [1], that HomkSn(S λ, S µ) is non-zero for certain pairs
of partitions λ and µ where the Young diagram for µ is obtained from that for λ by moving several nodes
from row i to row j, for some i < j. We address partitions of the same type; by explicitly examining
certain combinations of semi-standard homomorphisms, we are able to extend their results.

Künzer [5, 6] addresses the same problem in the case where the number of nodes moved is at most
two.

We now indicate the layout of this paper. For the remainder of this section, we summarise some
generalities concerning the representation theory of the symmetric groups. In Section 2, we introduce
semi-standard homomorphisms and prove some simple results which will be key to our calculations.
In Section 3, we specialise to the particular type of partitions considered by Carter and Payne, and we
define a particular semi-standard homomorphism f over the integers which will be used to construct
homomorphisms between Specht modules. In Section 4, we perform long calculations to evaluate ψt

d f
explicitly, and in Section 5 we use these results first to give a new proof of the Carter-Payne theorem,
and then (via further manipulations of tableaux) to try to generalise this result.
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1.1 Background and notation

The standard reference to characteristic-free representation theory of the symmetric groups is James’s
book [4], from which we take our notation and several important results. Recall that a composition of
n is a sequence λ = (λ1, λ2, . . . ) of non-negative integers summing to n, and that λ is a partition if
λ1 > λ2 > . . . . The Young diagram for λ is the subset

[λ] = {(i, j) | j 6 λi}

of N2, whose elements we call nodes. A λ-tableau consists of [λ] with the nodes replaced by integers,
usually the integers 1, . . . , n in some order. There are natural equivalence relations ∼row and ∼col on
the set of λ-tableaux (s ∼row t if we can obtain t by permuting the entries within each row of s, and
similarly for columns). An equivalence class under ∼row is called a tabloid, and we write {t} for the
tabloid containing t. The k-vector space with the set of λ-tabloids as a basis and the natural action of Sn

is the permutation module Mλ
k . If λ is a partition and t a λ-tableau, we define the polytabloid

et =
∑
s∼colt

(−1)st{s} ∈ Mλ
k ,

where (−1)st is the signature of the permutation required to change s into t. The k-span of the poly-
tabloids is called the Specht module S λ

k . We often drop the field subscript when the field is understood
and write Mλ and S λ for these modules respectively.

2 Homomorphisms between Specht modules and permutation modules

In order to construct homomorphisms between Specht modules, we shall use two important results
from [4]. The first concerns homomorphisms from S λ to the permutation module Mµ.

Let λ be a partition of n and µ a composition of n. Recall that a λ-tableau of type µ is a tableau of
shape λ with µi entries equal to i, for each i. We say that a λ-tableau of type µ is row standard if the
entries are increasing along rows, column standard if the entries are strictly increasing down columns,
and semi-standard if both row standard and column standard. We let T (λ, µ) denote the set of λ-tableaux
of type µ, and T0(λ, µ) the set of semi-standard tableaux of type µ.

Let t be a fixed λ-tableau (of type (1n)), and for a composition µ define a bijection between T (λ, µ)
and the set of µ-tabloids by letting T ∈ T (λ, µ) correspond to {r}, where, if corresponding positions of t
and T are occupied by the numbers i and j, then i appears in row j of r. We shall frequently use T (λ, µ)
as a basis for Mµ via this bijection.

Now, for each T ∈ T (λ, µ), we define a homomorphism

ΘT : Mλ −→ Mµ

over any field, by stipulating that

{t} 7−→
∑

S∼rowT

S

and extending linearly. We then define the homomorphism Θ̂T : S λ → Mµ to be the restriction of ΘT

to the Specht module S λ. If T ∈ T0(λ, µ), we call this a semi-standard homomorphism. We have the
following, due originally to Carter and Lusztig [1].



Homomorphisms between Specht modules 3

Theorem 1. [4, Theorem 13.13] Let λ and µ be partitions of n. Then the set {Θ̂T | T ∈ T0(λ, µ)}
is linearly independent over k. Moreover, it is a k-basis for HomkSn(S λ

k ,M
µ
k ), except possibly when

char(k) = 2 and λ is 2-singular.

Later, we shall need the following lemma, which helps us to cope with the failure of Theorem 1
when p = 2 and λ is 2-singular. The authors are indebted to Gordon James for providing a proof of this.

Lemma 2. Let λ and µ be partitions of n. Then the set {Θ̂T | T ∈ T0(λ, µ)} of semi-standard homomor-
phisms spans the same subspace of HomkSn(S λ

k ,M
µ
k ) as the set {Θ̂T | T ∈ T (λ, µ)}.

Proof. We must show that if T ∈ T (λ, µ), then Θ̂T may be expressed as a linear combination of semi-
standard homomorphisms. This depends on the following claim, which is analogous to [4, Lemma
13.12]: if we write Θ̂T (et) as a linear combination

∑
cS S of basis elements for Mµ, then

1. cS = 0 whenever S has two equal entries in some column, and

2. cS , 0 for some semi-standard tableau S .

To prove 1, observe that when we apply ΘT to a polytabloid, we need only consider row permutations
of T in which any two entries in the same column are distinct. The proof of 2 is identical to the proof
of [4, Lemma 12.12(ii)]. The proof of Lemma 2 is now completed using an identical argument to that in
[4, Lemma 13.13]. �

In order to use homomorphisms S λ → Mµ to construct homomorphisms S λ → S µ, we need the
following characterization of the Specht module. Let d be a positive integer, and choose t such that
0 6 t < λd+1. Define the parts of ν by the following prescription:

νi =


λi + t (i = d)
λi − t (i = d + 1)
λi (otherwise).

Let T be any λ-tableau with all entries in row i equal to i, except for i = d + 1, when there are t entries
equal to d and λd+1 − t entries equal to d + 1. T is then a λ-tableau of type ν, and we write ψt

d for the
homomorphism ΘT : Mλ → Mν. (We may omit to mention ν, since it is determined by λ, d and t.) We
then have the following.

Theorem 3. [4, Corollary 17.18] If λ is a partition of n, then

S λ =
⋂
d>1

λd+1⋂
t=1

ker(ψt
d).

It should be noted that ψt
d coincides with ψd,λd+1−t as defined in [4]. Our strategy for constructing

homomorphisms S λ → S µ is as follows: we take a particular linear combination of semi-standard
homomorphisms, and show that the image lies in the Specht module by composing with the maps ψt

d.
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2.1 Some useful results concerning semi-standard homomorphisms

Lemma 4. Let 1 6 i1 < i2 < · · · < is, and suppose T1, . . . ,Ta are λ-tableaux of type µ which are
identical except in rows i1, i2, . . . , is. Let T̃ j be the tableau obtained from T j by deleting all rows apart
from i1, . . . , is. If

∑a
j=1 c jΘ̂T̃ j

= 0 for some c j ∈ Z, then
∑a

j=1 c jΘ̂T j = 0.

Proof. Let λ̃ be the partition (λi1 , . . . , λis), and let µ̃ be the composition in which µi is the number of
entries equal to i in each T̃ j, so that T̃1, . . . , T̃a are λ̃-tableaux of type µ̃; suppose λ̃ and µ̃ are partitions
of m. Let t̃ be a λ̃-tableau, and let t be a λ-tableau which agrees with t̃ outside rows i1, . . . , is.

We need to define some Sm-homomorphisms from Mµ̃ to Mµ (viewing Mµ as a ZSm-module by
restriction): if S ∈ T (λ, µ) is such that when rows i1, . . . , is are deleted we get a λ̃-tableau of type µ̃,
define

πS : Mµ̃ −→ Mµ

by

R 7−→ U,

where R is a λ̃-tableau of type µ̃, and U is a λ-tableau which agrees with S in rows i1, . . . , is and agrees
with R elsewhere. This clearly defines a ZSm-homomorphism.

Now suppose that
∑a

j=1 c jΘ̂T̃ j
= 0. Let Ct be the column stabiliser of t, and as in [4] let κt =∑

σ∈Ct (−1)σσ. Make similar definitions for t̃. The agreement between t and t̃ guarantees that Ct̃ 6 Ct; if
we let σ1, . . . , σd be coset representatives, then we have

κt =

d∑
i=1

(−1)σiσiκt̃.

So we have

ΘT j(et) = ΘT j(κt{t})

=

d∑
i=1

(−1)σiσiκt̃

∑
S∼rowT j

S .

We define new equivalence relations on T (λ, µ): say S ≈ T if S and T differ by a row permutation on
rows i1, . . . , is and agree elsewhere, or S u T if S and T agree in rows i1, . . . , is and differ by a row
permutation elsewhere. Then we have ∑

S∼rowT j

S =
∑

U≈T j

∑
SuU

S

=
∑

U≈T j

πU(ΘT̃ j
({t̃})).
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Hence
a∑

j=1

c jΘ̂T j(et) =

a∑
j=1

c j

d∑
i=1

(−1)σiσiκt̃

∑
U≈T j

πU(ΘT̃ j
({t̃})

=

d∑
i=1

(−1)σiσi

∑
U≈T1

πU

 a∑
j=1

c jΘT̃ j
(κt̃{t̃})

 �

= 0. �

Given a λ-tableau T of type µ, we write T i
j for the number of entries equal to i in row j. Note that

the row equivalence class of T (and hence ΘT ) are determined by the T i
j.

Lemma 5. Let T be a λ-tableau of type µ, and let

T (T, d, t) =

(t1, t2, . . . )

∣∣∣∣∣∣∣∣ 0 6 t j 6 T d+1
j ,

∑
j

t j = t

 .
For t = (t1, t2, . . . ) ∈ T (T, d, t), let T (t) be a tableau obtained by changing t j of the entries d + 1 into
entries d in row j, for each j. Then

ψt
dΘT =

∑
t∈T (T,d,t)

∏
j

( T d
j +t j

t j

) ΘT (t).

Proof. Choosing a λ-tableau t and using the bases T (λ, µ) and T (λ, ν) for Mµ and Mν, the map ψt
d is

given by
S 7−→

∑
R∈(S )t

d

R,

where (S )t
d is the set of λ-tableaux which may be obtained from S by changing t of the entries d + 1 to

the value d.
To prove the last equation of Lemma 5, it suffices to apply both sides to {t}. Thus we are required to

prove

ψt
d

∑
S∼rowT

S =
∑

t∈T (T,d,t)

∏
j

( T d
j +t j

t j

) ∑
R∼rowT (t)

R.

Now the condition R ∼row T (t) defines t uniquely; moreover, the number of S such that S ∼row T and

R ∈ (S )t
d is

∏
j

( T d
j +t j

t j

)
, and this is enough to complete the proof. �

2.1.1 Multisets

We now need a little notation concerning multisets: if P is a multiset of integers, we write Pi for the
number of elements P equal to i. We also write P ⊆ Q to mean that Pi 6 Qi for all i. The union of P and
Q is the multiset R with Ri = Pi + Qi for all i. We say that P and Q are disjoint subsets of R if P∪Q ⊆ R.

If P and Q are multisets, we write ( P
Q

)
=

∏
i

( Pi

Qi

)
.

The following is then immediate.
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Lemma 6. ∑
Q⊆P | |Q|=q

( P
Q

)
=

(
|P|
q

)
.

Our next lemma tells us how to express Θ̂T in terms of other homomorphisms Θ̂S by moving entries
between rows.

Lemma 7. Suppose λ is a partition, and j and l are integers with λ j > λl. Suppose T is a λ-tableau of
type ν in which row j contains e entries equal to i and a multiset C of other entries and row l contains
f entries equal to i and a multiset D of other entries. For every submultiset F of C with |F| = f , let TF

be any tableau obtained by replacing the elements of F with entries equal to i, and replacing the entries
equal to i in row l with the elements of F. Then

Θ̂T = (−1) f
∑

F⊆C | |F|= f

( D∪F
F

)
Θ̂TF .

Proof. By Lemma 4, we may assume that λ has only two parts, with j = 1, l = 2. We begin by
considering the special case where the elements of C∪D are distinct. Then for each F we have

( D∪F
F

)
=

1. Choose a λ-tableau t and S ∈ T (λ, µ), and compare the coefficients of S in Θ̂T (et) and Θ̂TF (et). The
coefficient of S in Θ̂T (et) is zero if any of the following occurs:

• two elements of C occur in the same column of S ;

• two elements of D occur in the same column of S ;

• two entries equal to i occur in the same column of S ;

• an element of D occurs in a column of S of length 1.

Suppose none of these happens, and that S has

• u columns of the form i
c

with c ∈ C,

• v columns of the form c
i

with c ∈ C,

• w columns of the form i
d

with d ∈ D,

• x columns of the form d
i

with d ∈ D,

• y columns of the form c
d

with c ∈ C, d ∈ D,

• z columns of the form d
c

with c ∈ C, d ∈ D.
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Then we must have u + v = f , and the coefficient of S in Θ̂T (et) is (−1)u+x+z.
Now look at the coefficient of S in Θ̂TF . This is zero if two elements of D occur in the same column,

two entries equal to i occur in the same column or an element of D occurs in a column of length 1. If
two elements c1 and c2 of C occur a column of S and the coefficient of S in Θ̂TF is non-zero, then F
must contain exactly one of c1 and c2. If we construct F′ by interchanging c1 and c2, then the coefficient
of S in Θ̂TF′ is minus the coefficient of S in Θ̂TF . So the coefficient of S in

∑
F Θ̂TF is zero. So we

assume that no two elements of C occur together in a column of S , and that u, v,w, x, y, z are as above.
Then the coefficient of S in Θ̂TF is zero unless F is precisely the set of elements of C which occur in

columns of the form i
c

or c
i

with c ∈ C, in which case it is (−1)v+x+z. Hence the coefficient of S

in (−1) f ∑
F Θ̂TF is (−1)u+x+z. This completes the case where the elements of C ∪ D are distinct.

Now we proceed by downwards induction on the number of distinct elements of C ∪ D, with the
initial case being that considered above. Suppose that the number a appears more than once in C ∪ D,
and let T ′ be a tableau obtained from T by replacing one occurrence of a with a number α distinct from
any other element of C ∪ D. By induction Lemma 7 holds for T ′; assuming without loss of generality
that α = a + 1, we take the equation for Θ̂T ′ and compose with ψ1

a, using Lemma 5.
First suppose that α occurs in row l of T ′. Recalling the definition of Da for an element a of a

multiset D, we have
ψ1

aΘ̂T ′ = DaΘ̂T .

Given F, we define T ′F in an obvious way, and we find

ψ1
aΘ̂T ′F = (Da + Fa)Θ̂TF .

Thus we have

DaΘ̂T = (−1) f
∑

F⊆C | |F|= f

∏
b,a

( Db+Fb

Fb

) ( Da−1+Fa

Fa

)
(Fa + Da)Θ̂TF ,

and the result follows; we may divide by Da since it must be positive and since we may assume we are
working over Z.

Now suppose that α occurs in row j of T ′. Given F with Fa > 0, we define a submultiset F+ of the
set of entries in row j of T ′ by replacing an entry equal to a with α. We then define T ′F+ in an obvious
way, so that our inductive assumption is

Θ̂T ′ = (−1) f

 ∑
F⊆C | |F|= f

( D∪F
F

)
Θ̂T ′F +

∑
F⊆C | |F|= f ,Fa>0

( D∪F+

F+

)
Θ̂T ′

F+

 .
Composing with ψ1

a using Lemma 5 again gives the result. �

3 Carter–Payne partitions

The pairs of partitions (λ, µ) for which we shall construct homomorphisms are those for which

µi =


λi − s (i = a)
λi + s (i = b)
λi (i , a, b)
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for some a, b, s. These are the partitions considered by Carter and Payne, whose main result is as follows.

Theorem 8. [2, p. 425, Theorem] Let λ and µ be as above, and let S λ and S µ be the Specht modules
defined over a field k of characteristic p. Suppose also that for some e we have s < pe and λa − λb + b−
a − s ≡ 0 (mod pe). Then HomkSn(S λ, S µ) , 0.

In order to simplify matters, we use the following results, due to the first author and Lyle.

Theorem 9. [3, Theorems 2.2, 2.3] Suppose that k is a field of characteristic not two, and that ξ and ν
are partitions of n with ξ1 = ν1 = r (or with ξ′1 = ν′1 = r). Denote by ξ, ν the partitions of n − r obtained
by removing the first row (respectively, the first column) from [ξ], [ν]. Then

dimk HomkSn(S ξ, S ν) = dimk HomkSn−r (S
ξ, S ν).

In view of this result, we assume that, with λ and µ as above, we have a = 1 and λb = 0.

Remark. The failure of Theorem 9 in characteristic two need not worry us, since the homomorphisms
we define are all linear combinations of semi-standard homomorphisms. With ξ and ν as in Theorem 9,
let HomkSn

(S ξ, S ν) denote the space of homomorphisms from S ξ to S ν which are linear combinations
of semi-standard homomorphisms. In the case where ξ and ν are obtained by removing the first column,
Theorem 4.3 of [3] provides a linear injection from Hom(S ξ, S ν) to Hom(S ξ, S ν), which works even
when the characteristic is two. Using [4, Theorem 8.15] we deduce a similar result for row removal.
So, since we are only interested in showing the existence of homomorphisms, we may remove rows and
columns from λ and µ.

We are now in a position to define the linear combination of semi-standard homomorphisms from
which we shall construct a homomorphism S λ → S µ. We write

λ = (l0 + s, lm1−1
1 , lm2−m1

2 , . . . , lmr−mr−1
r )

where l0 > l1 > l2 > · · · > lr > s, so that

µ = (l0, l
m1−1
1 , lm2−m1

2 , . . . , lmr−mr−1
r , s),

and we assume henceforth that r > 1; the case where r = 0 is easily dealt with.
We shall not in fact use semi-standard λ-tableaux of type µ, but pseudo-standard tableaux. We say

that T is pseudo-standard if:

• the entries in each row of T are weakly increasing;

• T i
j is non-zero only if i = j or λi < λ j.

Let T 0(λ, µ) denote the set of pseudo-standard λ-tableaux of type µ.
For example, if λ = (5, 32) and µ = (33, 2), the pseudo-standard λ-tableaux of type µ are

1 1 1 4 4
2 2 2
3 3 3 ,

1 1 1 3 4
2 2 2
3 3 4 ,

1 1 1 2 4
2 2 4
3 3 3
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1 1 1 3 3
2 2 2
3 4 4 ,

1 1 1 2 3
2 2 4
3 3 4 ,

1 1 1 2 2
2 4 4
3 3 3

while the semi-standard λ-tableaux of type µ are

1 1 1 4 4
2 2 2
3 3 3 ,

1 1 1 3 4
2 2 2
3 3 4 ,

1 1 1 2 4
2 2 3
3 3 4

1 1 1 3 3
2 2 2
3 4 4 ,

1 1 1 2 3
2 2 3
3 4 4 ,

1 1 1 2 2
2 3 3
3 4 4 .

Remark. The homomorphisms corresponding to pseudo-standard tableaux are not linearly independent
in general. We shall discuss the consequences of this in Section 5.

Before defining our homomorphism f : S λ → Mµ, we introduce a small item of notation. Given
integers a and b with b > 0, we write

ab↓ =

b−1∏
i=0

(a − i)

and

ab↑ =

b−1∏
i=0

(a + i).

Let λ be as above, with ξ any composition of n, and let γ1, . . . , γr be integers. Given T ∈ T 0(λ, ξ),
define f (T ) ∈ Z as follows. For each h, let Th =

∑
j>h T j

h, and for 1 > i > r, define

ni(T ) =

mi∑
h=mi−1+1

Th

and

ci(T ) = γ(s−ni(T ))↓
i

mi∏
h=mi−1+1

Th!.

Now define

f (T ) =

r∏
i=1

ci(T ).

For example, the values of f (T ) for T ∈ T 0((5, 32), (33, 2)) as above are

f

 1 1 1 4 4
2 2 2
3 3 3

 = γ1(γ1 − 1), f

 1 1 1 3 4
2 2 2
3 3 3

 = γ1, f

 1 1 1 2 4
2 2 4
3 3 3

 = γ1,

f

 1 1 1 3 3
2 2 2
3 4 4

 = 2, f

 1 1 1 2 3
2 2 4
3 3 4

 = 1, f

 1 1 1 2 2
2 4 4
3 3 3

 = 2.
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Now define f : S λ
Z → Mµ

Z by

f =
∑

T∈T 0(λ,µ)

f (T )Θ̂T .

We shall use f to construct homomorphisms over Fp by dividing by a suitable power of p, and then
reducing modulo p. The precise way in which we do this will depend upon the results of the next
section.

4 Composing f with ψt
d

In this section we discover the important properties of our map f : S λ
Z → Mµ

Z. These are concerned
with composing with the maps ψt

d : Mµ → Mν. We shall show that ψt
d f is divisible by certain integers;

our technique will be to evaluate ψt
d f explicitly, and to express it in terms of pseudo-standard λ-tableaux

of type ν. We begin with the case where λd = λd+1.

Proposition 10. Suppose λd = λd+1, i.e. ml < d 6 ml+1 for some i. Then for any 0 < t 6 λd+1 we have

ψt
d f = 0.

We prove this proposition in two stages: given a pseudo-standard λ-tableau T of type µ, we express
ψt

dΘ̂T as a linear combination of homomorphisms Θ̂S for S pseudostandard. Then we combine these
expressions in order to express ψt

d f in the same way.

Lemma 11. Choose t and d such that λd = λd+1. For a pseudo-standard λ-tableau R of type µ or ν,
define R[d] to be the multiset of entries in row d which are greater than d, and define R(d) to be the
multiset of rows other than d containing entries equal to d. That is:

R[d]i =

Ri
d (i > d)

0 (i 6 d);

R(d)i =

Rd
i (i < d)

0 (i > d).

Define R[d + 1] and R(d + 1) analogously. Now fix T ∈ T 0(λ, µ), and let

S(T ) = {S ∈ T 0(λ, ν) | T [d] ⊆ S [d],

S [d] ∪ S [d + 1] = T [d] ∪ T [d + 1],

S (d) ⊆ T (d),

S (d) ∪ S (d + 1) = T (d) ∪ T (d + 1)}.

Then

ψt
dΘ̂T =

∑
S∈S(T )

(−1)|S [d]\T [d]|
( S [d+1]

T [d+1]

)( S (d)

T (d)

)
.
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Proof. We compose Θ̂T with ψt
d using Lemma 5. Given a submultiset I of T (d + 1) of size i, we change

those entries d + 1 into entries d in rows corresponding to elements of I, and we change t− i entries d + 1
into entries d in row d + 1 (maintaining the row standard property). By Lemma 5, the homomorphism
corresponding to the resulting tableau occurs with coefficient

( T (d)∪I

I

)
.

Now we use Lemma 7 to move the entries equal to d in row d + 1 into row d. Given a submultiset
Z of T [d] of size t − i, we move the elements of Z from row d to row d + 1, and move those entries
equal to d in row d + 1 into row d, maintaining the row standard property. We get an additional coef-
ficient (−1)t−i

( T [d+1]∪Z

Z

)
, by Lemma 7, and the resulting tableau lies in S(T ). In fact, each S ∈ S(T )

corresponds to a unique choice of I and Z, and the result follows. �

Proof of Proposition 10. Let S be a pseudo-standard λ-tableau S of type ν, and assume the notation of
Lemma 11. By that lemma, we find that the coefficient of Θ̂S in ψt

d f is∑
T∈T 0(λ,µ)|S∈S(T )

f (T )(−1)|S [d]\T [d]|
( S [d+1]

T [d+1]

)( S (d)

T (d)

)
.

Moreover, a tableau T such that S ∈ S(T ) corresponds to multisets I ⊆ S [d] and Z ⊆ S (d + 1) of sizes i
and t − i for some i, as in the proof of Lemma 11. Also, the tableau T corresponding to I and Z has

c j(T ) =


|S (d) ∪ Z|!|S (d + 1) \ Z|!c j(S )

|S (d)|!|S (d + 1)|!
( j = l)

c j(S ) ( j , l).

Thus the coefficient of Θ̂S in ψt
d f is∏r

j=1 c j(S )

|S (d)|!|S (d + 1)|!

t∑
i=0

(−1)t−i
∑

Z⊆S (d+1)
|Z|=t−i

∑
I⊆S [d]
|I|=i

( S (d+1)

Z

)( S [d]

I

)
|S (d) ∪ Z|!|S (d + 1) \ Z|!

=

∏r
j=1 c j(S )

|S (d)|!|S (d + 1)|!

t∑
i=0

(−1)t−i(|S [d]| − i)!(|S (d + 1)| − t + i)!
(
|S (d+1)|

t−i

)(
|S [d]|

i

)
by Lemma 6

=

∏r
j=1 c j(S )

|S (d)|!|S (d + 1)|!
|S [d]|!|S (d + 1)|!

t!
(−1)t

t∑
i=0

(−1)i
( t

i

)
.

The alternating sum of binomial coefficients is zero, since t > 0. �

When rows d and d+1 of λ are of different lengths, things become a little more complex; in particular,
ψt

d f need not be zero. However, we can calculate an exact expression for ψt
d f . Suppose that d = mb

for some 0 6 b 6 r, and let ν be the composition such that ψt
d : Mµ → Mν. Given a pseudo-standard

λ-tableau S of type ν, define

g(S ) =


(∏r

i=1 ci(S )
) (l0+s−l1+m1−1−γ1)t↑

t! (b = 0)(∏
i,b ci(S )

) (
γ(s−nb(S )−t)↓

b (S d + t)!
∏d−1

j=mb−1+1 S j!
) (lb−lb+1+mb+1−mb+γb−γb+1)t↑

t! (0 < b < r)(∏r−1
i=1 ci(S )

) (
γ(s−nr(S )−t)↓

r (S d + t)!
∏d−1

j=mr−1+1 S j!
) (lr−s+1+γr)t↑

t! (b = r).
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Theorem 12. Suppose λd > λd+1, i.e. d = mb for some 0 6 b 6 r. Then

ψt
d f =

∑
S∈T 0(λ,ν)

g(S )Θ̂S .

To assist with our calculations, we need some simple results concerning factorials and binomial
coefficients.

Lemma 13. Suppose that a1, . . . , am, b1, . . . , bn, c are non-negative integers such that

a1 + · · · + am = b1 + · · · + bn = c.

Let C be the set of all arrays (ci j), 1 6 i 6 m, 1 6 j 6 n of non-negative integers such that

m∑
i=1

ci j = b j

for all j, and

n∑
j=1

ci j = ai

for all i. Then ∑
(ci j)∈C

∏
i ai!

∏
j b j!∏

i, j ci j!
= c!.

Proof. It suffices to prove
c!∏
i ai!

=
∑

(ci j)∈C

∏
j b j!∏

i, j ci j!
;

the left-hand side is the number of ways of partitioning a set of size c into sets of sizes b1, . . . , bn, while
the right-hand side is the number of ways of partitioning the disjoint union of sets of sizes a1, . . . , am

into sets of sizes b1, . . . , bn. Clearly, these are the same. �

4.0.2 Binomial coefficients

In the course of proving Theorem 12, we shall allow ourselves to use binomial coefficients
( a

b

)
in

which a is negative (and b non-negative). Such a binomial coefficient is simply defined as

( a

b

)
=

ab↓

b!
.

There are some standard properties of binomial coefficients which we cannot use here; for example,
we cannot write

( a

b

)
=

( a

a−b

)
, although we can now write

( a

b

)
= (−1)b

(
−a+b−1

b

)
. The only standard

properties of binomial coefficients we shall use are the following, which still hold with our extended
definition.
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Lemma 14. For any integers a, b, c with c 6 0,
c∑

i=0

( a
i

)( b
c−i

)
=

( a+b
c

)
.

Proof. This is a standard result when a and b are non-negative. On the other hand, it may be regarded
as a polynomial identity in a and b, and so holds for all a and b. �

Lemma 15. Let c be a positive integer, and let x1, . . . , xc, n be integers, with n > 0. Let A be the set of
all c-tuples (a1, . . . , ac) of non-negative integers summing to n. Then∑

(a1,...,ac)∈A

c∏
j=1

( x j+a j

a j

)
=

( x1+···+xc+n+c−1
n

)
.

Proof. This is readily proved by induction on n. �

4.1 The proof of Theorem 12

The proof of Theorem 12 is a long calculation in which we use Lemma 5 and Lemma 7 repeatedly.
Essentially, we proceed as in the proof of Proposition 10: we take a pseudo-standard λ-tableau T of type
µ and express ψt

dΘ̂T as a linear combination of homomorphisms Θ̂S with S pseudo-standard. Then we
combine these expressions to get an expression for ψt

d f , and compare coefficients of an arbitrary Θ̂S .
We assume that 0 < b < r throughout; the proofs of the cases b = 0 and b = r are simpler, and may

be left to the reader to reconstruct; as we proceed, we shall indicate the places where they differ from
the general case.

We write a = mb−1, c = mb+1, and we shall use the word ‘set’ to mean ‘multiset’, with the conven-
tions for ‘subset’, ‘union’ and ‘disjoint’ described in 2.1.1.

4.1.1 Sets associated with T

Let T be a pseudo-standard λ-tableau of type µ. We shall need to refer to the following sets:

• E is the set of rows other than d which contain entries equal to d (with multiplicity), i.e. Ei = T d
i

for i < d;

• G is the set of rows higher than row a + 1 which contain entries equal to d + 1, i.e. Gi = T d+1
i for

i 6 a;

• B is the set of rows between a + 1 and d − 1 which contain entries equal to d + 1, i.e. Bi = T d+1
i

for a < i < d;

• for a + 1 6 i 6 d − 1, Ci is the set of entries between d + 2 and c in row i, and Di is the set of
entries greater than c in row i;

• C is the set of entries between d + 2 and c in row d, and D is the set of entries greater than c in
row d;

• Q is the set of entries greater than d + 1 in row d + 1;

• for d + 2 6 j 6 c, F j is the set of entries not equal to j in row j.

Note that we have T d+1
d + |C| + |D| = |E| and |Q| = T d+1

d + |G| + |B|.
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4.1.2 Composing Θ̂T with ψt
d

In order to express ψt
dΘ̂T as a linear combination of pseudo-standard homomorphisms, we need to

consider all possible choices of the following:

• sets H ⊆ B and I ⊆ G and non-negative integers h 6 T d+1
d and k 6 lb+1 − |Q| such that |H| + h +

k + |I| = t;

• disjoint subsets Ja+1, . . . , Jd−1 of C, disjoint subsets Ka+1, . . . ,Kd−1 of D and non-negative integers
Pa+1, . . . , Pd−1 such that Pi + |Ji| + |Ki| = Hi for each i;

• sets L ⊆ C \
⋃

i Ji and M ⊆ D \
⋃

i Ki and a non-negative integer m such that m + |L| + |M| = k;

• a set N j ⊆ F j with |N j| = L j, for j = d + 2, . . . , c.

We let P be the set defined by the Pi, and we write J for (Ja+1, . . . , Jd−1) and similarly for K and N.
Now we compose Θ̂T with ψt

d. Let T (H, I, h, k) be the row standard tableau obtained from T by
replacing entries equal to d + 1 with entries equal to d; the number of entries replaced in row i is Ii if
i 6 a, Hi if a < i < d, h if i = d or k if i = d + 1. By Lemma 5, we have

ψt
dΘ̂T =

∑
H,I,h,k

( E∪I
I

)( lb−|E|+h

h

)
Θ̂T (H,I,h,k).

(In the case b = 0, we have no sets I,H.)
We seek to manipulate T (H, I, h, k) using Lemma 7 to make it pseudo-standard. Let T (H, I, h, k, J,K, P)

be the row standard tableau obtained from T (H, I, h, k) by replacing the entries equal to d in row a + i
with Pi entries equal to d + 1 and the elements of Ji and Ki for a < i < d, replacing the elements of⋃

i Ji∪
⋃

i Ki in row d together with |P| of the entries equal to d+1 with entries equal to d, and performing
a row permutation if necessary. By Lemma 7 we have

Θ̂T (H,I,h,k) =
∑

J,K,P
(−1)|H|

( (B\H)∪P

P

)∏
i

( Ci∪Ji

Ji

)( Di∪Ki

Ki

)
Θ̂T (H,I,h,k,J,K,P).

(In the case b = 0, this step is unnecessary, and the corresponding coefficients may be neglected.)
The next step in expressing ψt

dΘ̂T in terms of pseudo-standard homomorphisms is to eliminate all
the entries equal to d in rows d + 1 and below. Let T (H, I, h, k, J,K, P, L,M,m) be the row standard
tableau obtained from T (H, I, h, k, J,K, P) by replacing the elements of L∪M in row d, together with m
of the entries equal to d + 1 in row d, with entries equal to d, and replacing the entries equal to d in row
d + 1 with the elements of L ∪ M and m entries d + 1. By Lemma 7 we get

Θ̂T (H,I,h,k,J,K,P) =
∑

L,M,m

(−1)k
( lb+1−|Q|−k+m

m

)( Q∪M

M

)
Θ̂T (H,I,h,k,J,K,P,L,M,m).

Finally, we need to move the entries of L in row d+1 to their correct rows. Let T (H, I, h, k, J,K, P, L,M,m,N)
be the row standard tableau obtained from
T (H, I, h, k, J,K, P, L,M,m) by replacing the entries equal to j in row d + 1 with the elements of N j,
and replacing the elements of N j in row j with entries equal to j, for j = d + 2, . . . , c. Applying Lemma
7 for each j in turn, we find that

Θ̂T (H,I,h,k,J,K,P,L,M,m) =∑
N

(−1)|L|
( Q∪M∪Nd+2

Nd+2

)( Q∪M∪Nd+2∪Nd+3

Nd+3

)
. . .

( Q∪M∪Nd+2∪Nd+3∪···∪Nc

Nc

)
Θ̂T (H,I,h,k,J,K,P,L,M,m,N).
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(This step may be ignored when b = r, or indeed when mb+1 = mb + 1.)
By combining these equations, we can find an expression for ψt

dΘ̂T as a linear combination of
pseudo-standard homomorphisms.

4.1.3 Comparing coefficients of S

Now we take a pseudo-standard λ-tableau S of type ν, and examine how arises in the expressions
for ψt

dΘ̂T for various T , Again, we shall label several sets. Suppose that, in S :

• X is the set of rows other than d that contain elements equal to d, i.e. Xi = T d
i for i 6 a;

• for a + 1 6 i 6 d−1, Γi is the set of entries between d + 2 and c in row i, and ∆i is the set of entries
greater than c in row i;

• Γ is the set of entries between d + 2 and c in row d, and ∆ is the set of entries greater than c in row
d;

• Ψ is the set of entries in row d + 1 not equal to d + 1;

• for d + 2 6 j 6 c, Φ j is the set of entries not equal to j in row j;

• Π is the set of rows between a + 1 and d − 1 which contain entries equal to d + 1 (i.e. Πi = S d+1
i

for a < i < d), Y is the set of rows higher than row a + 1 containing entries equal to d + 1, i.e.
Y i = S d+1

i for i 6 a);

We wish to write S as T (H, I, h, k, J,K, P, L,M,m,N), and to this end we choose:

• Ji ⊆ Γi and Ki ⊆ ∆i, for a + 1 6 i 6 d − 1;

• P ⊆ Π, I ⊆ X and disjoint subsets M,Nd+2, . . . ,Nc of Ψ.

We then let

• Ci = Γi \ Ji,

• Di = ∆i \ Ki,

• Hi = Pi + |Ji| + |Ki|,

• B = (Π \ P) ∪ H,

• E = X \ I,

• G = Y ∪ I,

• Q = Ψ \ (M ∪ Nd+2 ∪ · · · ∪ Nc),

• F j = Φ j ∪ N j,

• L j = |N j|,

• C = Γ ∪
⋃

i Ji ∪ L,

• D = ∆ ∪
⋃

i Ki ∪ M and
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Finally, we choose k such that |L|+ |M| 6 k 6 lb+1− |Q|, and put m = k− |L| − |M| and h = t− k− |H| − |I|.
There is then a unique pseudo-standard λ-tableau T of type µ such that

S = T (H, I, h, k, J,K, P, L,M,m,N),

and we seek the sum, over all T obtained in this way, of the product of the coefficients determined above
and f (T ).

We have ci(T ) = ci(S ) whenever i , b, b + 1, while

cb(T )cb+1(T ) =

|Q|!
∏

j

|F j|!
∏

i

(Bi + |Ci| + |Di|)!(T d+1
d + |C| + |D|)!γ(s−|B|−

∑
|Ci |−

∑
|Di |−|E|)↓

b γ
(s−|Q|−

∑
|F j |)↓

b+1 .

By combining all the expressions we have found so far, the proof of Theorem 12 reduces to the
following combinatorial manipulation.

Proposition 16. The sum of

|Q|!
∏

j

|F j|!
∏

i

(Bi + |Ci| + |Di|)!(T d+1
d + |C| + |D|)!

× γ(s−|B|−
∑
|Ci |−

∑
|Di |−|E|)↓

b γ
(s−|Q|−

∑
|F j |)↓

b+1

×
( E∪I

I

)( lb−|E|+h

h

)
(−1)|H|

∏
i

( Ci∪Ji

Ji

)( Di∪Ki

Ki

)( (B\H)∪P

P

)
×

( lc−|Q|−k+m
m

)( Q∪M

M

)
(−1)k+|L|

( Q∪M∪Nd+2

Nd+2

)( Q∪M∪Nd+2∪Nd+3

Nd+3

)
. . .

( Q∪M∪Nd+2∪Nd+3∪···∪Nc

Nc

)
over all possible choices of J,K, P, I,M,N, k as above, equalsγ(s−nb(S )−t)↓

b (S d + t)!
d−1∏

j=mb−1+1

S j!

 (lb − lb+1 + mb+1 − mb + γb − γb+1)t↑

t!
.

Proof. We eliminate the ranges of summation one by one.

Summing over N

We eliminate Nd+2, . . . ,Nc in stages: to begin with, we sum over the possible choices of Nd+2, . . . ,Nc

with fixed union N. The only term which depends on the N j rather than just their union is the product

c∏
j=d+2

|F j|!
( Q∪M∪Nd+2

Nd+2

)( Q∪M∪Nd+2∪Nd+3

Nd+3

)
. . .

( Q∪M∪Nd+2∪Nd+3∪···∪Nc

Nc

)
=

c∏
j=d+2

|Φ j + N j|!
mr∏

i=c+1

Ψi!
(Q ∪ M)i!Ni

d+2! . . .Ni
c!
.

We first sum over Nd+2, . . . ,Nc of fixed sizes |Nd+2|, . . . , |Nc|; by Lemma 13, we get

|N |!
mr∏

i=c+1

Ψi!
Ni!

c∏
j=d+2

|Φ j + N j|!
|N j|!

.
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Now we sum over the possible |N j| (but still fixing N): we have

c∏
j=d+2

|Φ j + N j|!
|N j|!

=

c∏
j=d+2

|Φ j|!
( |Φ j+N j |

|N j |

)
,

which yields
c∏

j=d+2

|Φ j|!
( ∑

j |Φ j |+c−d+|N |−2

|N|

)
by Lemma 15. Next, we sum over possible sets N while fixing the cardinality |N |; the only terms which
depend on N rather than just |N | give ( Ψ\N

N

)(
Ψ

N

)
=

(
Ψ

M

)( Ψ\M

N

)
,

which gives (
Ψ

M

)( |Ψ\M|
|N|

)
by Lemma 6.

Summing over M, I, J,K, P of given cardinalities

Using Lemma 6, we can also sum over the possible choices of M, I, Ja+1, . . . , Jd−1, Ka+1, . . . , Kd−1,
P of given sizes. Re-assembling the terms, we find that the summand in Proposition 16 is equal to

(S d+1 − |M| − |N |)!
d−1∏

i=a+1

S i!|X \ I|!
c∏

j=d+2

S j!

× γ
(s−

∑d
i=a+1 S d−t+|I|)↓

b γ
(s−

∑c
j=d+1 S j+|M|)↓

b+1

×
( |X|
|I|

)( lb−|X|+t−k−|P|−
∑

i |Ji |−
∑

i |Ki |

lb−|X|+|I|

) ∏
i

( |Γi |

|Ji |

)( |∆i |

|Ki |

) ( |Π||P| )
×

( lb+1−S d+1

k−|N|−|M|

)( ∑c
j=d+2 S j+c−d+|N |−2

|N |

)
|N |!

( S d+1

|M|

)( S d+1−|M|

|N|

)
× (−1)|P|+

∑
i |Ji |+

∑
i |Ki |+k+|N |

(since |Ψ| = S d+1, |Φ j| = S j and Bi + |Ci| + |Di| = Πi + |Γi| + |∆i| = S i).

Summing over |M|, |N |, |P|

Next, we sum over |N |; the product

(S d+1 − |M| − |N|)!|N |!
( S d+1−|M|

|N |

)
equals (S d+1 − |M|)!, which does not depend on |N |, so we need only sum( lb+1−S d+1

k−|N |−|M|

)( ∑c
j=d+2 S j+c−d+|N|−2

|N|

)
(−1)|N|
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which equals ( lb+1−c+d−S d+1−
∑c

j=d+2 S j+1

k−|M|

)
by Lemma 14. To sum over |M|, we write

γ
(s−

∑c
j=d+1 S j+|M|)↓

b+1 = γ(s−nb+1(S )+|M|)↓
b+1

= γ(s−nb+1(S ))↓
b+1 (γb+1 − s + nb+1(S ))|M|↓,

observe that (S d+1 − |M|)!
( S d+1

|M|

)
=

S d+1!
|M|! , and sum( lb+1−c+d−nb+1(S )+1

k−|M|

)( γb+1−s+nb+1(S )

|M|

)
to get ( lb+1−c+d+1+γb+1−s

k

)
.

Next we sum over |P|; the terms involving |P| give

(−1)|P|
( lb−|X|+t−k−|P|−

∑
i |Ji |−

∑
i |Ki |

t−k−|P|−
∑

i |Ji |−
∑

i |Ki |−|I|

)( |Π|
|P|

)
= (−1)t+k+

∑
i |Ji |+

∑
i |Ki |+|I|

( −lb+|X|−|I|−1

t−k−|P|−
∑

i |Ji |−
∑

i |Ki |−|I|

)( |Π|
|P|

)
,

which in turn gives

(−1)t+k+
∑

i |Ji |+
∑

i |Ki |+|I|
( |Π|−lb+|X|−|I|−1

t−k−
∑

i |Ji |−
∑

i |Ki |−|I|

)
.

Summing over |Ji|, |Ki|, |I|

Next we sum over all possible |Ji| and |Ki| with fixed sums J =
∑

i |Ji| and K =
∑

i |Ki|; the summand
becomes

d−1∏
i=a+1

S i!(|X| − |I|)!cb+1(S )

× γ(s−nb(S )−t+|I|)↓
b

×
( |X|
|I|

)( |Π|−lb+|X|−|I|−1

t−k−
∑

i |Ji |−
∑

i |Ki |−|I|

)( ∑
i |Γi |

J

)( ∑
i |∆i |

K

)
× (−1)t+|I| lb+1 − c + d + 1 + γb+1 − s

k
.

Summing over J, K and k so that the last two lines of this product give( |X|
|I|

)( |Π|−lb+|X|−|I|+
∑

i |Γi |+
∑

i |∆i |+lb+1+d−c−s+γb+1

t−|I|

)
(−1)t+|I|.

Finally, we put
γ(s−nb(S )−t+|I|)↓

b = γ(s−nb(S )−t)↓
b (γb − s + nb(S ) + t)|I|↓,

and then sum over |I|. We end up with

cb+1(S )
d−1∏

i=a+1

S i!|X|!γ
(s−|Π|−

∑
i |Γi |−

∑
i |∆i |−|X|)↓

b

× (−1)t (lb − lb+1 + mb+1 − mb + γb − γb+1)t↑

t!
,

as required. �
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5 Consequences for FpSn-homomorphisms

We now try to use our map f defined above to construct homomorphisms between Specht modules
in characteristic p. The way in which we do this depends upon the following obvious lemma.

Lemma 17. Suppose there exists a homomorphism f : S λ
Z → Mµ

Z such that, for some e > 0,

• for all d and t, ψt
d f ∈ pe HomZSn(S λ,Mν), and

• f * pe HomZSn(S λ
Z,M

µ
Z).

Then HomFpSn(S λ
Fp
, S µ
Fp

) , 0.

5.1 A proof of Theorem 8

Our first application of our results is a new proof of the Carter–Payne theorem. We are able to avoid
problems with linear dependence of pseudo-standard homomorphisms, chiefly by using the following
lemma. We maintain the definitions of λ, µ and ν.

Lemma 18. Let ξ equal either µ or ν. Given e = (e1 6 . . . 6 es), letTe(λ, ξ) be the set of pseudo-standard
λ-tableaux of type ξ whose first row is

1 1 . . . 1 e1 . . . es.

Let Ve be the Z-span of the set
{Θ̂T | T ∈ Te(λ, ξ)}.

Then the sum ∑
e

Ve

is direct.

Proof. It is enough to show that, given a pseudo-standard λ-tableau T of type ξ, we can write

Θ̂T =
∑

R

xRΘ̂R,

where each R is a semi-standard tableau with the same first row as T .
Let T̄ be the tableau obtained by removing the first row of T ; note that each entry of T̄ is at least 2.

By Lemma 2 we may write Θ̂T̄ =
∑

R̄ xR̄Θ̂R̄, where each R̄ is semi-standard. For each R̄, define a tableau
R by adding a row at the top equal to the first row of T . Then the above formula holds (with xR = xR̄) by
Lemma 4, and each R is semi-standard, because each entry of R is at least 2 and the first row of T has
weakly increasing entries, the first l0 of which are equal to 1. �

Proof of Theorem 8. We define f : S λ
Z → Mµ

Z as in Section 3, taking

γi = −li + s − 1 + mi − mr
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for all i. By Proposition 10 and Theorem 12, we have

ψt
d f = 0

except possibly when d = 1. So we assume d = 1 from now on, and we have

ψt
1 f =

 ∑
S∈T 0(λ,ν)

 r∏
i=1

ci(S )


 Dt↑

t!
,

where D is the distance through which nodes are moved to get from λ to µ. We may also assume that
t 6 s, since for t > s there are no pseudo-standard λ-tableaux of type ν, and so we have ψt

d f = 0. Write

a =
Dt↑

t!
;

the fact that D is divisible by some power of p greater than s (and hence greater than t) implies that a is
divisible by p.

Given a pseudo-standard λ-tableau of type ν whose first row is

1 1 . . . 1 e1 . . . es,

we must have e1 = · · · = et = 1; define e = (e1, . . . , es), and define ê by changing e1, . . . , et from 1 to 2.
Now if S is a pseudo-standard λ-tableau of type ν, define Ŝ to be the row standard tableau obtained by
changing t of the entries equal to 1 in row 1 to 2s. Thenˆinduces a bijection

Te(λ, ν)↔ Tê(λ, µ)

whenever the left-hand side is defined. In fact,ˆinduces a linear isomorphism

Ve � Vê;

although the set
{Θ̂S | S ∈ Te(λ, ν)}

might not be linearly independent, we have ∑
S∈Te(λ,ν)

xS Θ̂S = 0

⇔
 ∑

S∈Te(λ,ν)

xS Θ̂Ŝ = 0


by Lemma 4. Notice also that if S ∈ T 0(λ, ν), then

r∏
i=1

ci(S ) = f (Ŝ ).

The result of this is as follows. Let E be the set of all e such that Te(λ, ν) is defined, and let G be the set
of all g such that Tg(λ, µ) is defined. Then we can write

f =
∑
g∈G

fg
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where fg ∈ Vg, and we can write
ψt

1 f =
∑
e∈E

ve

with ve ∈ Vg. By Lemma 18, f is divisible by pi (i.e. f lies in pi HomZSn(S λ,Mµ)) if and only if each
fg is divisible by pi, and ψt

d f is divisible by p j if and only if each ve is divisible by p j. By the above
discussion, we have

ve = a fê

for all e ∈ E; since a is divisible by p, we find that ψt
d is divisible by a greater power of p than f is (the

fact that f is non-zero follows from Proposition 21 below), and this is sufficient. �

5.2 Quasi-standard homomorphisms

Now we try to find more general applications of Proposition 10 and Theorem 12. As remarked
earlier, the fact that the pseudo-standard homomorphisms are linearly dependent presents problems.
Here we try to address this.

Lemma 19. Let α be the partition (lm), and suppose that β is a partition of lm with each βi 6 l and with
β1 + · · · + βm > l(m − 1). Let T1, . . . ,Ta be the row standard α-tableaux of type β in which all entries
equal to i occur in row i, for 1 6 i 6 m. Then:

1. there is a unique semi-standard α-tableau T0 of type β in which all the entries greater than m lie
in row m;

2.
a∑

i=1

Θ̂Ti = ±Θ̂T0 ,

where the sign depends only upon l, m and β1, . . . , βm;

3. if T is an α-tableau of type β in which all the entries greater than m occur in row m and in which
the first m − 1 rows form a semi-standard (lm−1)-tableau, then Θ̂T is a scalar multiple of Θ̂T0 .

Proof.
1. In T0, the entries greater than m must occupy (in increasing order) the rightmost places of row m.

Now the remainder of T0 must be column standard and filled with entries equal to or less than m,
and so the entries in row i must all be either i or i + 1, for 1 6 i < m. This tells us how to construct
T0: we must put all the 1s in row 1, from the left, and fill in the remainder of row 1 with 2s. The
remaining 2s go at the left of row 2, which must then be filled with 3s, and so on. This constructs
T0 uniquely; that T0 is semi-standard follows from the condition βi 6 l.

2. Apply Lemma 7 repeatedly to T0, moving the entries equal to m into row m, then moving the
entries equal to m − 1 into row m − 1, and so on. The binomial coefficients which arise are all
equal to 1, and each Ti arises uniquely. The signs occurring are all equal to

(−1)
∑m

j=2(T0) j
j−1 .
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3. We examine the smallest entry g in row m of S . If g = m, then S is row equivalent to T0, and we
are done. Otherwise, suppose there are h entries in row m equal to g. Since the entries in row g of
S all equal g or g + 1, Lemma 7 implies that Θ̂S is a scalar multiple of Θ̂S ′ , where S ′ is obtained
from S by moving the entries equal to g from row m to row g, and moving h entries equal to g + 1
from row g to row m. S ′ then satisfies the hypotheses of the lemma, and the smallest entry in row
m of S ′ is g + 1, so we are done by induction.

�

Lemma 19 allows us to ‘group together’ our pseudo-standard tableaux. Given a λ-tableau T of type
µ and an integer 1 6 i 6 r, let T (i) be the tableau consisting of the mi − mi−1 rows of length li. Say that
T is quasi-standard if:

• each T (i) is semi-standard;

• the entries of T (i) are all strictly greater than mi−1;

• any entries of T (i) which are greater than mi occur in the bottom row of T (i).

Let Q(λ, µ) denote the set of quasi-standard λ-tableaux of type µ. For example, the quasi-standard
(5, 32, 2)-tableaux of type (33, 22) are

1 1 1 5 5
2 2 2
3 3 3
4 4

1 1 1 4 5
2 2 2
3 3 3
4 5

1 1 1 3 5
2 2 2
3 3 5
4 4

1 1 1 3 5
2 2 2
3 3 4
4 5

1 1 1 2 5
2 2 3
3 3 5
4 4

1 1 1 2 5
2 2 3
3 3 4
4 5

1 1 1 4 4
2 2 2
3 3 3
5 5

1 1 1 3 4
2 2 2
3 3 5
4 5

1 1 1 3 4
2 2 2
3 3 4
5 5

1 1 1 2 4
2 2 3
3 3 5
4 5

1 1 1 2 4
2 2 3
3 3 4
5 5

1 1 1 3 3
2 2 2
3 5 5
4 4

1 1 1 3 3
2 2 2
3 4 5
4 5

1 1 1 3 3
2 2 2
3 4 4
5 5

1 1 1 2 3
2 2 3
3 5 5
4 4

1 1 1 2 3
2 2 3
3 4 5
4 5

1 1 1 2 3
2 2 3
3 4 4
5 5

1 1 1 2 2
2 3 3
3 5 5
4 4

1 1 1 2 2
2 3 3
3 4 5
4 5

1 1 1 2 2
2 3 3
3 4 4
5 5 .

We aim to express f in terms of quasi-standard homomorphisms. Define an equivalence relation on
the set of λ-tableaux of type µ by saying that two tableaux are equivalent if one can be obtained from the
other by re-arranging entries within rows and moving entries between rows of the same length. Given
an equivalence class C, suppose C contains the pseudo-standard tableaux T1, . . . ,Tc, with c > 1. Then C
contains a unique quasi-standard tableau T0: the rows of length li contain at most li entries equal to any
particular value, and at most s 6 li entries greater than mi; these can be re-arranged as in Lemma 19(1).
Now we apply Lemma 19 for each i, bearing in mind Lemma 4. We get

Θ̂T0 = ±

c∑
i=1

Θ̂Ti .
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Since the homomorphisms corresponding to T1, . . . ,Tc occur with the same coefficient in f , we have
proved the following.

Lemma 20. The map f : S λ → Mµ can be written as a Z-linear combination
∑

S∈Q(λ,µ) cS Θ̂S of quasi-
standard homomorphisms, with each coefficient cS being ± f (T ) for some pseudo-standard tableau T .

For example, each of the quasi-standard (5, 32, 2)-tableaux of type (33, 22) above is equivalent to a

unique pseudo-standard tableau, except for

1 1 1 2 3
2 2 3
3 4 5
4 5 , where we have

Θ̂ 1 1 1 2 3
2 2 3
3 4 5
4 5

= −Θ̂ 1 1 1 2 3
2 2 4
3 3 5
4 5

− Θ̂ 1 1 1 2 3
2 2 5
3 3 4
4 5

.

However, we are still in difficulty: the quasi-standard homomorphisms are not linearly independent
either. Notice that, among the quasi-standard (5, 32, 2)-tableaux of type (33, 22) above, the tableaux

1 1 1 3 3
2 2 2
3 5 5
4 4 ,

1 1 1 2 3
2 2 3
3 5 5
4 4 ,

1 1 1 2 2
2 3 3
3 5 5
4 4

are not semi-standard, and in fact

Θ̂ 1 1 1 3 3
2 2 2
3 5 5
4 4

= −Θ̂ 1 1 1 3 3
2 2 2
3 4 5
4 5

− Θ̂ 1 1 1 3 3
2 2 2
3 4 4
5 5

.

Note that this problem – having quasi-standard tableaux which are not semi-standard – arises when-
ever we have li − li+1 < s. We content ourselves with the following: let T be a pseudo-standard or
quasi-standard λ-tableau of type µ, and say that T is nice if, for each i > 1, the number of entries greater
than mi in the rows of length li is at most li − li+1. For instance, of the quasi-standard (5, 32, 2)-tableaux
of type (33, 22) above, the first eleven are nice while the last nine are not. Note that a nice quasi-standard
tableau is necessarily semi-standard.

Proposition 21. The homomorphisms corresponding to nice quasi-standard tableaux are linearly inde-
pendent of the other quasi-standard homomorphisms.

Proof. Take a quasi-standard λ-tableau T of type µ which is not nice. It suffices to show that when Θ̂T

is expressed as a linear combination of semi-standard homomorphisms Θ̂T1 , . . . , Θ̂Ta (which we can do,
by Lemma 2), none of the T j is a nice quasi-standard tableau.

Let i be minimal such that the number of entries greater than mi in row mi is greater than li − li+1.
Let t be the (li, l

mi+1−mi
i+1 , . . . , lmr−mr−1

r )-tableau consisting of rows mi, . . . ,mr of T . Note that the entries of
t are all at least mi. Express Θ̂t as a linear combination

∑a
j=1 β jΘ̂t j of semi-standard homomorphisms,
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and let T j be the λ-tableau which agrees with T on rows 1, . . . ,mi − 1 and with t j on rows mi, . . . ,mr.
Then by Lemma 4 we have

Θ̂T =

a∑
j=1

βiΘ̂T j .

Moreover, for each j either T j is semi-standard or Θ̂T j = 0. Indeed, the entries of T j are all at least
mi, while the entries in the first li places of row mi − 1 of T are all at most mi (note that we might have
mi − 1 = mi−1, but in this case we know the minimality of i implies that only the last li−1 − li entries of
row mi−1 can be greater than mi). So the only way T j can fail to be semi-standard is if rows mi−1 and mi

contain an entry mi in the same column, in which case Θ̂T j = 0.
It remains to see that none of the T j is a nice quasi-standard tableau. But each t j contains fewer than

li+1 entries equal to mi, and so there must be more than li − li+1 entries greater than mi in row mi. And
so, even if T j is quasi-standard, it is not nice. �

We can now state our main result.

Theorem 22. Suppose λ̂ and µ̂ are partitions of n + m such that [µ̂] is obtained from [λ̂] by moving s
nodes from row a to row b, where a < b. Define

λ = (λa − λb, . . . , λb−1 − λb), µ = (µa − λb, . . . , µb−1 − λb, s)

and suppose that λ and µ are partitions of n.
If we can choose e > 0 and γ1, . . . , γr ∈ Z so that

• for some nice pseudo-standard λ-tableau T , the coefficient f (T ) is not divisible by pe, while

• all the coefficients g(S ) appearing in Theorem 12 are divisible by pe,

then
HomFpSn(S λ, S µ) , 0

and hence
HomFpSn+m(S λ̂, S µ̂) , 0.

Proof. This follows by combining Theorem 9, Theorem 12, Lemma 17, Lemma 20 and Proposition
21. �

Remark. In practice, Theorem 22 is most useful when we choose

γi =

l0 − li + mi + s − 1 (i 6 a)

−li + mi − mr + s − 1 (i > a)

for some 0 6 a 6 r. Given d and t, we find that ψt
d f = 0 except when d = ma. With luck, the pseudo-

standard homomorphisms corresponding to this value of d can be analysed in a similar way to that used
in our proof of Theorem 8.
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Example. We illustrate our results with a small example which is not covered by Theorem 8. Let p = 3,
λ = (7, 3) and µ = (4, 32), so that we have r = 1 and s = 3. We choose γ1 = −1. Then the nice
quasi-standard λ-tableau

T = 1 1 1 1 2 2 3
2 3 3

has f (T ) = −2, which is not divisible by 3. Now we look at the coefficients appearing in Theorem 12.
For d = 2, each of these coefficients is divisible by lr − s + 1 + γr = 0, while for d = 1, each of the g(S )
is divisible by l0 + s − l1 + m1 − 1 − γ1 = 6; so all the g(S ) are divisible by 3. Hence

HomF3S10(S (7,3), S (4,32)) , 0.

It is possible to obtain more information by examining those quasi-standard tableaux which are not
nice: say that a quasi-standard λ-tableau T of type µ is good if the tableau formed by rows 1,m1, . . . ,mr

of T is semi-standard. Then we have the following.

Proposition 23. The homomorphisms corresponding to good quasi-standard λ-tableaux of type µ are
linearly independent.

Proof. We may copy the proof of [4, Lemma 13.11], in which it is proved that the semi-standard homo-
morphisms are linearly independent. This only depends on the fact that the semi-standard tableaux are
row standard and that each ∼col class of tableaux contains at most one semi-standard tableau. The same
is true of the good quasi-standard tableaux. �

If we could find a ‘straightening’ result describing how to express homomorphisms corresponding
to non-good quasi-standard tableaux in terms of those corresponding to good quasi-standard tableaux,
then it would be possible to strengthen our results. We leave this for a future paper.
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