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Abstract

In [11], Martin and Russell construct part of the ordinary quiver of the principal block of Snp in
characteristic p; they define the notion of a general vertex, and show that around general vertices,
the quiver assumes an n-dimensional lattice-like structure. Here we use different methods to find
more vertices in the quiver of this general type.

1 Introduction

Throughout this paper, we let p be a prime, and k be a field of characteristic p. Let Sm denote the
symmetric group on m letters. Recall that the ordinary quiver of a k-algebra A is a quiver with vertices
indexed by the isomorphism classes of simple modules for A, with the number of arrows from M to N
being dimk(Ext1A(M,N)). In the case of the symmetric group, all simple modules are self-dual, and so
we draw the ordinary quiver as a multigraph, with an edge indicating an arrow in each direction.

We shall be concerned with the principal block of the symmetric group Snp, where n 6 p. The
ordinary quiver for kSp is well known; the quiver for kS2p was constructed by Martin in [9], and that
for kS3p by Martin and Russell in [10]. In these prototypical cases a lattice-like structure is observed:
the quiver for kSp is linear, while part of the quiver for kS2p resembles a lattice of squares, and part of
that for kS3p a lattice of cubes. In [11], Martin and Russell define a ‘general’ vertex of the quiver using
the 〈np〉 abacus notation and prove that such a lattice structure exists in general. Their main result may
be stated as follows.

Theorem 1.1. [11, Theorem 4.2] Let n > 1, and let λ = 〈a1, . . . , an〉 be a general vertex in the principal
p-block B of kSnp. Then dimk Ext1B(Dλ,Dµ) equals 1 if µ is one of the 2n partitions labelled 〈a1, . . . , ar±

1, . . . , an〉 for 1 6 r 6 n, and 0 otherwise.

We shall re-prove this result and extend it to include other vertices of the quiver. Using (2) to indicate
a bead of weight two on the abacus, we define a ‘p-general’ vertex and a ‘semi-general’ vertex, and
prove the following.

∗The first author is financially supported by the EPSRC.
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Theorem 1.2.
1. Let n > 2, and let λ = 〈a1, . . . , an−1, p〉 be a p-general vertex in the principal p-block B of kSnp.

Then dimk Ext1B(Dλ,Dµ) equals 1 if µ is one of the 2n partitions labelled 〈a1, . . . , an−1, p − 1〉,
〈a(2)

1 , a2, . . . , an−1〉 or 〈a1, . . . , ar ± 1, . . . , an−1, p〉for 1 6 r 6 n − 1, and zero otherwise.

2. Let n > 2, and let λ = 〈a1, . . . , a j−1, a
(2)
j , a j+1, . . . , an−1〉 be a semi-general vertex in the principal

p-block B of kSnp. Then dimk Ext1B(Dλ,Dµ) equals 1 if µ is one the 2n (or 2n − 1, if j = n − 1)
labelled as follows:

• 〈a1, . . . , ar ± 1, . . . , a j−1, a
(2)
j , a j+1, . . . , an−1〉, where 1 6 r 6 j − 1;

• 〈a1, . . . , a j−1, (a j ± 1)(2), a j+1, . . . , an−1〉;

• 〈a1, . . . , a j−1, a
(2)
j , a j+1, . . . , ar ± 1, . . . , an−1〉, where j + 1 6 r 6 n − 1;

• 〈a1, . . . , a j−2, a
(2)
j−1, a j, . . . , an−1〉 (provided j > 1);

• 〈a1, . . . , an−1, p〉 (if j = 1);

• 〈a1, . . . , a j, a
(2)
j+1, a j+1, . . . , an−1〉 (provided j < n − 1);

otherwise, Ext1B(Dλ,Dµ) = 0.

Hence, by allowing an to go to p and then introducing weight 2 beads, we find further vertices of
general type before reaching a ‘wall’ of the quiver. We shall make our terms precise later. The technique
of induction and restriction used in [11] breaks down for semi-general vertices, so we adopt a new one,
by examining the effect of the Mullineux algorithm on various types of partitions.

In the last two parts of the paper, we examine the structures of Specht modules and projective mod-
ules corresponding to general vertices.

1.1 Symmetric group representations

The salient points of the representation theory of the symmetric groups over fields of arbitrary char-
acteristic may be found in James’s book [4]; here we recall some results not found there.

1.1.1 The abacus

In what follows, we make extensive use of James’s abacus: we take an abacus with p vertical runners
labelled 1, . . . , p. We then denote the top position on runner i by i−1, the next position down by i−1+ p,
and so on. Given a partition λ and an integer r equal to or greater than the number of non-zero parts of
λ, we define the beta-numbers for λ to be the values βi = λi + r − i, for i = 1, . . . , r. We then display
λ on the abacus by placing a bead at position βi for each i. Clearly, choosing a different value of r will
give a different abacus display. Nakayama’s conjecture then tells us that S λ and S µ lie in the same block
of kSm (we shall frequently abuse notation by saying that λ and µ lie in the same block) if and only if λ
and µ can be displayed on abacuses with the same numbers of beads on corresponding runners.

Given an abacus display for a partition λ, the partition whose abacus display we obtain by moving
all the beads on the abacus up as far as they will go we call the p-core of λ; the p-core is a partition of
m − ωp for some ω > 0 which we call the weight of the block.

We shall concentrate largely on the principal block B of kSnp. Take r = np. The p-core of partitions
in B is the partition of zero, and so B has an abacus with n beads on each runner. We shall use the
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〈np〉-notation to describe partitions in B: we write a( j) to denote a bead moved down j places on runner
a, and a j to denote j beads each moved down one place on runner a. For example, when p = n = 5, the
partition (8, 5, 33, 2, 1) has an abacus display u u u u uu u u u uu u u u uu u u uu u uu uu

,

which we denote 〈1, 3(2), 42〉.
Since the abacus is traditionally drawn with runners going downwards, we shall refer to lower beads

to mean those with higher beta-numbers, i.e. those lower down the abacus diagram. We number the rows
of the abacus consecutively starting at 1 − n, so that if there are no weight beads on a runner, then the
lowest bead is in row 0. We shall also talk of position i of row j to mean the intersection of runner i and
row j, i.e. the position corresponding to the beta-number (n + j − 1)p + i − 1.

We frequently abuse notation by identifying a partition, its abacus display and the corresponding
vertex of the quiver.

1.1.2 Branching rules

We frequently employ the classical Branching Rule ([4], Theorem 9.3), which describes the induced
and restricted Specht modules. We also use the modular branching rules found by Kleshchev [2] to
describe induced and restricted simple modules. Since these are less well-known, we describe them here
in terms of the abacus.

Let Dλ be a simple module lying in a block A of kSm, and take an abacus display for λ. Say that a
bead b on runner i and in row r of the display is:

• normal if there is no bead immediately to the left of b and if for every j > 1 the number of
beads on runner i in rows r + 1, . . . , r + j is at least the number of beads on runner i − 1 in rows
r + 1, . . . , r + j;

• good if b is the highest normal bead on runner i;

• conormal if there is no bead immediately to the right of b and if for every j > 1 the number of
beads on runner i in rows r − 1, . . . , r − j is at least the number of beads on runner i + 1 in rows
r − 1, . . . , r − j;

• cogood if b is the lowest conormal bead on runner i.

Let A+ be the block of kSm+1 whose abacus is obtained by moving a bead from runner i to runner
i + 1, and let A− be the block of kSm−1 whose abacus is obtained by moving a bead from runner i to
runner i − 1. If b is normal, let λb be the partition obtained by moving b one place to its left, and if b is
conormal, let λb be the partition obtained by moving b one place to its right. With these definitions, the
following holds.

Theorem 1.3. [2, Theorems E,E′]
1. Dλ ↓A

A−= 0 if there are no normal beads on runner i. Otherwise Dλ ↓A
A− is an indecomposable

module with simple cosocle and socle both isomorphic to Dλb , where b is the unique good bead
on runner i; Dλ↓A

A− is simple if and only if b is the only normal bead on runner i.
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2. Dλ↑A+

A = 0 if there are no conormal beads on runner i. Otherwise Dλ↑A+

A is an indecomposable
module with simple cosocle and socle both isomorphic to Dλb

, where b is the unique cogood bead
on runner i; Dλ↑A+

A is simple if and only if b is the only conormal bead on runner i.

1.1.3 Schaper’s formula

We shall make use of Schaper’s formula [13], which provides a method for estimating the decom-
position numbers [S λ : Dµ]. Given partitions λ and µ of m with λ B µ, define H(λ, µ) to be the set of
ordered pairs (g, h), where

• g is a rim hook of the Young diagram [λ] of λ;

• h is a rim hook of the Young diagram [µ] of µ;

• [λ] \ g = [µ] \ h.

Now define
cλ,µ =

∑
(g,h)∈H(λ,µ)

(−1)l(g)+l(h)+1νp(|g|),

where |g| is the number of nodes of g and l(g) its leg length.
A weak version of Schaper’s formula may now be stated as follows.

Proposition 1.4. Let µ and ν be partitions of m, with ν p-regular and ν B µ. Then

[S µ : Dν] 6
∑
λBµ

cλ,µ[S λ : Dν],

and the left-hand side is zero only if the right-hand side is.

In fact, the Specht module S µ has a certain filtration

S µ = S 0 > S 1 > . . .

in which S 0/S 1 equals Dµ if µ is p-regular, and zero otherwise and in which the other quotients S i/S i+1

are self-dual (and hence, if their composition factors are distinct, semi-simple). The expression on the
right-hand side of the inequality in Proposition 1.4 is then equal to∑

i>0

i
[

S i

S i+1
: Dν

]
.

An important consequence of Schaper’s formula is a refinement of the above statement that [S µ :
Dλ] = 0 unless λ B µ. Given a prime p and partitions λ,µ of m, write λ < µ if an abacus display for µ
can be obtained from an abacus display for λ by moving a bead up from position i + wp to position i
and then moving a bead down from position j to position j + wp, where i, j,w are non-negative integers
with i > j. Extend < transitively to obtain a partial order on the set of partitions of n, of which B is a
refinement. Schaper’s formula has the following corollary.

Proposition 1.5. Let λ, µ be partitions of n with λ p-regular. Then [S µ : Dλ] = 0 unless λ < µ.

We shall use this ‘Schaper dominance’ order exclusively from now on.
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1.2 The alternating representation

We denote by sgn the one-dimensional representation of Sm which sends each permutation π to its
signature (−1)π. Given any partition λ, we define the conjugate partition λ′ by

λ′i = max{ j | λ j > i}.

We then have the following result.

Theorem 1.6. [4, Theorem 8.15] Over any field, S λ ⊗ sgn is isomorphic to the dual of S λ′ .

This result will prove very useful later; note that there is an easy way to find the conjugate of a
partition displayed on an abacus: we simply replace all the beads with spaces and all the spaces with
beads, and then rotate the resulting diagram through 180 degrees. In particular, using the 〈pn〉-notation
for the principal block of kSnp, we simply change each term a(s) to ãs, where ã = p + 1 − a, and vice
versa.

A corollary of Theorem 1.6 is that if Dλ lies in a block with weight ω and p-core ν, then Dλ ⊗ sgn
will lie in the weight ω block with p-core ν′. We say that such blocks are conjugate.

Since sgn is one-dimensional, M ⊗ sgn will be irreducible for any irreducible kSm-module M. This
gives a bijection from the set of simple modules to itself; in characteristic zero, the Specht modules are
simple and self-dual, and so we have S λ ⊗ sgn � S λ′ . But in odd positive characteristic the situation is
more complicated. We need a bijection ∗ from the set of p-regular partitions to itself such that

Dλ ⊗ sgn = Dλ∗

for all p-regular λ. Mullineux [12] described a bijection f and conjectured that f (λ) = λ∗; the conjecture
was proved by Ford and Kleshchev [3], by using the equivalent algorithm given by Kleshchev in [7]. We
now describe the algorithm.

For each p-regular partition λ we construct a sequence of partitions λ = λ0, . . . , λu = (0), where λi

is a partition of some mi < m, and λi+1 is obtained from λi by ‘removing the p-rim’; on the abacus, this
is achieved by the following.

1. Let x be the greatest occupied position in the abacus display of λi.

2. If there is no unoccupied position less than x in the display, then stop. Otherwise, let y be

• the greatest unoccupied position less than x on the same runner as x, if there are any, or

• the least unoccupied position in the display, if not.

Move the bead at position x to position y.

3. Let x be the greatest occupied position less than y in the abacus, and return to step 2.

It is clear that this procedure will eventually produce the partition (0). Given the partitions λ0, . . . , λu,
define the Mullineux symbol for λ to be the matrix(

r1 . . . ru

s1 . . . su

)
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where ri is the number of non-zero parts of λi−1 and si = mi−mi−1, i.e. the length of the p-rim removed to
get from λi−1 to λi. (We sometimes write ( r

s )i in the Mullineux symbol to indicate i consecutive columns
equal to ( r

s ).)
Mullineux shows that a given Mullineux symbol corresponds to at most one partition; in fact λ

can be recovered from its Mullineux symbol by reconstructing λi−1 from λi according to the following
algorithm.

1. Let x be the rith greatest occupied position in the abacus display of λi.

2. Let y be the least unoccupied position in the abacus display such that y > x and y−x ≡ si (mod p).
Move the bead at position x to position y.

3. If there is no occupied position greater than y in the abacus display, then stop. Otherwise, let x be
the least occupied position greater than y.

4. Let y be the least unoccupied position greater than x on the same runner of the abacus as x; move
the bead at position x to position y. Return to step 3.

Now define the conjugate Mullineux symbol of ((r1, . . . , ru), (s1, . . . , su)) to be ((r′1, . . . , r
′
u), (s1, . . . , su)),

where

r′i =

si − ri (p | si)

si − ri + 1 (p - si);

this function is evidently self-inverse. It turns out that if ((r1, . . . , ru), (s1, . . . , su)) corresponds to a p-
regular partition λ of n, then ((r′1, . . . , r

′
u), (s1, . . . , su)) also corresponds to a p-regular partition of n,

which we call f (λ). We then have
f (λ) = λ∗

for all λ. We also observe that f (λi) = ( f (λ))i for all i.

2 Applying the Mullineux algorithm

We now apply Mullineux’s algorithm to find f (λ) for certain partitions λ lying in the principal block
of kSnp; we use the 〈np〉-notation throughout.

2.1 n-rim partitions

Take an integer 1 6 r 6 n, and suppose that 1 6 a1 < · · · < ar 6 p are integers. Writing n = αr + β

with 0 6 β < r, we define the corresponding n-rim partition

(a1, . . . , ar)n

to be
〈a(α+1)

1 , . . . , a(α+1)
β , a(α)

β+1, . . . , a
(α)
r 〉.

(We call this an n-rim partition because, as we shall see, it always has exactly n p-rims.)
Now define the down-set of {a1, . . . , ar} to be {b1, . . . , bn}, where b1 < · · · < bn 6 p are the greatest

integers such that
b j < a j
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for 1 6 j 6 r and
b j , al

for all j, l. We then have the following.

Lemma 2.1. Given an n-rim partition (a1, . . . , ar)n, let {b1, . . . , bn} be the corresponding down-set, and
let i be maximal such that ai < bn+1−i. Then the partition (a1, . . . , ar)n has Mullineux symbol(

ã1
p+bn−a1

...

...
ãi

p+bn+1−i−ai

(
max(ãi+1,b̃n+1−i)

p

)n−2i b̃n+1−i
p+ai−bn+1−i

...

...
b̃n

p+a1−bn

)
.

Proof. Write λ = (a1, . . . , ar)n. The first space in the abacus for λ occurs at position a1 in row 0, so λ
has ã1 parts. Removing the first p-rim involves moving the lowest bead on runner aβ (or ar if β = 0) up
one place, and then moving a bead from position bn to position a1 in row 0. This gives a p-rim of length
p + bn − a1, and the remaining partition λ1 has its first space at position a2 in row 0, and hence has ã2

parts. We then move the lowest bead on runner aβ−1 up one place, and a bead from bn−1 to a2 in row 0.
We continue in this way until the partition λi, where (since i is maximal such that ai < bn+1−i) every bead
is to the left of every space in row 0 of the abacus, and the spaces occur at ai+1, . . . , ar and bn+1−i, . . . , bn.
Hence the number of parts of λi is max(ãi+1, b̃n+1−i). The next few steps in the Mullineux algorithm
each consist in moving the lowest bead up one place; this gives a p-rim of length p and does not change
the number of parts of the partition, except possibly the last time. We can remove such p-rims until the
lowest bead is on row 1 and runner ai, since the position on row 0 and runner ai is occupied. This must
be the partition λn−i, so there are n − 2i p-rims of length exactly p. The partition λn−i then has spaces
in row 0 at bn+1−i, . . . , bn and beads in row 1 at a1, . . . , ai. Hence the last i p-rim removals consist of
moving the bead at position a j ( j = i, i−1, . . . , 1) in row 1 to position bn+1− j in row 0, and the remainder
of the Mullineux symbol is as indicated. �

In certain circumstances, this enables us to find f (λ) for an n-rim partition λ.

Proposition 2.2. Suppose that 1 6 a1 < · · · < ar 6 p, and that the down-set {b1, . . . , bn} for {a1, . . . , ar}

is positive, i.e. b1 > 1. Then
f ((a1, . . . , ar)n) = 〈b̃n, . . . , b̃1〉.

Proof. Write c j = b̃n+1− j for 1 6 j 6 n, and let {d1, . . . , dn} be the down-set for {c1, . . . , cn}. Then we
have dn+1− j = ã j for 1 6 j 6 r, and with i as in Lemma 2.1, we have

ci < dn+1−i, ci+1 > dn−i.

Hence, by Lemma 2.1, the Mullineux symbol of (c1, . . . , cn)n = 〈b̃n, . . . , b̃1〉 is(
c̃1

p+dn−c1

...

...
c̃i

p+dn+1−i−ci

(
max(c̃i+1,d̃n+1−i)

p

)n−2i d̃n+1−i
p+ci−dn+1−i

...

...
d̃n

p+c1−dn

)
.

We claim that this is the conjugate Mullineux symbol to that for (a1, . . . , ar)n described in Lemma 2.1.
This follows from the definition of c j and d j, provided either

max(ai, bn−i) = p −max(ãi+1, b̃n+1−i)

or n − 2i = 0. Assuming n − 2i > 0, we have bn+1−i > bi+1; from the definition of the b j, there must
then be a string of consecutive integers each of which is contained in {a1, . . . , ar} ∪ {b1, . . . , bn} and
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which includes ai+1 and bi+1. Hence the integer immediately below min(ai+1, bn+1−i) is contained in
{a1, . . . , ar} ∪ {b1, . . . , bn}; since

ai < bn+1−i, bn−i < ai+1,

this integer must be either ai or bn−i. Hence we have

min(ai+1, bn+1−i) = max(ai, bn−i) + 1,

as required. �

2.2 Modified n-rim partitions

Next we examine the effect of the Mullineux map on certain partitions in blocks other than B; this
will facilitate the Mullineux operation for more complicated partitions of B.

Given
1 6 a1 < · · · < ae < s < ae+1 < · · · < a f < t < a f +1 < · · · < ar 6 p,

define the modified n-rim partition (a1, . . . , ar)
(s,t)
n as follows:

• construct the partition (a1, . . . , ae, s, ae+1, . . . , ar)n of B;

• move a bead from position t to position s in row 0.

Thus (a1, . . . , ar)
(s,t)
n lies in the weight n− 1 block whose abacus has n + 1 beads on the sth runner, n− 1

on the tth runner, and n on every other runner; the core of this block is (s, 1p−t).
We define the modified down-set for (a1, . . . , ar)

(s,t)
n to be the set {b1, . . . , bn}, where b1 < · · · < bn 6

p are maximal integers such that:

• b j < a j for j = 1, . . . , r;

• b j , al for all j,l;

• b j , s, t for all j.

Lemma 2.3. Suppose that (a1, . . . , ar)
(s,t)
n is a modified n-rim partition whose down-set {b1, . . . , bn} is

positive, i.e. b1 > 1. Then
f ((a1, . . . , ar)

(s,t)
n ) = (b̃n, . . . , b̃1)(t̃,s̃)

n .

This lemma can be proved combinatorially like Proposition 2.2, but we prefer to use restriction
between blocks of the symmetric groups and exploit the truth of Mullineux’s conjecture. Given s < t,
define blocks C0, . . . ,Ct−s of Snp, . . . ,Snp−t+s respectively by letting C0 = B, and moving a bead from
runner t − i + 1 to runner t − i to obtain Ci from Ci−1. Thus the blocks Ct−1, . . . ,Ct−s all have weight
n−1, and have cores (t−1, 1p−t), . . . , (s, 1p−t) respectively. We also define blocks D0, . . . ,Dt−s by letting
D0 = B and moving a bead from runner t̃ + i to runner t̃ + i−1 to obtain Di from Di−1. Thus D1, . . . ,Dt−s

all have weight n − 1 and have cores (t̃, 1p−1−t̃), . . . , (t̃, 1p−s̃). In particular, Di is the conjugate block to
Ci for all i.

Since Ci and Di are conjugate, we have, for any module M lying in B,

M↓C1 · · ·↓Ct−s ⊗ sgn � (M ⊗ sgn)↓D1 · · ·↓Dt−s .
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Proof of Lemma 2.3. Define the n-rim partition

λ = (a1, . . . , ae, ae+1 − 1, . . . , a f − 1, t, a f +1, ar)n

in B. Since a f < t, the down-set for λ will include t − 1. Thus, to construct the down-set, we may
construct the down-set ignoring runners t and t − 1, and then add t − 1 to the resulting set. But this is
just the same as constructing the down-set of {a1, . . . , ar} ignoring runners s and t, subtracting 1 from
any elements lying between s and t, and then inserting t − 1. Thus, the down-set for λ is

{b1, . . . , bg, bg+1 − 1, . . . , bh − 1, t − 1, bh+1, . . . , bn},

where bg < s < bg+1 and bh < t < bh+1. This is a positive down-set, so by Proposition 2.2,

f (λ) = 〈b̃n, . . . , b̃h+1, t̃ + 1, b̃h + 1, . . . , b̃g+1 + 1, b̃g, . . . , b̃1〉;

call this latter partition µ.
Defining

λ = (a1, . . . , ar)
(s,t)
n , µ = (b̃n, . . . , b̃1)(t̃,s̃)

n ,

we claim that
Dλ↓C1 · · ·↓Ct−s� Dλ

and
Dµ↓D1 · · ·↓Dt−s� Dµ;

the lemma will then follow. We use Theorem 1.3. Restricting λ from C0 to C1, we have a bead of
positive weight on runner t, but no weight on runner t−1. Thus the weight bead simply moves one place
to the left, and Dλ↓C1 is the simple module corresponding to this new abacus display:

t−1 t
...
...u

...
...u

−→

t−1 t
...
...u

...
...u
.

When restricting between Ci and Ci+1 for i > 1, one of the following three situations occurs; in each
case, Dλ↓C1 · · ·↓Ci+1 is simple, by Theorem 1.3.

1.
t−i−1 t−i
...

...u u
...

...u
−→

t−i−1 t−i
...

...u u
...

...u
2.

t−i−1 t−i
...

...u
...

...u u
−→

t−i−1 t−i
...

...u
...

...u u
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3.
t−i−1 t−i
...

...u
...

...uu
−→

t−i−1 t−i
...

...u
...

...uu
Thus we see that the weight bead on runner t moves down as far as runner a f , the weight bead on

runner a j − 1 moves down to runner a j−1 (e + 2 6 j 6 f ), and the weight bead on runner ae+1 − 1 moves
to runner s. This gives the partition (a1, . . . , ar)

(s,t)
n = λ. Restricting Dµ is similar (easier, in fact). �

2.3 Partitions of types X and Y

Now we define two more types of partition in B whose Mullineux conjugates we shall find using
Lemma 2.3.

Define a type X partition as follows. Take r < n − 1 and choose 1 6 c1 < · · · < cr 6 p. Also choose
1 6 u 6 p such that

• u , c j for all j, and

• if r > n−1
2 , then u < cn−1−r.

Form the (n − 1)-rim partition (c1, . . . , cr)n−1, and then move a bead on runner u from row 0 to row 1.
Call the resulting partition Xn(c1, . . . , cr; u).

For example, with p = 11, n = 11, r = 3, (c1, c2, c3) = (2, 4, 8), u = 7 we get the partition

...
...
...
...
...
...
...
...
...
...
...u u u u u u uuu uu
.

Define a partition of type Y as follows. Choose n−1
2 6 r 6 n − 2, and choose 1 6 c1 < · · · < cr 6 p.

Also choose 1 6 u 6 p such that

• u , c j for all j, and

• if r = n − 2, then u < cr.

Form the (n − 2)-rim partition (c1, . . . , cr)n−2, and then move a bead on runner u from row 0 to row
1. Now define y to be minimal such that cy > u (or put y = 1 if u > cr), and move the lowest bead on
runner cy down one row. Call the resulting partition Yn(c1, . . . , cr; u).

With p = 11, n = 9, r = 5, (c1, c2, c3, c4, c5) = (2, 3, 5, 8, 11), u = 7 we get the partition

...
...
...
...
...
...
...
...
...
...
...u u u u uu u uu u u .

Remarks.
1. The partitions are carefully defined in order to have exactly n − 1 p-rims. The second condition

on u in each case ensures that they do not just reduce to n-rim partitions.
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2. Note that Xn(c1, . . . , cr; u) and Yn(c1, . . . , cr; u) may coincide. In particular, if r = n − 2 and
Xn(c1, . . . , cr; u) is defined, then Yn(c1, . . . , cr; u) is defined and equals Xn(c1, . . . , cr; u).

In order to find the Mullineux conjugates of partitions of these types, we define a special type of
down-set. Given c1, . . . , cr, u satisfying the conditions for either a partition of type X or of type Y , we
first define t to be the greatest integer such that t < u, t , c j for all j. We then define b1 < · · · < bn−2 6 p
to be the greatest integers such that b j < c j, b j , cl, b j , t for all j, l. Note that we allow b j = u.

Proposition 2.4. Let λ = Xn(c1, . . . , cr; u) or Yn(c1, . . . , cr; u), and suppose that the down-set {b1, . . . , bn−2}

of λ is positive, i.e. b1 > 1. Then
f (λ) = 〈b̃n−2, . . . , b̃1, t̃2〉.

Note that t need not be smaller than b1, so the runners on the right-hand side may not be in ascending
order.

The same proof covers both types of partitions.
Proof. First assume t < c1. Then removing the first p-rim involves moving the lowest bead (on runner
cn−r−1 in type X, or runner cy in type Y) up one row, and then moving the bead on runner u from row 1
to row 0. Hence the first column of the Mullineux symbol is

c̃1

2p
,

and the remaining partition λ1 is the (n − 2)-rim partition

(c1, . . . , cr)n−2.

Since t < c1, the down-set of this is {b2, . . . , bn−2, t}, which is positive, so by Proposition 2.2 we have

f (λ)1 = f (λ1) = (b̃n−2, . . . , b̃2, t̃)n−2,

where the runners on the right-hand side need not be in ascending order. To find f (λ) we must add a
p-rim in accordance with the first column

p − 1 + c1

2p

of the conjugate Mullineux symbol. To obtain p − 1 + c1 parts, we move a bead from position c̃1 + 1 on
row −1; but c̃1 + 1 = t̃, and there is no bead in position t̃ in row 0; so we move the bead down one row,
and we then move the next bead to the right of this in row 0. This must lie in position b̃1. We move this
bead down one row to obtain f (λ) as indicated.

Now we assume t > c1. Removing the first rim involves moving two beads up one row as above,
and then moving a bead from position t to position c1 in row 0. Thus the first column of the Mullineux
symbol is

c̃1

2p + t − c1
,

and the remaining partition λ1 is the modified (n − 2)-rim partition

(c2, . . . , cr)
(c1,t)
n−2 .
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The modified down-set for this is {b2, . . . , bn−2}, which is positive, so we have

f (λ)1 = f (λ1) = (b̃n2 , . . . , b̃2)(t̃,c̃1)
n−2 .

To find f (λ) we add a p-rim in accordance with the first column

p + t̃
2p + t − c1

of the conjugate Mullineux symbol. To obtain p + t̃ parts, we must move a bead from position t̃ in row
−1 to runner c̃1; the highest space on this runner is in row 0, so we move the bead here; we must then
move the first bead to the right of this in row 0 down one row; this lies on runner b̃1. Hence f (λ) is as
indicated. �

3 General vertices

We are now in a position to employ the Mullineux map in order to provide information about de-
composition numbers and Ext-spaces.

Definition. Let B be the principal block of kSnp, with the 〈np〉 abacus notation.
A vertex of the quiver of B is said to be general if it has the form 〈a1, . . . , an〉, where 1 < a1 < · · · <

an 6 p − 1 and ai+1 − ai > 3 for all i.
A vertex of the quiver of B is said to be p-general if it has the form 〈a1, . . . , an−1, p〉, where 1 < a1 <

· · · < an−1 6 p − 3 and ai+1 − ai > 3 for all i.
A vertex of the quiver of B is said to be semi-general if it has the form 〈a1, . . . , a j−1, a

(2)
j , a j+1, . . . , an−1〉

for some 1 6 j 6 n − 1, with 1 < a1 < · · · < an−1 6 p − 2 and ai+1 − ai > 3 for all i.

We make some basic observations using standard representation theory of the symmetric groups.
Recall from Proposition 1.4 that if [S µ : Dλ] , 0, then λ < µ.

Lemma 3.1. If λ and µ are partitions of m with λ p-regular and [S µ : Dλ] , 0, then µ < λ∗′.

Proof. By Theorem 1.6 (and since the simple modules are self-dual), we have [S µ′ : Dλ∗] , 0, so that
λ∗ < µ′. But conjugation of partitions exactly reverses the order <, so µ < λ∗′ as required. �

The following theorem is a special case of a general result [1, Proposition 1.9.6] from modular
representation theory.

Theorem 3.2. Let λ be a p-regular partition, and let P(Dλ) denote the projective cover of Dλ. Then

P(Dλ) ∼
∑
µ

[S µ : Dλ]S µ.

Now if Ext1kSm
(Dλ,Dµ) , 0, then Dµ appears as a composition factor of the second Loewy layer of

P(Dλ). Hence either Dµ is a composition factor of rad(S λ), or Dµ is an irreducible quotient of some S ν

with ν , λ, [S ν : Dλ] , 0. In the latter case, if ν is p-regular, then we must have µ = ν. Thus we have
the following.
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Proposition 3.3. Suppose a partition λ of m has the property that all partitions ν with λ < ν < λ∗′ are
p-regular. Then Dλ does not self-extend, and for any simple module Dµ we have

dimk Ext1kSm
(Dλ,Dµ) 6 [S λ : Dµ] + [S µ : Dλ].

In particular, for any simple module Dµ with Ext1kSm
(Dλ,Dµ) , 0, either

λ � µ < λ∗′

or

µ � λ< µ∗′.

We now show that our various types of general vertices have the property specified in Proposition
3.3.

Proposition 3.4. Let B be the principal p-block of Snp, with 〈np〉 abacus notation.

1. Suppose 〈a1, . . . , an〉 is a general or a p-general vertex in B. Then

〈a1, . . . , an〉
∗′ = 〈a1 − 1, . . . , an − 1〉.

2. Suppose 〈a(2)
1 , . . . , an−1〉 is a semi-general vertex in B. Then

〈a(2)
1 , . . . , an−1〉

∗′ = 〈a1 − 1, . . . , an−1 − 1, p〉.

3. Suppose 〈a1, . . . , a j−1, a
(2)
j , a j+1, . . . , an−1〉 is a semi-general vertex in B, with j > 1. Then

〈a1, . . . , a j−1, a
(2)
j , a j+1, . . . , an−1〉

∗′ =

〈a1 − 1, . . . , a j−2 − 1, (a j−1 − 1)(2), a j − 1, . . . , an−1 − 1〉.

Hence for λ a general, p-general or semi-general vertex, all partitions ν < λ∗′ have at most p parts, and
are p-regular.

Proof. 〈a1, . . . , an〉 is the n-rim partition (a1, . . . , an)n; since the ai differ by at least three, the corre-
sponding down-set {b1, . . . , bn} has bi = ai − 1. Hence by Proposition 2.2,

〈a1, . . . , an〉
∗ = 〈ãn − 1, . . . , ã1 − 1〉,

implying the result.
The semi-general vertex with j = 1 is also an n-rim partition, and is dealt with similarly. A semi-

general vertex with j > 1 is of type Y; in fact

〈a1, . . . , a j−1, a
(2)
j , a j+1, . . . , an−1〉 = Yn(a1, . . . , â j−1, . . . , an−1; a j−1).

Since the ai differ by at least three, this has t = a j−1−1 and down-set {a1−1, . . . , ̂a j−1 − 1, . . . , an−1−1}.
The result follows from Proposition 2.4. �

This result enables us immediately to confine the possible µ with λ < µ and Ext1B(Dλ,Dµ) , 0 to a
very small set.
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Proposition 3.5.
1. Suppose λ = 〈a1, . . . , an〉 is a general or a p-general vertex, and that λ � µ < λ∗′. Then µ has the

form
〈e1, . . . , en〉,

where ei equals ai or ai − 1.

2. Suppose λ = 〈a(2)
1 , a2, . . . , an−1〉 is a semi-general vertex, and that λ � µ < λ∗′. Then µ has the

form
〈(e1)(2), e2, . . . , en−1〉

or
〈e1, . . . , en−1, p〉,

where ei equals ai or ai − 1.

3. Suppose 〈a1, . . . , a j−1, a
(2)
j , a j+1, . . . , an−1〉 is a semi-general vertex, with j > 1, and that λ � µ <

λ∗′. Then µ has the form
〈e1, . . . , e j−1, (e j)(2), e j+1, . . . , en−1〉

or
〈e1, . . . , e j−2, (e j−1)(2), e j, . . . , en−1〉,

where ei equals ai or ai − 1.

A somewhat harder task is to find the possible neighbours Dµ of Dλ for which µ � λ; we now
undertake this.

Lemma 3.6. Suppose λ is a semi-general or a p-general vertex, and that µ � λ < µ∗′. Then µ is an
n-rim partition.

Proof. Since µ � λ, µ has at most one weight bead on each runner; in particular, µ has fewer than p
parts. If the first p-rim of µ has length at least 2p, then µ∗ will have more than p parts, i.e. the first part
of µ∗′ will be greater than p. This contradicts λ < µ∗′, so the first p-rim of µ has size less than 2p. Thus
if µ has a bead of weight w on runner r, it cannot have a bead of weight 0 < w′ < w on a runner r′ < r,
or a bead of weight 0 < w′ < w − 1 on runner r′ > r. Hence µ is an n-rim partition. �

Given this restriction, we can be more precise.

Proposition 3.7. Suppose λ = 〈a1, . . . , an〉 is a general vertex, and that µ � λ < µ∗′. Then µ has the
form 〈c1, . . . , cn〉, where:

• ai 6 ci 6 ai + 2 for all i, and

• if ci = ai + 2, then ci+1 = ci + 1.

Proof. Let µ = (c1, . . . , cr)n. Since µ � λ, we must have ci > ai for i = 1, . . . , r. Hence if {b1, . . . , bn} is
the down-set for µ, then b1 > a1, so {b1, . . . , bn} is positive. Thus µ∗′ = 〈b1, . . . , bn〉, and we must have
ai > bi.

If r < n, then either bn = p or cr = p. The former case contradicts λ < µ∗′, so assume the latter.
Let s be maximal such that bs+1 > cs (this condition is to be treated as vacuous in the case s = 0). Then
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the (disjoint) sets {cs+1, . . . , cr} and {bs+1, . . . , bn} must constitute a set of consecutive integers, whose
largest value is cr = p; thus

bs+1 = p + 1 − n − r + 2s.

Now
bs+1 6 as+1 6 p + 2 − 3(n − s),

so we have
s + 1 > 2n − r,

which gives a contradiction. Hence r = n.
Now suppose ci > bi+δ for some δ > 0. Let s < i be maximal such that bs+1 > cs, and let t > i be

minimal such that bt+1 > ct. Then the sets {bs+1, . . . , bt} and {cs+1, . . . , ct} comprise a set of consecutive
integers, i.e. ct − bs+1 = 2(t − s) − 1. Comparison with the inequality at − as+1 > 3(t − s − 1) yields
t − s 6 2. Hence δ 6 1, and if δ = 1 we must have bi, bi+1, ci, ci+1 as consecutive integers; this can only
happen if bi = ai and ci+1 = ai+1.

If ci < bi+1 and ci−1 < bi, then bi = ci − 1, which can happen only if ci equals ai or ai + 1. �

Example. Let p > 11, and let λ be the general vertex 〈2, 6, 9〉. From what we have seen so far, if Dλ

extends Dµ, then µ must be one of

〈2, 6, 8〉, 〈2, 5, 9〉, 〈2, 5, 8〉,

〈1, 6, 9〉, 〈1, 6, 8〉, 〈1, 5, 9〉, 〈1, 5, 8〉

or one of
〈2, 6, 10〉, 〈2, 7, 9〉, 〈2, 7, 10〉,

〈3, 6, 9〉, 〈3, 6, 10〉, 〈3, 7, 9〉, 〈3, 7, 10〉,

〈2, 8, 9〉, 〈3, 8, 9〉.

Proposition 3.8. Suppose 〈a1, . . . , an−1, p〉 is a p-general vertex, and that µ � λ < µ∗′. Then µ has one
of the following two forms:

1. 〈c1, . . . , cn−1, p〉, where

• ai 6 ci 6 ai + 2, for all i, and

• if ci = ai + 2, then ci+1 = ci + 1 (where we take cn = p);

2. 〈c(2)
1 , c2, . . . , cn−1〉, where

• ai 6 ci 6 ai + 2, for all i, and

• if ci = ai + 2, then ci+1 = ci + 1.

Proof. Let µ = (c1, . . . , cr)n. Again, we must have ci > ai for i = 1, . . . , r, so the down-set {b1, . . . , bn}

of (c1, . . . , cr)n is positive and µ∗′ = 〈b1, . . . , bn〉.
Suppose r < n− 1. Then either bn−1 > p− 2 or cr−1 > p− 2. The former contradicts bn−1 6 an−1, so

assume the latter; again, we take a maximal s such that bs+1 > cs, whereupon the sets {bs+1, . . . , bn} and
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{cs+1, . . . , cr} constitute a set of consecutive integers with greatest value p (which equals either bn or cr).
Hence bs+1 = p + 1 − n − r + 2s; comparison with as+1 6 p + 3 − 3(n − s) yields s + 2 > 2n − r > n + 2,
which gives a contradiction. Hence r = n or n − 1.

If r = n, then µ = 〈c1, . . . , cn〉, and we must have ci > ai for all i, and cn = p. If r = n − 1, then
µ = 〈c(2)

1 , c2, . . . , cn−1〉, and ci must exceed ai for all i. The other conditions on the ci follow exactly as
in the proof of Proposition 3.7. �

For semi-general vertices, the situation is more complicated.

Lemma 3.9. Suppose that λ = 〈a1, . . . , a j−1, a
(2)
j , . . . , an−1〉 is a semi-general vertex, and that µ � λ <

µ∗′. Then µ is either an n-rim partition or a partition of type X or type Y.

Proof. If the first p-rim of µ has size at least 3p, then (since µ has fewer than p parts) µ∗ has at least 2p
parts, i.e. the first part of µ∗′ is at least 2p. But this contradicts λ < µ∗′; so the first p-rim of µ has size
less than 3p. If it has size less than 2p, then µ is an n-rim partition, as in the proof of Lemma 3.6. So
assume the first p-rim of µ has size at least 2p but less than 3p. If the second p-rim of µ has size at least
2p, then (µ1)∗ has at least p parts; attaching a p-rim involves adding at least one to each part, so µ∗ has
at least p parts of size at least two. Hence µ∗′ has second part at least p, which again contradicts λ < µ∗′.
So the second p-rim of µ has size less than 2p.

Since µ has at most one weight bead on each vertex, removing the first p-rim of µ must consist of
moving two beads, b and c say, up one row each, and then possibly moving a bead across in row 0.
Hence the beta-numbers corresponding to b and c differ by more than p; suppose b is the lower of the
two beads. c cannot lie in row 3 or lower, since then µ1 would have two weight beads whose beta-
numbers differed by more than p, so the second p-rim of µ would have size at least 2p. If c lies in row
2, then either there is a space immediately above c in the abacus for µ1, in which case the second p-rim
will have size at least 2p, or there is no weight bead to the left of c, so that in removing the p-rim of µ a
bead is moved across row 0 to the space above c. But in the latter case suppose that c lies on runner a1,
and that the next weight bead to the right of c lies on runner a2. Then µ1 has ã2 parts, and the p-rim of
µ1 has size at least 2p + a1 − a2, so that µ1∗ has at least p − 1 + a1 parts; this gives a contradiction, as
above. So c lies in row 1.

Now there cannot be any beads in between positions b − p and c; if b exceeds c by more than 2p,
then there cannot be any weight beads less than c either, in which case we have a partition of type X,
with u being the runner on which c lies. If b exceeds c by less than 2p and some other weight bead
exceeds c by more than p, then again µ is of type X. If b exceeds c by less than 2p and no other weight
bead exceeds c by p, then the partition is of type Y , with u being the runner on which c lies, and cy the
runner on which b lies. �

Proposition 3.10. Suppose that λ = 〈a1, . . . , a j−1, a
(2)
j , a j+1, . . . , an−1〉 is a semi-general vertex, and that

µ � λ < µ∗′. Then µ has one of the following two forms:

1. 〈c1, . . . , c j−1, c
(2)
j , c j+1, . . . , cn−1〉, where

• ai 6 ci 6 ai + 2, for all i, and

• if ci = ai + 2, then i , j − 1 and either ci+1 = ci + 1 or j = 1, i = n − 1, an−1 = p − 2;

2. 〈c1, . . . , c j, c
(2)
j+1, c j+2, . . . , cn−1〉, where
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• ai 6 ci 6 ai + 2, for all i, and

• if ci = ai + 2, then i , j − 2 and ci+1 = ci + 1.

Proof.
1. Suppose first of all that µ = (c1, . . . , cr)n is an n-rim partition. Since ci > ai for i = 1, . . . , r, the

down-set {b1, . . . , bn} for µ is positive, so µ∗′ = 〈b1, . . . , bn〉.

If r < n − 1, then either bn−1 = p − 1 or cr > p − 1. The former contradicts λ < µ∗′, so assume
the latter, and let s be maximal such that cs < bs+1; we get a contradiction, as in the proofs of
Propositions 3.7 and 3.8. So r > n − 1; µ � λ implies r 6 n − 1, whence r = n − 1, and
µ = 〈c(2)

1 , c2, . . . , cn−1〉.

[ j > 1] We must have c1 > a j, so b1 cannot equal c1 − 1; in fact b1 6 c1 − 3. Thus there is some
i > 3 with bi < c1. Let s be minimal such that cs < bs+1.

If s < n − 1 or cn−1 < bn, then the sets {b1, . . . , bs} and {c1, . . . , cs} comprise a set of
consecutive integers, i.e. cs − b1 = 2s− 1. But cs > as > a1 + 3(s− 1) > b1 + 3(s− 1), which
yields s 6 2; contradiction.

If s = n − 1 and cn−1 > bn, then the sets {b1, . . . , bn} and {c1, . . . , cn−1} comprise a set of
consecutive integers whose highest value is cn−1 = p. Thus b1 = p + 2 − 2n; but b1 6 a1 6

p − 2 − 3(n − 2), which gives n 6 2; contradiction.

[ j = 1] We have ci > ai > bi for all i; suppose ci > bi+δ for some δ > 0. Let s < i be maximal
such that bs+1 > cs, and let t > i be minimal such that bt+1 > ct (this condition is to be
treated as vacuous in the case t = n. If t 6 n − 1, then, as in the proof of Proposition 3.7,
we get t − s 6 2. If t = n, then the sets {bs+1, . . . , bn} and {cs+1, . . . , cn−1} comprise a set of
consecutive integers with cn−1 = p, so we get bs+1 = p + 1 − 2n + 2s + 1; comparison with
as+1 6 p + 4 − 3n + 3s yields s > n − 2. In any case, we have δ = 1, and the possible µ are
as described.

2. Next we must consider partitions µ of type X or type Y . Suppose that µ is of the form Xn(c1, . . . , cr; u)
or Yn(c1, . . . , cr; u) and that r < n − 2. Then, since µ < λ, the down-set {b1, . . . , bn−2, t} for µ is
positive, and so µ∗′ = 〈b1, . . . , bn−2, t(2)〉 (where the runners need not be in ascending order). Since
r < n− 2, one of bn−1, cr equals p. Let g be minimal such that the set {g, g + 1, . . . , p} is contained
in {c1, . . . , cr, b1, . . . , bn−1, t〉 and such that g , t. Then g equals some bi with i 6 r, and the sets
{bi, . . . , bn−2} and {ci, . . . , cr}, possibly together with t, comprise {g, . . . , p}. So

bi =

p − n − r + 2i (bi < t)

p − n − r + 2i + 1 (bi > t).

Since λ < µ∗′, we must have

bi 6

ai (bi < t)

ai+1 (bi > t);

comparison with ai 6 p + 1− 3(n− i) yields i + 1 > 2n− r in either case, which is a contradiction.
Hence r = n − 2, and (from Remark (2) following the definition of type Y partitions) µ is of type
Y .
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We relabel the runners c1, . . . , cn−2, u as c1, . . . , cn−1 in ascending order, so that we may write

µ = 〈c1, . . . , ck−1, c
(2)
k , ck+1, . . . , cn−1〉,

where ck−1 is the runner previously called u. We must then have ci > ai for all i, and ck > a j.

Next we claim that k must equal j or j + 1. If k < j, then, since bk−1 6 ak, we have ck − bk−1 > 3,
so (by the definition of the down-set, and recalling that ck is the runner previously called ck−1) bk

must be less than ck. By taking a minimal t > k such that ct < bt, we derive a contradiction in
the same manner as that used in earlier proofs. If k > j + 1, then we have ck−1 > ak−1 but t 6 a j,
which implies that ck−2 > bk−1. By taking a maximal s < k − 1 such that cs < bs+1, we can derive
a contradiction. Hence k equals j or j + 1. The restrictions on the ci can now be found exactly as
in Part 1 of this proof.

�

4 Restriction to Snp−1

In this section, we show which of the possible extensions of general vertices actually exist, and
complete the proof of Theorems 1.1 and 1.2. We use restriction to blocks of kSnp−1, as in [11]; we
cannot use the techniques of [11] for the whole proof, since for semi-general vertices the restricted
modules are not always simple.

Take 2 6 s 6 p. As in [11, Section 1], we let Bs be the block of kSnp−1 obtained from B by moving
a bead from runner s to runner s − 1 of the np-bead abacus. We also recall the following.

Definition. [11, Definition 1.3] Let Λ̃s = {λ̃ ∈ Bs | S λ̃ ↑B has exactly two Specht factors}. Then if
Λ̃s = {λ̃1, . . . , λ̃m} and {λ1, µ1, . . . , λm, µm} is the set of partitions of B such that

S λi↓Bs� S µi↓Bs� S λ̃i

and λi > µi, define Λs = {λ1, . . . , λm} and Ms = {µ1, . . . , µm}.

Definition. [11, Definition 1.4] Let Θs : Λs → {partitions of Bs} be the map λ 7→ λ̃, where

S λ↓Bs� S λ̃.

Theorem 4.1. Let λ ∈ Λs and let λ̃ = Θs(λ). Let µ ∈ Ms be such that S µ↓Bs� S λ̃. Then Dλ̃↑B has
two composition factors isomorphic to Dλ and one composition factor isomorphic to Dµ. Any other
irreducible factor Dρ of Dλ̃↑B has ρ < Λs.

Proof. This is simply the second part of [11, Theorem 1.6]. �

Lemma 4.2. Let λ, µ be as in Theorem 4.1. If λ � ρ, Dρ↓Bs= 0 and Ext1B(Dλ,Dρ) , 0, then ρ < µ.

Proof. If Dλ̃↑B has no composition factor isomorphic to Dρ, then we have

Ext1B(Dλ,Dρ) = Ext1B(cosoc(Dλ̃↑B),Dρ)

6 Ext1B(Dλ̃↑B,Dρ)

= dimk Ext1Bs
(Dλ̃,Dρ↓Bs)

= 0,
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a contradiction. Hence Dρ appears as a composition factor of Dλ̃ ↑B. But the latter is a quotient of
S λ̃↑B∼ S λ + S µ. So Dρ is a composition factor of S µ. �

This immediately rules out a lot of the possible extensions of general vertices.

Corollary 4.3.
1. Let λ = 〈a1, . . . , an〉 be a general vertex in B, and suppose that ρ takes one of the following forms:

(a) 〈a1 − ε1, . . . , an − ε1〉, where at least two of the εi are positive;

(b) 〈a1 + ε1, . . . , an + εn〉, where at least two of the εi are positive or some εi equals two.

Then Dλ does not extend Dρ.

2. Let λ = 〈a1, . . . , an−1, p〉 be a p-general vertex in B, and suppose that ρ has one of the following
forms:

(a) 〈a1 − ε1, . . . , an−1 − εn−1, p − εn〉, where at least two of the εi are positive;

(b) 〈a1 + ε1, . . . , an−1 + εn−1, p〉, where at least two of the εi are positive, or some εi equals two;

(c) 〈(a1 + ε1)(2), a2 + ε2, . . . , an−1 + εn−1〉, where at least one of the εi is positive.

Then Dλ does not extend Dρ.

3. Let λ = 〈a1, . . . , a j−1, a
(2)
j , a j+1, . . . , an−1〉 be a semi-general vertex in B, and suppose that ρ has

one of the following forms:

(a) 〈a1 − ε1, . . . , a j−1 − ε j−1, (a j − ε j)(2), a j+1 − ε j+1, . . . , an−1 − εn−1〉, where at least two of the εi

are positive;

(b) 〈a1 + ε1, . . . , a j−1 + ε j−1, (a j + ε j)(2), a j+1 + ε j+1, . . . , an−1 + εn−1〉, where at least two of the εi

are positive, or some εi equals two;

(c) ( j = 1) 〈a1 − ε1, . . . , an−1 − εn−1, p〉, where at least one of the εi is positive;

(d) ( j > 1) 〈a1 − ε1, . . . , a j−2 − ε j−2, (a j−1 − ε j−1)(2), a j − ε j, . . . , an−1 − εn−1〉, where at least one
of the εi is positive;

(e) ( j < n − 1) 〈a1 + ε1, . . . , a j + ε j, (a j+1 + ε j+1)(2), a j+2 + ε j+2, . . . , an−1 + εn−1〉, where at least
one of the εi is positive.

Then Dλ does not extend Dρ.

Proof. Suppose λ = 〈a1, . . . , an〉, ρ = 〈a1 − ε1, . . . , an − εn〉, and that εi = εl = 1. Then λ � ρ, and
Dρ↓Bai

= 0. Now Dλ↓Bai
� Dλ̃, where

λ̃ = 〈a1, . . . , âi, . . . , an〉

in 〈nai−2, n + 1, n − 1, np−ai〉 notation. The corresponding partition in Mai is µ = 〈a1, . . . , ai−1, ai −

1, ai+1, . . . , an〉, and ρ % µ; now apply Lemma 4.2. The other cases follow similarly; in those cases
where ρ � λ, the rôles of λ and ρ must be interchanged. �

We now show that for general and p-general vertices, all the possible remaining extensions do in
fact exist.
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Theorem 4.4. Let λ = 〈a1, . . . , an〉 be a general or a p-general vertex in B, and denote by λ+
i , λ−i the

partitions 〈a1, . . . , ai−1, ai + 1, ai+1, . . . , an〉, 〈a1, . . . , ai−1, ai − 1, ai+1, . . . , an〉 respectively (in the case
an = p, i = n, we put λ+

n = 〈a(2)
1 , a2, . . . , an−1〉). Then

Ext1B(Dλ,Dλ+
i ) � Ext1B(Dλ,Dλ−i ) � k,

and

Dλ↓Bai
↑B�

Dλ

Dλ+
i Dλ−i

Dλ

.

Proof. From Propositions 3.5, 3.7 and 3.8 and Corollary 4.3 we have seen that the only possible neigh-
bours of λ in the quiver of B are the partitions λ+

i , λ−i , for i = 1, . . . , n. Fixing a particular i, write
λ̃ = Θai(λ) and Di = Dλ̃↑B. Then Di has cosocle isomorphic to Dλ, so that all composition factors of the
second Loewy layer of Di must extend Dλ. By Theorem 4.1, such factors can only be isomorphic to Dλ+

i

or Dλ−i , and [Di : Dλ−i ] = 1.

Claim. [Di : Dλ+
i ] = 1.

Proof. We use Schaper’s formula: using the notation of 1.1.3, we have

cλ+
i ,λ

= cλ,λ−i = 1,

cλ+
i ,λ
−
i

= −1;

there is no partition ν other than λ with λ+
i � ν � λ

−
i , so we get

[S λ : Dλ+
i ] = 1, [S λ−i : Dλ+

i ] = 0,

whence
[S λ̃↑B: Dλ+

i ] = 1.

Thus [Di : Dλ+
i ] = 1 unless Dλ+

i is a composition factor of Dν̃↑B for some factor Dν̃ of rad(S λ̃).
If this is the case, let ν be the element of Λai with Θai(ν) = ν̃, and let ν− be the corresponding
element of Mai . Dλ+

i is then a factor of S ν̃↑B∼ S ν + S ν− ; ν � λ, so we have

λ+
i � ν

− � λ−i ;

but Mai contains no such partition ν−. �

The structure of Di now follows, since it is self-dual. Hence the spaces Ext1B(Dλ,Dλ+
i ),Ext1B(Dλ,Dλ−i )

are non-zero; that they are one-dimensional follows from Proposition 3.3, since we have [S λ : Dλ+
i ] = 1

(from above) and [S λ−i : Dλ] = 1 (using the Schaper’s formula coefficients above). �

Remark. The reader who is wary of using Schaper’s formula in the above proof may instead care to
prove that [Di : Dλ+

i ] = 1 using the Mullineux involution.

We can do almost as well for the semi-general vertices.
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Theorem 4.5. Let λ = 〈a1, . . . , a j−1, a
(2)
j , a j+1, . . . , an−1〉 be a semi-general vertex in B, and for i =

1, . . . , n− 1, denote by λ+
i , λ−i the partitions obtained from λ by changing ai to ai + 1, ai − 1 respectively.

Then
Ext1B(Dλ,Dλ+

i ) � Ext1B(Dλ,Dλ−i ) � k,

and

Dλ↓Bai
↑B�

Dλ

Dλ+
i Dλ−i

Dλ

.

Proof. The proof is exactly as for Theorem 4.4. �

Thus, in order to determine completely the extensions of simple modules labelled by a semi-general
partition λ = 〈a1, . . . , a j−1, a

(2)
j , a j+1, . . . , an−1〉, we need only to know whether Dλ extends Dλ+

, Dλ− ,
where λ+ and λ− are obtained from λ by changing j to j + 1, j− 1 respectively (except in the case j = 1,
where we define λ− = 〈a1, . . . , an−1, p〉, and the case j = n − 1, where we do not define λ+). To do this,
we use the restriction method of [11], and induction on n; with what we already know, however, there
will be much less notation to set up.

Theorem 4.6. Define λ, λ+ (if j < n − 1) and λ− as above. Then

Ext1B(Dλ,Dλ−) � k,

and if j < n − 1 then
Ext1B(Dλ,Dλ+

) � k.

Proof. We need only consider Ext1B(Dλ,Dλ−); Ext1B(Dλ,Dλ+

) will then follow, since λ+ is a semi-general
partition with (λ+)− = λ. First of all, consider restriction and induction between the blocks B and Ba1 .
Put λ̃ = Θa1(λ), λ̃− = Θa1(λ−). Recall from Theorem 4.5 that

Dλ̃↑B�

Dλ

Dλ+
1 Dλ−1

Dλ

.

Now we know that Dλ− does not extend either Dλ+
1 or Dλ−1 , so if Ext1B(Dλ̃↑B,Dλ−) , 0, then Ext1B(Dλ,Dλ−)

will be non-zero (and hence one-dimensional) as well. The Eckmann-Shapiro relations tell us that

Ext1B(Dλ̃↑B,Dλ−) � Ext1Ba1
(Dλ̃,Dλ̃−),

and we claim that the latter space is one-dimensional.
We restrict Dλ̃ and Dλ̃− through a sequence of blocks A1, . . . , Ap defined as follows:

• A1 = Ba1 ;

• for 2 6 i 6 a1 − 1, the abacus for Ai is obtained from that for Ai−1 by moving a bead from runner
a1 + 1 − i to runner a1 − i;

• for a1 6 i 6 p, Ai is obtained from Ai−1 by moving a bead from runner i + 1 to runner i (where
runner p + 1 is taken to mean runner 1).
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In particular, note that Ap is the principal block of kS(n−1)p. By applying Theorem 1.3 we find that
Dλ̃ and Dλ̃− restrict to simple modules. Define the partitions λ̌, λ̌− of Ap by

λ̌ =

〈a2 − 1, . . . , a j−1 − 1, (a j − 1)(2), a j+1 − 1, . . . , an−1 − 1〉 ( j > 1)

〈a2 − 1, . . . , an−1 − 1, p〉 ( j = 1)

and

λ̌− =


〈a2 − 1, . . . , a j−2 − 1, (a j−1 − 1)(2), a j − 1, . . . , an−1 − 1〉 ( j > 2)

〈a2 − 1, . . . , an−1 − 1, p〉 ( j = 2)

〈a2 − 1, . . . , an−1 − 1, p − 1〉 ( j = 1).

Then the following hold:

Dλ̃↓A2 · · ·↓Ap � Dλ̌,

Dλ̃−↓A2 · · ·↓Ap � Dλ̌− ,

Dλ̌↑Ap−1 · · ·↑A1 � Dλ̃,

Dλ̌−↑Ap−1 · · ·↑A1� Dλ̃− .

Now λ̌ is a semi-general or a p-general vertex of the quiver of kS(n−1)p according as j > 1 or j = 1,
while λ̌− is a semi-general, p-general or general vertex according as j > 2, j = 2 or j = 1. Hence by
Theorem 4.4 and by induction on n we have

k � Ext1Ap
(Dλ̌,Dλ̌−)

� Ext1Ba1
(Dλ̃,Dλ̃−). �

5 Further general vertices

For kSm-modules M, N, we have

Ext1kSm
(M ⊗ sgn,N ⊗ sgn) � Ext1kSm

(M,N);

hence we can apply the Mullineux map to our general vertices and their neighbours and immediately
find some more vertices of general type. We derive the following. We assume throughout that n > 3; a
modified statement exists in the case n = 2.

Theorem 5.1.
1. Let λ be a partition of B labelled 〈1, a2, . . . , an〉, where 4 6 a2 < · · · < an 6 p and ai+1 − ai > 3

for all i. Then λ is attached in the quiver of B to exactly 2n vertices, labelled as follows:

• 〈1, a2, . . . , ar ± 1, . . . , an〉, where 2 6 r 6 n − 1;
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• 〈2, a2, . . . , an〉;

• 〈1, a2, . . . , an − 1〉;

• 〈1, a2, . . . , an + 1〉, provided an < p;

• 〈1(2), a2, . . . , an〉, if an = p;

• 〈a2, . . . , an−1, a2
n〉.

2. Let λ be a partition of B labelled 〈a2, . . . , an−1, a2
n〉, where 3 6 a2 < · · · < an 6 p and ai+1 − ai > 3

for all i. Then λ is attached in the quiver of B to exactly 2n vertices, labelled as follows:

• 〈a2, . . . , ar ± 1, . . . , an−1, a2
n〉, where 2 6 r 6 n − 1;

• 〈a2, . . . , an−1, (an − 1)2〉;

• 〈a2, . . . , an−1, (an + 1)2〉, provided an < p;

• 〈1, a(2)
2 , a3, . . . , an−1〉 if an = p;

• 〈a2, . . . , an−2, a2
n−1, an〉;

• 〈1, a2, . . . , an〉.

3. Let λ be a partition of B labelled 〈a2, . . . , a j−1, a
(2)
j , a j+1, . . . , an〉, where 3 6 j 6 n − 1, 3 6 a2 <

· · · < an 6 p and ai+1 − ai > 3 for all i. Then λ is attached in the quiver of B to precisely 2n (if
j > 3) or 2n − 1 (if j = 3) vertices, labelled as follows:

• 〈a2, . . . , ar ± 1, . . . , a j−1, a2
j , a j+1, . . . , an〉, where 2 6 r 6 j − 1;

• 〈a2, . . . , a j−1, (a j ± 1)2, a j+1, . . . , an〉;

• 〈a2, . . . , a j−1, a2
j , a j+1, . . . , ar ± 1, . . . , an〉, where j + 1 6 r 6 n;

• 〈a2, . . . , a j−1, a2
j , a j+1, . . . , an − 1〉;

• 〈a2, . . . , a j−1, a2
j , a j+1, . . . , an + 1〉, provided an < p;

• 〈a(2)
2 , a3, . . . , a j−1, a2

j , a j+1, . . . , an−1〉 if an = p;

• 〈a2, . . . , a j−2, a2
j−1, a j, . . . , an〉, provided j > 3;

• 〈a2, . . . , a j, a2
j+1, a j+2, . . . , an〉.

Hence, by applying the Mullineux map, we obtain another ‘wall’ of the quiver, orthogonal to the
first. For n = 4, a cross-section of part of the quiver looks as follows:

�
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�
�

�
�
�

�
�
�

�
�
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@

@
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@
@

@
@
@

@
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@

u
〈2,i, j,k〉

u
〈1,i, j,k〉

u
〈i, j,k2〉

u
〈i, j2 ,k〉

u
〈i2 , j,k〉

;

here each vertex is also attached to the corresponding vertices labelled with i ± 1, j, k or i, j ± 1, k or
i, j, k ± 1.
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A natural question to ask is what the quivers look like where these walls meet; in the case n = 2, we
have

u
〈1,p−1〉

u
〈1,p〉

u
〈1(2)〉

u
〈2,p−1〉

u
〈2,p〉

u
〈2(2)〉

u
〈3,p−1〉

u
〈3,p〉

u
〈3(2)〉

,

where the Mullineux involution corresponds to reflection in the diagonal. But for n = 3, the lattice
structure begins to break down; a cross-section is

@
@
@
@u

〈i,(p−1)2〉
u
〈i,p2〉

u
〈1,i(2)〉

u
〈1,i,p−1〉

u
〈1,i,p〉

u
〈1(2) ,i〉

u
〈2,i,p−1〉

u
〈2,i,p〉

u
〈2(2) ,i〉

u
〈2,i(2)〉

u
〈3,i,p−1〉

u
〈3,i,p〉

u
〈3(2) ,i〉

u
〈3,i(2)〉

,

where each vertex is also attached to the corresponding vertices labelled with i ± 1, and the Mullineux
involution corresponds to reflecting the diagram in the diagonal and changing i to ı̃ + 1.

6 The Specht module corresponding to a general vertex

In this section, we determine the module structure of the Specht module S λ, where λ = 〈a1, . . . , an〉

is a general vertex.

Proposition 6.1. Suppose λ = 〈a1, . . . , an〉 is a general vertex in B. Then

[S λ : Dµ] =

1 (if µ is of the form 〈c1, . . . , cn〉 with each ci equal to ai or ai + 1)

0 (otherwise).

Proof. If [S λ : Dµ] > 0, then we must have µ < λ � µ∗′; recall from Proposition 3.7 that this only
happens when µ has the form 〈c1, . . . , cn〉, where ai 6 ci 6 ai + 2, and if ci = ai + 2 then ci+1 = ci + 1.
Such partitions µ have the property that if µ < ν < µ∗′, then ν is p-regular. Now recall that the projective
cover P(Dµ) has a Specht filtration whose factors are precisely those Specht modules containing Dµ

as a composition factor, with multiplicities. The part of the decomposition matrix corresponding only
to p-regular partitions is invertible, and so if we can find any Specht filtration of P(Dµ) in which the
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factors S ν all have ν p-regular, then those factors will be precisely the Specht modules containing Dµ as
a composition factor, with multiplicities. We proceed to find such a filtration.

Let µ be as above, and suppose first of all that each ci equals ai or ai + 1. We form a sequence of
blocks B = A0, A1, . . . , An by moving a bead from runner ci to runner ci − 1 to obtain Ai from Ai−1. By
Kleshchev’s branching rules, we find that

Dµ↓A1 · · ·↓An

is a simple module Dξ. ξ is a p-core, and so Dξ = S ξ is projective. Hence

P = Dξ↑An−1 · · ·↑B

is also projective; by the Branching Rule we find a Specht filtration for P; each factor is of the form
S 〈e1,...,en〉 where ei equals ci or ci−1, and each such S ν occurs once; in particular, S λ occurs once. We
claim that P = P(Dµ); since all the Specht factors correspond to p-regular partitions, any simple module
occurring in the cosocle of P must have the form Dν with ν as above. But by Kleshchev’s branching
rules,

Dν↓A1 · · ·↓An�

Dξ (ν = µ)

0 (otherwise),

so the claim follows by Frobenius reciprocity. Hence Dµ occurs once as a composition factor of S λ.
Now suppose that for some i we have ci = ai + 2. Form a sequence of blocks B = A0, . . . , An slightly

differently; to obtain Ai from Ai−1, we move a bead from runner ci to runner ci − 2 if either ci−1 = ci − 1
or ci+1 = ci + 1, and from runner ci to runner ci − 1 otherwise. Again we find that

Dµ↓A1 · · ·↓An= Dξ

where ξ is a p-core. Defining
P = Dξ↑An−1 · · ·↑B

as before, we apply the Branching Rule to find a Specht filtration for the projective module P (which
includes P(Dµ) as a summand); the Specht factors again all correspond to p-regular partitions, but none
of them is S λ. Hence [S λ : Dµ] = 0. �

We proceed to find the submodule structure of S λ explicitly. Since the composition factors are
distinct, the submodule lattice is distributive, and we may represent the structure of S λ by means of a
quiver with vertices corresponding to the composition factors, and an arrow from Dµ to Dν if and only
if S λ has a subquotient isomorphic to a non-split extension of Dµ by Dν.

We assume now that ai − ai−1 > 4 for all i; this means that all the composition factors of S λ

correspond to general vertices, which makes the following proof easier. We believe that our results hold
when some of the ai − ai−1 equal 3, but this requires further analysis of the Ext-quiver of B. The full
subquiver of the Ext-quiver of B corresponding to those simple modules which are composition factors
of S λ has the structure of an n-cube: there is an edge from 〈c1, . . . , cn〉 to 〈d1, . . . , dn〉 if and only if
ci , di for exactly one value of i. We find that in fact this n-cube structure holds in S λ, i.e. every possible
extension (or its dual) occurs as a subquotient of S λ.

Proposition 6.2. Suppose that 〈a1, . . . , an〉 is a general vertex in B with ai − ai−1 > 4 for each i. Suppose
also that c1, . . . , ĉl, . . . , cn are such that each ci equals ai or ai+1. Then S λ has a subquotient isomorphic
to the non-split extension of D〈c1,...,cl−1,al,cl+1,...,cn〉 by D〈c1,...,cl−1,al+1,cl+1,...,cn〉.
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Proof. We wish to use Schaper’s formula to provide some information about the structure of S λ. Let
D〈d1,...,dn〉 be a composition factor of S λ; to find the bound for [S λ : D〈d1,...,dn〉] provided by Schaper’s
formula, we need to know which partitions µ have cµ,λ , 0 and [S µ : D〈d1,...,dn〉] > 0; these are precisely
those partitions 〈e1, . . . , en〉 for which ai 6 ei 6 di for each i, with ei = ai + 1 for exactly one value of i.
Such a partition has [S 〈e1,...,en〉 : D〈d1,...,dn〉] = 1 by Proposition 6.1 and c〈e1,...,en〉,λ = 1. Hence the bound
for the multiplicity of D〈d1,...,dn〉 in S λ equals the number of such partitions 〈e1, . . . , en〉, i.e. the number
of i such that di = ai + 1. So S λ has a filtration

S λ = S 0 > . . . > S n = 0

in which S j/S j+1 is the direct sum of those D〈d1,...,dn〉 for which di = ai + 1 for exactly j values of i.
A consequence of this is that S λ does have a subquotient isomorphic to a (possibly split) extension

M of D〈c1,...,ci−1,ai,ci+1,...,cn〉 by D〈c1,...,ci−1,ai+1,ci+1,...,cn〉. To show that M is in fact non-split, we consider
restriction to Snp−n+1.

Form the sequence of blocks B = A0, . . . , An−1 by moving a bead from runner ci to runner ci − 1 to
obtain Ai from Ai−1 if i < l, or from ci+1 to ci+1 − 1 if i > l. By the classical Branching rule, we find that
S λ↓A1 · · ·↓An−1 has just one Specht factor, and is therefore indecomposable. By Kleshchev’s modular
Branching rules, we find that Dµ↓A1 · · ·↓An−1 is zero for all factors Dµ of S λ other than D〈c1,...,cl−1,al,cl+1,...,cn〉

and D〈c1,...,cl−1,al+1,cl+1,...,cn〉, which restrict to simple modules. Thus

M↓A1 · · ·↓An−1� S λ↓A1 · · ·↓An−1 ,

which is a non-split extension of two simple modules. Hence M is non-split. �

We have now determined the structure of the Specht module corresponding to a general vertex λ:
from what we know about the quiver of B, the only extensions of simple modules which can occur as
subquotients of S λ are those occurring in Proposition 6.2 and their duals. But since the composition
factors of S λ occur with multiplicity 1, the extensions in Proposition 6.2 are the only ones occurring in
S λ.

7 The projective cover of a simple module corresponding to a general
vertex

In this section we determine the structure of the projective cover of Dλ, where λ = 〈a1, . . . , an〉 is
a general vertex. Although the module retains the structure of a 2n-cube in some sense, the submodule
lattice is not distributive, and we content ourselves with determining the Loewy series of the projective
cover.

From the proof of Proposition 6.1, we know that P(Dλ) is filtered by the Specht modules S 〈c1,...,cn〉,
where each ci equals ai or ai−1. Moreover, we know that S 〈c1,...,cn〉 lies above S 〈d1,...,dn〉 in P(Dλ) only if
〈c1, . . . , cn〉 < 〈d1, . . . , dn〉, i.e. if ci > di for all i.

By restricting attention to the case where a1 > 3 and ai − ai−1 > 5 for all i, we ensure that all
composition factors of these Specht modules correspond to general vertices. Again, the authors believe
that the same result holds if some ai − ai−1 equals 4. From the previous section we know the module
structure of each Specht factor. In particular, we know that the jth Loewy layer of S 〈c1,...,cn〉 consists of
the modules D〈d1,...,dn〉 where each di equals ci or ci+1 and di = ci+1 for exactly j values of i. Thus each
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composition factor of P(Dλ) has the form D〈d1,...,dn〉, where each di equals ai, ai − 1 or ai + 1; call such a
partition λ-close. If µ is λ-close, denote by s(µ) the number of i for which di = ai − 1, and by t(µ) the
number of i for which di = ai + 1. Dµ then appears 2n−s(µ)−t(µ) times as a composition factor of P(Dλ).

Notice that for λ-close partitions σ and τ, we can only have Ext1B(Dσ,Dτ) , 0 if |s(σ) − s(τ)| 6 1,
|t(σ) − t(τ)| 6 1 and |(s(σ) − t(σ)) − (s(τ) − t(τ))| 6 1.

We determine the Loewy structure of P(Dλ) as follows.

Proposition 7.1. Suppose that λ = 〈a1, . . . , an〉 is a general vertex with a1 > 3 and ai − ai−1 > 5 for
i > 2. For S µ a Specht factor of P(Dλ), the rth Loewy layer of S µ is contained in the (r + s(µ))th Loewy
layer of P(Dλ).

Proof. We proceed by induction on r and on s(µ). If s(µ) = 0, then µ = λ; but S λ is a quotient of P(Dλ),
so the result holds. In particular, for every λ-close partition ν with s(ν) = 0, the (t(ν) + 1)th Loewy layer
of P(Dλ) contains a copy of Dν.

Applying the Mullineux map to λ, we find that λ∗ = 〈ãn, . . . , ã1〉, where ãi = p + 2 − ai. We have
3 6 ãn 6 . . . 6 ã1 < p and ãi − ãi+1 > 5, so the results of this section apply to λ∗ also. Hence for every
λ∗-close partition ξ with s(ξ) = 0, P(Dλ∗) has a copy of Dξ in its (t(ξ) + 1)th Loewy layer. But λ-close
and λ∗-close partitions correspond under the Mullineux map, with s(ξ∗) = t(ξ), t(ξ∗) = s(ξ). Thus for
every λ-close partition ν with t(ν) = 0, there is a copy of Dν in the (s(ν) + 1)th Loewy layer of P(Dλ).
We claim that this is the cosocle of S ν. If not, then suppose it lies in the Specht factor S π of P(Dλ). We
must then have s(π) > s(ν), and the cosocle Dπ of S π must lie in some higher Loewy layer of P(Dλ),
i.e. in at most the s(ν)th Loewy layer. But for two λ-close partitions σ, τ, Dσ can only extend Dτ if
|s(σ) − s(τ)| 6 1; in particular, any factor Dσ of the rth Loewy layer of P(Dλ) must have s(σ) 6 r − 1.
This gives a contradiction, and our claim is proven; this deals with the case r = 1 of the proposition.

Now suppose that r > 1 and s(µ) > 0, and consider a factor Dξ of the rth Loewy layer of S ν.
The (r − 1)th layer of S ν lies in the (r + s(µ) − 1)th layer of P(Dλ), and so Dξ lies in at least the
(r + s(µ))th layer; it can only lie in a lower layer if it extends some module which we already know lies
in the (r + s(µ))th layer or lower, i.e. if there is some λ-close partition π with t(π) = 0, s(π) < s(ν),
and a factor Dσ in at least the (s(ν) − s(π) + r)th layer of S π such that Ext1B(Dξ,Dσ) , 0. But then
s(σ)− t(σ) 6 s(π)− (s(ν)− s(π) + r − 1), while s(ξ)− t(ξ) = s(ν)− r + 1; thus s(σ)− t(σ) and s(ξ)− t(ξ)
differ by at least 2, and so Dσ does not extend Dξ; contradiction. The result follows. �

Corollary 7.2. Let λ be as in Proposition 7.1. Then P(Dλ) has Loewy length 2n + 1 and is stable, i.e. its
Loewy series is the same as its socle series.

Proof. Denote by I(x ∈ X) the indicator function of a finite set X. Now, by examining the Loewy
layers of the Specht factors of P(Dλ) and using Proposition 7.1, we can easily verify the following. The
composition factors of the rth Loewy layer of P(Dλ) correspond to pairs (S ,T ) of subsets of {1, . . . , n}
with |S | + |T | = r − 1. The correspondence is via

(S ,T )↔ D〈b1,...,bn〉,

where
bi = ai − I(i ∈ S ) + I(i ∈ T ).

The composition factor D〈b1,...,bn〉 is contained in the Specht factor S 〈c1,...,cn〉, where ci = ai − I(i ∈ S ).
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Hence, for a λ-close partition µ, the number of copies of Dµ in the rth Loewy layer of P(Dλ) is(
n − s(µ) − t(µ)

r−1−s(µ)−t(µ)
2

)
,

or zero if r − 1 and s(µ) + t(µ) have different parities. In particular, for r > 2n + 1, the rth Loewy layer is
zero, and the multiplicities of Dµ in the rth and 2n + 2 − rth Loewy layers are equal; a correspondence
between the rth and 2n + 2 − rth Loewy layers may be given by sending the pair (S ,T ) to (T , S ). �

References

[1] D. Benson, Representations and cohomology I, Cambridge Studies in Advanced Mathematics 30,
Cambridge University Press, Cambridge, 1998.

[2] J. Brundan & A. Kleshchev, ‘On translation functors for general linear and symmetric groups’,
Proc. London Math. Soc. (3) 80 (2000), 75–106.

[3] B. Ford & A. Kleshchev, ‘A proof of the Mullineux conjecture’, Math. Z. 226 (1997), 267–308.

[4] G. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics 682,
Springer-Verlag, New York/Berlin, 1978.

[5] G. James, ‘Trivial source modules for symmetric groups’, Arch. Math. 41 (294–300), 1983.

[6] A. Kleshchev, ‘Branching rules for modular representations of symmetric groups, II’, J. reine.
Angew. Math. 459 (1995), 163–212.

[7] A. Kleshchev, ‘Branching rules for modular representations of symmetric groups, III: some corol-
laries and a problem of Mullineux’, J. London Math. Soc. (2) 54 (1996), 25–38.

[8] A. Kleshchev, ‘Branching rules for modular representations of symmetric groups, IV’, J. Algebra
201 (1998), 547–72.

[9] S. Martin, ‘On the ordinary quiver of the principal block of certain symmetric groups’, Quart. J.
Math. Oxford Ser. (2) 40 (1989), 209–23.

[10] S. Martin & L. Russell, ‘Defect 3 blocks of symmetric group algebras’, J. Algebra 213 (1999),
304–39.

[11] S. Martin & L. Russell, ‘Ext-quivers of blocks of abelian defect for symmetric group algebras’, J.
Pure Appl. Algebra 142 (1999), 249–60.

[12] G. Mullineux, ‘Bijections on p-regular partitions and p-modular irreducibles of the symmetric
groups’, J. London Math. Soc. (2) 20 (1979), 60–6.

[13] K. Schaper, Charakterformeln für Weyl-moduln und Specht-moduln in Primcharacteristik, Diplo-
marbeit, Universität Bonn, 1981.


