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Abstract

Let B be a block of an Iwahori–Hecke algebra or q-Schur algebra of the symmetric group. The
decomposition matrix for B may be obtained from the decomposition matrix of the corresponding
block B′ in infinite characteristic by post-multiplying by an adjustment matrix; since (by a deep
theorem of Ariki) there is an algorithm for computing the decomposition matrix for B′, the hard part
of the decomposition number problem for B is to find the adjustment matrix. James’s Conjecture
suggests a sufficient condition for this adjustment matrix to be the identity matrix. We extend
James’s Conjecture to give a necessary and sufficient condition, and prove the necessity of our
condition.

1 Introduction

Let F be any field, and q an invertible element of F. Given a non-negative integer n, let Hn =

HF,q(Sn) denote the Iwahori–Hecke algebra of the symmetric groupSn; this is a ‘deformation’ of the
group algebra FSn which arises in various mathematical contexts.

If q is not a root of unity in F, thenHn is semi-simple; if q is a root of unity, then the representation
theory is very similar to the p-modular representation theory ofSn, with the rôle of the prime p being
played by the smallest integer e for which 1 + q + · · · + qe−1 = 0 in F. The most important problem
in the representation theory of Hn is to determine the decomposition numbers, i.e. the composition
multiplicities of the irreducible modules in the Specht modules; in the case q = 1 (whereHn is simply
the group algebra FSn), these are the decomposition numbers in the usual representation-theoretic
sense. This problem remains open in general, but has been solved in some special cases. In particular,
if F has infinite characteristic (we use the convention that the characteristic of F is the order of the
prime subfield of F) then the decomposition numbers can be computed. This result is due to Ariki
[1], verifying a conjecture of Lascoux, Leclerc and Thibon; an explicit algorithm (the ‘LLT algorithm’)
for computing the decomposition matrices is given in [20], and a discussion of Ariki’s proof appears
in the article by Geck [15].
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If F has finite characteristic, then the infinite characteristic result can still be used: if we take
a primitive eth root of unity ζ in C, then the decomposition matrix for Hn may be obtained from
the decomposition matrix for HC,ζ(Sn) by post-multiplying by a certain square matrix with non-
negative integer entries called the adjustment matrix forHn. So in effect the problem of calculating the
decomposition matrix ofHn is equivalent to calculating its adjustment matrix.

The same situation applies to the representation theory of the q-Schur algebra. This is a deforma-
tion of the Schur algebra, a certain finite-dimensional algebra which encodes the theory of polynomial
representations of the general linear group. Again, there is an algorithm for computing the decompo-
sition numbers of the q-Schur algebra if the underlying field has infinite characteristic; this algorithm
was given by Leclerc and Thibon [22], and the proof that it works is due to Varagnolo and Vasserot
[26]. And as with the Iwahori–Hecke algebras, one may obtain the decomposition matrix for a q-
Schur algebra in finite characteristic by using an adjustment matrix. In fact, the adjustment matrix
for the Iwahori–Hecke algebra occurs as a submatrix of that for the q-Schur algebra, so computing
the adjustment matrices for q-Schur algebras is sufficient to compute those for the Iwahori–Hecke
algebras.

One can simplify the calculation of adjustment matrices by considering individual blocks of these
algebras. However, there are very few blocks for which the adjustment matrices have been calculated.
The most general statement we have about adjustment matrices is James’s Conjecture. This remains
unproved, but suggests that in certain cases (specifically, if the weight w of a block is strictly less
than the underlying characteristic p) then the adjustment matrix for that block should be the identity
matrix. For Iwahori–Hecke algebras, this conjecture has been verified for blocks of weight at most
four, thanks to the work of Richards [24] and the author [10, 11].

In this paper, we extend James’s Conjecture by asking whether the condition w < p is necessary
for a block to have adjustment matrix equal to the identity matrix. We shall see that for the q-Schur
algebras this is the case, while for Iwahori–Hecke algebras it is not. We conjecture a necessary and
sufficient condition for a block to have non-trivial adjustment matrix, and prove that the condition is
necessary.

In the next section, we outline the background material we shall need. In Section 3, we give
our conjecture. In Sections 4 and 5 we prove our conjecture in one direction for the Iwahori–Hecke
algebra, and in Section 6 we do the same for the q-Schur algebra. Finally in Section 7 we discuss a
conjectured (but refuted) algorithm of Rouquier for computing decomposition matrices, and show
that our results give more counterexamples.

2 Background

2.1 Iwahori–Hecke algebras and q-Schur algebras

An essential reference for the representation theory of the Iwahori–Hecke algebra and the q-Schur
algebra is Mathas’s book [23]; we summarise the results we need from this, together with some more
recent work.

From now on we fix a field F, and a root of unity q in F. We let e be the smallest positive integer
such that 1 + q + · · · + qe−1 = 0 in F; thus, e is the characteristic of F if q = 1, and otherwise e is the
multiplicative order of q inF. We letHn denote the Iwahori–Hecke algebraHF,q(Sn) of the symmetric
group over Fwith parameter q, and Sn the q-Schur algebra SF,q(n,n); these are defined in [23]. When
q = 1, these algebras are simply the group algebra FSn and the classical Schur algebra over F.

As usual, a partition of n is a non-increasing sequence λ = (λ1, λ2, . . . ) of non-negative integers
whose sum is n; we write the unique partition of 0 as∅. For each partition λ of n, one defines a Specht
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module Sλ forHn and a Weyl module Wλ for Sn. Note that in this paper, we use the Specht and Weyl
modules defined by Dipper and James [6, 7], rather than those in [23]; following [19], we re-label the
Weyl modules using conjugate partitions, so that Wλ is the module usually denoted Wλ′ or ∆(λ′). If
λ is e-regular (that is, if it does not have e equal positive parts), then Sλ has an irreducible cosocle Dλ;
the modules Dλ are non-isomorphic and give a complete set of irreducible Hn-modules as λ ranges
over the set of e-regular partitions of n. Every Weyl module Wλ has an irreducible cosocle Lλ; the
modules Lλ are non-isomorphic and give a complete set of irreducible Sn-modules as λ ranges over
the set of partitions of n.

The central problem in this area is to compute the decomposition numbers forHn and Sn, i.e. the
composition multiplicities [Sλ : Dµ] and [Wλ : Lµ]. The following result, in which Q denotes the usual
dominance order on partitions, comes from the fact thatHn and Sn are cellular algebras, as defined by
Graham and Lehrer [16].

Theorem 2.1. Suppose λ and µ are partitions of n.

1. If µ is e-regular, then [Sµ : Dµ] = 1, while [Sλ : Dµ] = 0 unless µ Q λ.

2. [Wµ : Lµ] = 1, while [Wλ : Lµ] = 0 unless µ Q λ.

In fact, the two decomposition number problems are intimately related via the following theorem,
which is proved using the Schur functor [23, pp. 63–5].

Theorem 2.2. Suppose λ and µ are partitions of n with µ e-regular. Then

[Sλ : Dµ] = [Wλ : Lµ].

2.2 Blocks and the abacus

The decomposition number problem is made easier by considering blocks ofHn andSn individu-
ally. Each Specht module lies in a single block ofHn, and we abuse notation by saying that a partition
λ lies in a block to mean that Sλ lies in that block. Conversely, each block contains at least one Specht
module, so in order to describe the blocks of Hn, it suffices to give a combinatorial criterion saying
when two partitions lie in the same block. The same statement is true for Weyl modules and blocks
of Sn, and in fact the criterion on partitions is the same.

This combinatorial criterion is most conveniently described using the abacus. Given a partition λ
of n, let r be a large integer and define the beta-numbers

βi = λi + r − i

for i = 1, . . . , r. Now take an abacus with e vertical runners, and mark positions 0, 1, . . . reading from
left to right along successive rows. Place a bead at position βi for each i. The resulting configuration
is called an abacus display for λ.

By sliding all the beads up their runners as far as they will go, we obtain the abacus display of a
new partition, which is called the (e-)core of λ. This is a partition of n − ew, where w is the (e-)weight
of λ, i.e. the total distance moved by all the beads.

Theorem 2.3. Suppose λ and µ are partitions of n. Then λ and µ lie in the same block ofHn (or equivalently
of Sn) if and only if they have the same e-core.

Clearly any two partitions of n with the same core will have the the same weight, and so we may
speak of the weight and core of a block ofHn or Sn. The weight of a block plays a vital rôle in James’s
Conjecture, as we shall see below.
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Later, we shall need to consider whether two partitions lying in a block B have the same em-core
as well as the same e-core, for a particular integer m. From the above discussion, λ and µ have the
same em-core if and only if we can get from the set of beta-numbers for λ to the set of beta-numbers
for µ by increasing and decreasing individual beta-numbers by integer multiples of em. On an abacus
with e runners, this corresponds to moving beads up and down their runners through (multiples of)
m positions. For example, from the abacus displays for the partitions λ, µ, ν below, we see that all
three have the same 2-core, and that λ and µ have the same 4-core, while ν has a different 4-core:

u uuuu
u uu uu

u uuu u
λ = (22, 1) µ = (3, 2) ν = (3, 12)

.

2.3 Adjustment matrices and James’s Conjecture

In this section, we consider the case where the characteristic of F is finite. Given positive integers
n and f , letH f

n be the Iwahori–Hecke algebraHG,ζ(Sn) with G a field of infinite characteristic and ζ
a primitive f th root of unity in G. Given partitions λ and µ of n with µ f -regular, define d f

λµ
to be the

decomposition number [Sλ : Dµ] for H f
n . This number may be computed using the LLT algorithm,

and in particular does not depend on the choice of G or ζ. Let D( f ) denote the decomposition matrix
of H f

n , with rows indexed by partitions of n and columns indexed by f -regular partitions of n, and
with the (λ, µ)-entry being d f

λµ
.

Theorem 2.4. Let D be the decomposition matrix of Hn, with rows indexed by partitions of n and columns
indexed by e-regular partitions of n. Then there is a square matrix A with rows and columns indexed by
e-regular partitions of n and with non-negative integer entries, such that D = D(e)A.

This result was first proved by Geck [14], and arises from a consideration of decomposition maps;
an excellent introduction to this area can be found in Geck’s article [15]. The matrix A is simply
the decomposition matrix corresponding to a decomposition map from R0(H e

n) to R0(Hn) (where we
use R0(H) to denote the Grothendieck group of any algebra H), and is referred to as the adjustment
matrix ofHn. Theorem 2.4 arises from the fact [15, Proposition 2.6] that the decomposition map from
the Grothendieck group of a semi-simple Iwahori–Hecke algebra to R0(Hn) factors via R0(H e

n), given
suitable choices of F and G.

It follows from Theorem 2.1 that the (µ, µ)-entry of A is 1 for any µ, while the (µ, ν)-entry is 0 unless
ν Q µ. Thus, if the order of the rows and columns is chosen appropriately, A is a lower unitriangular
matrix. Theorem 2.3 implies that Hn and H e

n have the same block structure, and this implies that
that the (µ, ν)-entry of A is zero unless µ and ν lie in the same block ofHn. So by restricting attention
only to e-regular partitions lying in a given block B, one may define the adjustment matrix AB for B.
One then gets DB = D(e)

B AB, where DB is the decomposition matrix for B and D(e)
B is the decomposition

matrix for the block ofH e
n having the same core as B.

The situation for q-Schur algebras is much the same. With G and ζ as above, we define S f
n to be

the ζ-Schur algebra over G. For partitions λ and µ of n, we let d f
λµ

equal the decomposition number

[Wλ : Lµ] for S f
n; note that according to our convention for labelling Weyl modules, the definition of

d f
λµ

agrees with that above when µ is e-regular. Let D( f ) denote the matrix with rows and columns

indexed by partitions of n, with entries d f
λµ

, and let D be the decomposition matrix of Sn. Then there
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is a square matrix A with non-negative integer entries such that D = D( f )A. Again, one may define the
adjustment matrix for a particular block of Sn.

Now we can state James’s Conjecture.

Conjecture 2.5. Suppose B is a block ofHn or of Sn of weight w < char(F). Then the adjustment matrix for
B is the identity matrix.

Theorem 2.2 implies that the adjustment matrix for a block of Hn occurs as a submatrix of the
adjustment matrix for the corresponding block of Sn (i.e. the block with the same core), so James’s
Conjecture for q-Schur algebras implies the same for Iwahori–Hecke algebras.

The question we wish to address in this paper is whether the condition w < char(F) is necessary for
the adjustment matrix of a block of weight w to be the identity. For the q-Schur algebras, we shall see
that this is indeed the case. But for the Iwahori–Hecke algebras, it is not, as the first possible example
– the unique 2-block of the symmetric group S4 – shows. We shall give a conjectured necessary
and sufficient criterion for the adjustment matrix of a block to be the identity matrix, and prove the
necessity of our criterion. Of course, proving the sufficiency entails proving James’s Conjecture, and
we do not address this here.

In order to prove our results, we need to introduce additional ‘adjustment matrices’. Using the
set-up in [15, §3], one can obtain the following generalisation of Theorem 2.4.

Theorem 2.6. Suppose p = char(F) is finite, let i be any non-negative integer, and let f = epi. Let D be the
decomposition matrix ofHn. Then there is a matrix A with non-negative integer entries, with rows indexed by
f -regular partitions of n and columns indexed by e-regular partitions of n, such that D = D( f )A.

We refer to the matrix A in this theorem as the (epi)-adjustment matrix ofHn. Since two partitions
having the same epi-core necessarily have the same e-core, we find that the (µ, ν)-entry of A must be
zero unless µ and ν have the same e-core. Accordingly, we can define the (epi)-adjustment matrix for
a block B, taking the columns indexed by the e-regular partitions in B, and the rows indexed by the
epi-regular partitions in B.

Using Theorem 2.6, we shall be able to prove that certain blocks have non-trivial adjustment

matrices by calculating only decomposition numbers in infinite characteristic, i.e. the numbers depi

λµ

for various values of i. The following will be a useful result in proving that an adjustment matrix is
not the identity matrix.

Lemma 2.7. Suppose B is a block ofHn or Sn.

1. Suppose λ and µ are partitions in B, with µ being e-regular if B is a block ofHn. If depi

λµ
> de

λµ for some
i, then the (ξ, µ)-entry of the adjustment matrix for B is non-zero, for some µ B ξ Q λ.

2. Suppose that λ, µ, ν are distinct partitions in B, and that if B is a block ofHn then µ is e-regular. Suppose
also that λ and ν have the same ep-core, and that there is no partition ξ with this ep-core such that
µ Q ξ B ν. Suppose that de

νµ > 0, while dep
λν
> de

λµ. Then the adjustment matrix for B is not the identity
matrix.

Proof. For this proof, write dλµ to mean either [Sλ : Dµ] or [Wλ : Lµ] as appropriate, and similarly for
dνµ.

1. Theorem 2.6 implies that dλµ > depi

λµ
, so that dλµ > de

λµ. So there must be some partition ξ , µ
such that de

λξ > 0 and the (ξ, µ)-entry of the adjustment matrix is non-zero. These conditions
imply µ B ξ Q λ, by Theorem 2.1.
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2. The conditions given imply that the ep-core of µ is different from the ep-core of ν, and hence
dep
νµ = 0. On the other hand, dνµ > de

νµ > 0, so there must be some ξ such that dep
νξ
> 0 and

the (ξ, µ)-entry of the (ep)-adjustment matrix for B is non-zero. These conditions imply that
µ Q ξ Q νwith ξ having the same ep-core as ν, and the hypotheses of the lemma then give ξ = ν.
So the (ν, µ)-entry of the ep-adjustment matrix for B is positive, which implies that dλµ > dep

λν
.

This gives dλµ > de
λµ, so that the adjustment matrix is non-trivial.

�

2.4 e-quotients, Scopes pairs, pyramids and Rouquier blocks

In this section we summarise some of the combinatorial notions commonly used in the represen-
tation theory of Iwahori–Hecke algebras and q-Schur algebras, which we need in order to state our
extension of James’s Conjecture. We give brief definitions in order to save space; examples can be
seen in subsequent sections.

Theorem 2.3 tells us that if we have abacus displays for two partitions λ and µ of n using the
same number of beads, then λ and µ lie in the same block (of Hn or Sn) if and only if they have the
same numbers of beads on corresponding runners. So we may define the abacus for a block B by
simply specifying the number of beads on each runner without specifying their positions, and we
may specify a block by its abacus and its weight. We also use a new notation for partitions, based
on the abacus. First we number the runners of the abacus according to the number of beads on each
runner: we impose a total order ≺ on the the runners by saying that s ≺ t for two runners s and t if
either t lies to the left of s and has strictly more beads than s, or t lies to the right of s and has at least
as many beads as s; now we number the runners 0, 1, . . . , e − 1 so that 0 ≺ 1 ≺ · · · ≺ e − 1. Given a
partition λ in B, we define the e-quotient of λ to be the e-tuple of partitions (λ[0], . . . , λ[e − 1]), where
λ[i] is the partition obtained by viewing runner i on its own as if it were an abacus with only one
runner. In other words, λ[i] j equals the number of empty spaces on runner i above the jth lowest
bead on that runner. If the numbers of beads on the runners reading from left to right are b0, . . . , be−1,
then we may write λ as

〈0λ[0], . . . , e−1λ[e−1] | b0, . . . , be−1〉;

we omit iλ[i] if λ[i] = ∅, and we may omit b0, . . . , be−1 if these are understood.
Now we discuss Scopes pairs briefly. Suppose that we have an abacus display for a block B of

Hn of weight w, and that some runner k has exactly κ more beads than the runner immediately to
the right, where κ > 0. Then there is a block C of Hn+κ of weight w with an abacus obtained from
the given abacus for B by interchanging runner k and the runner immediately to the right. We say
that B and C form a [w : κ]-pair. Blocks forming such ‘Scopes pairs’ have very similar representation
theories; in fact, if w 6 κ then two such blocks are Morita equivalent. What is important for us is
the relationship between the adjustment matrices of two blocks forming a [w : κ]-pair. Hn+κ is a free
Hn-module, and accordingly there are well-behaved induction and restriction functors ↑Hn+κ and↓Hn

between the module categories of these two algebras. If B and C are blocks ofHn andHn+κ as above,
then we define ↑C to be the composition of ↑Hn+κ with projection onto C, and we define ↓B similarly.
Now suppose λ is an e-regular partition in B. We define the signature of λ to be the sequence of signs
obtained by examining runners j and k from bottom to top, writing a + every time there is a bead
on runner k with no bead immediately to the right, and a − every time there is a bead on runner
j with no bead immediately to the left. We define the reduced signature by successively deleting all
adjacent pairs +−, and we say that λ is non-exceptional if there are no − signs in the reduced signature.
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In this case, there will be exactly κ + signs, and we define the partition λ+ by moving the beads
corresponding to these + signs each one place to the right.

Proposition 2.8.
1. If λ is non-exceptional, then λ+ is an e-regular partition lying in C, and we have

Dλ
↑

C� (Dλ+
)⊕κ!, Dλ+

↓B� (Dλ)⊕κ!.

2. If λ and µ are two non-exceptional e-regular partitions in B, then the (λ, µ)-entry of the adjustment
matrix for B equals the (λ+, µ+)-entry of the adjustment matrix for C.

Proof.
1. This is an instance of the ‘modular branching rules’, which are surveyed in [2].

2. This is proved in [10, Lemma 4.3(2)]; although the result is stated there for blocks of weight 3,
the proof works generally.

�

Next we define the pyramid of a block B: take an abacus for B, number the runners as above, and
for any 0 6 i < j 6 e − 1, define the integer

iB j =


the number of beads on runner j minus the number of beads on runner i

(if runner j lies to the right of runner i)
the number of beads on runner j minus the number of beads on runner i minus 1

(if runner j lies to the left of runner i).

The collection
(

iB j

)
is called the pyramid for B. This was defined by Richards in [24] in a slightly

different way: he defined integers ia j which are related to ours by ia j = max{w − 1 − iB j, 0}, where w
is the weight of B.

We say that a block B of weight w is Rouquier if we have iB j > w − 1 for every i, j. The favourable
properties of Rouquier blocks have been discussed at length elsewhere (see [4] for a great deal of
information about Rouquier blocks of the symmetric groups); we shall need to use them briefly later
on. For now, we note that we can get from any block to a Rouquier block via a sequence of Scopes
pairs.

Lemma 2.9. [8, Lemma 3.1] Suppose B is a block of Hn of weight w. Then there is a sequence of integers
n = n0, . . . ,nt and sequence of blocks B = B0, . . . ,Bt such that:

• Bi is a block ofHni , for i = 0, . . . , t;

• Bi−1 and Bi form a [w : ni − ni−1]-pair, for i = 1, . . . , t;

• Bt is a Rouquier block.

2.5 Other theorems concerning decomposition numbers

We shall need to use some other theorems concerning decomposition numbers for Iwahori–Hecke
algebras and q-Schur algebras.

The Jantzen–Schaper formula (or rather its q-analogue, proved by James and Mathas [18, Theorem
4.3]) gives bounds for the decomposition number [Sλ : Dµ], provided that the decomposition numbers
[Sν : Dµ] are known for partitions ν B λ. We shall use only the following very special case.



8 Matthew Fayers

Proposition 2.10. Suppose λ and µ are partitions of n with the same e-core and with µ B λ, and suppose that
there is no other partition ξ of n with this e-core such that µ B ξ B λ. Given abacus displays for λ and µ,
suppose that there is exactly one way to get from the abacus for λ to the abacus for µ by moving one bead up its
runner and another bead down its runner. Then [Wλ : Lµ] > 0.

Another way to phrase the condition on the abacus displays in this proposition is to say that there
are exactly two beta-numbers for λ which are not beta-numbers for µ, and these two numbers are
incongruent modulo e. This interpretation will be helpful later when we use the proposition with e
replaced by ep.

A corollary of the Jantzen–Schaper formula is the Carter Criterion [23, Proposition 5.40], which
gives the classification of irreducible Specht modules labelled by e-regular partitions. In the case
where the underlying field has infinite characteristic, this has a particularly simple statement. We
use the following version, in terms of the abacus and the e-quotient of a partition; this statement is a
special case of [8, Proposition 2.1].

Theorem 2.11. Suppose F has infinite characteristic, and λ is a partition lying in a block B of Hn. Suppose
that λ[0] = · · · = λ[e − 2] = ∅ and λ[e − 1] has at most e−2Be−1 + 1 non-zero parts. Then λ is e-regular and
the Specht module Sλ is irreducible, i.e. Sλ � Dλ.

We also need the decomposition numbers for two-part partitions and two-column partitions, i.e.
the decomposition numbers [Wλ : Lµ], where λ and µ are partitions both of of the form (n − a, a)
or both of the form (2a, 1n−2a). For two-part partitions these were computed by James [17, Theorem
20.6], while for two-column partitions they follow from the paper by Thams [25]. Such decomposition
numbers are all either 0 or 1; we shall need only the case where e = 2 and the underlying characteristic
is infinite.

Theorem 2.12. Suppose λ = (n − a, a) and µ = (n − b, b). Then

d2
λµ = d2

µ′λ′ =


1 (a = b)

1 (a = b + 1 and n is even)

0 (otherwise).

Finally, we need the runner removal theorems which relate the decomposition numbers of Iwahori–
Hecke algebras and q-Schur algebras over fields of infinite characteristic at different roots of unity.
There are two versions.

Theorem 2.13. [19, Theorem 2.2] Suppose e > 3, and λ and µ are partitions of n with the same e-core. Take
abacus displays for λ and µ, and suppose that there is a runner i such that in both abacus displays the last bead
on runner i occurs before the first empty space on any runner. Delete runner i from each display, and let λ−

and µ− be the partitions defined by the resulting abacus displays. Then

de
λµ = de−1

λ−µ− .

Theorem 2.14. [12, Theorem 4.1] Suppose e > 3, and λ and µ are partitions of n with the same e-core. Take
abacus displays for λ and µ, and suppose that there is a runner i such that in both abacus displays the first
empty space on runner i occurs after the last bead on any runner. Delete runner i from each display, and let λ−

and µ− be the partitions defined by the resulting abacus displays. Then

de
λµ = de−1

λ−µ− .
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Example. Suppose e = 4, and

λ = (33, 1) =

u u u uu u uu uu , µ = (5, 3, 12) =

u u u uu u uu uu .

Then we have d4
λµ = d3

λ−µ−
, where we can take either

λ− = (23, 1) =

u u uu uu uu , µ− = (3, 2, 12) =

u u uu uu uu
using Theorem 2.13, or

λ− = (32) =

u u uu u uu , µ− = (5, 1) =

u u uu uu u
using Theorem 2.14.

3 An extension of James’s Conjecture

Now we can state our extension of James’s Conjecture. We assume from now on that the characteristic
of F is a prime p.

Conjecture 3.1.
1. Suppose B is a block of the Iwahori–Hecke algebraHn of weight w. Then the adjustment matrix for B is

the identity matrix if and only if either w = p and i−1Bi = 0 for all 1 6 i 6 e − 1, or w < p.

2. Suppose B is a block of the q-Schur algebra Sn of weight w. Then the adjustment matrix for B is equal to
the identity matrix if and only if w < p.

In the remainder of the paper, we prove the ‘only if’ parts of this conjecture. For (1), this is done in
Propositions 4.1 and 5.1, and for (2) in Proposition 6.1. The ‘if’ part of (2) is simply James’s Conjecture,
but the ‘if’ part of (1) is a somewhat stronger statement. This statement may be verified for blocks
of weight at most 4 using the fact [24, 10, 11] that James’s Conjecture holds for these small weights,
together with the explicit adjustment matrices for blocks of weight 2 and 3 in [9] and [13]. We hope
the reader will find this evidence persuasive.

4 Iwahori–Hecke algebras in the case w > p

In this section, we prove the following result.

Proposition 4.1. Suppose B is a block of Hn of weight w > p. Then the adjustment matrix for B is not the
identity matrix.

Proof. We consider separately the cases where e−2Be−1 = 0 and e−2Be−1 > 0.
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For the case where e−2Be−1 = 0, we define three partitions λ, µ, ν in B. If w + p is odd, then we set
s =

w−p−1
2 and t =

w+p+1
2 , and define

λ = 〈e−2(s+1), e−1(t−1)〉, µ = 〈e−2(s), e−1(t)〉, ν = 〈e−2(t), e−1(s)〉;

if w + p is even, then we set s =
w−p

2 , t =
w+p

2 and define

λ = 〈e−2(t), e−1(s)〉, µ = 〈e−2(t+1), e−1(s−1)〉, ν = 〈e−2(s), e−1(t)〉.

In either case, λ and ν both have the same ep-core, and ν is the most dominant partition with this
ep-core which is dominated by µ. So if we can show that de

νµ > 0 and de
λµ < dep

λν
, the adjustment matrix

for B will be non-trivial, by Lemma 2.7(2).
We can easily check these statements. By Proposition 2.10 we get dep

λν
> 0, and by applying

Theorem 2.13 e − 2 times and using Theorem 2.12, we get de
νµ = 1, de

λµ = 0, which proves the result.
Now we turn to the case where e−2Be−1 > 0. First we need to deal separately with the case where

w = 3 (and p = 2); here we can read from the explicit adjustment matrices for weight three blocks in
[13] that the (λ, µ)-entry of the adjustment matrix is 1 when

λ =

〈e−1(13)〉 ( e−2Be−1 > 2)

〈e−2(3)〉 ( e−2Be−1 = 1),
µ = 〈e−1(3)〉.

So we assume that w > 3. We set p′ = p if p is odd, or p′ = 4 if p = 2. We shall define partitions λ and
µ in B with µ e-regular, such that de

λµ = 0 while dep′

λµ
> 0; we can then appeal to Lemma 2.7(1).

If w . −1 (mod p′), then we set

λ =

〈e−1(w−p′,p′)〉 (w > 2p′)
〈e−1(p′−1,w−p′+1)〉 (w 6 2p′ − 2),

µ = 〈e−1(w)〉.

If w ≡ −1 (mod p′), then we set

λ =

〈e−1(w−p′−1,p′+1)〉 (w > 3p′ − 1)

〈e−1(p′,p′−1)〉 (w = 2p′ − 1),
µ = 〈e−1(w−1,1)〉.

It is easy to see that λ and µ have the same ep′-core, and that there is no ξ with this ep′-core for
which µ B ξ B λ. Hence we can use Proposition 2.10 to get dep′

λµ
> 0; note that the conditions of

that proposition really are satisfied – the two beta-numbers of λ which are not beta-numbers of µ are
incongruent modulo ep′ (though they are congruent modulo e). On the other hand, Theorem 2.11
implies that de

λξ = δλξ for any ξ; in particular, de
λµ = 0, and so by Lemma 2.7(1) the theorem is proved. �

Examples. We provide examples to help the reader unravel the notation in the above proof.

1. First suppose that B is the 3-block of the symmetric group S28 with core (2, 12). Thus we have
e = p = 3 and w = 8. B has an abacus in which the numbers of beads on the runners are 8, 10, 9
from left to right, and therefore the pyramid for B satisfies 0B1 = 1, 1B2 = 0, 0B2 = 2. We define

λ =

0 2 1ppp ppp pppu u uu
u

u
= (17, 10, 1), µ =

0 2 1ppp ppp pppu u uu u
u

= (20, 7, 1), ν =

0 2 1ppp ppp pppu u uu
u

u
= (18, 9, 1).
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λ and ν both have 9-core (8, 12), while µ has 9-core (6, 3, 1). It is easy to check that d9
λν
> 1, using

Proposition 2.10. To calculate d3
λµ

and d3
νµ, we remove runner 0 from each abacus display to

leave the partitions
λ− = (10, 6), µ− = (12, 4), ν− = (11, 5).

We have d3
λµ

= d2
λ−µ− = 0 and d3

νµ = d2
ν−µ− = 1, from Theorems 2.12 and 2.13.

2. Now suppose e = 5 and p = 2, and that B is the block ofH44 with core (5, 14). B has an abacus
in which the numbers of beads on the runners are 7, 8, 8, 8, 9 from left to right, and we find that
3B4 = 1. We set

λ =

0 1 2 3 4ppp ppp ppp ppp pppu u u u uu u u
uu

= (25, 16, 13), µ =

0 1 2 3 4ppp ppp ppp ppp pppu u u u uu u u u
u

= (35, 6, 13).

Then d5
λµ

= 0, because by Theorem 2.11 λ labels an irreducible Specht module in infinite

characteristic, while d20
λµ
> 0 by the Jantzen–Schaper formula.

5 Iwahori–Hecke algebras in the case w = p

The case w = p is delicate, since some blocks of weight p have non-trivial adjustment matrices,
but some do not. Our main result is the following.

Proposition 5.1. Suppose B is a block ofHn of weight p, and that for some 1 6 i 6 e − 1 we have i−1Bi > 0.
Then the adjustment matrix of B is not the identity matrix.

In order to prove this, we explicitly construct two partitions which we claim give a non-zero
off-diagonal entry in the adjustment matrix. We then prove this claim by inducing the corresponding
simple modules up to a Rouquier block.

In order to define our partitions, we introduce an operation on abacus displays. Take an abacus
display for a partition µ, and for each j ∈ {0, . . . , e − 1} let p j be the position of the lowest bead on
runner j. Now given i ∈ {0, . . . , e−1}, let p̂ = min{pi, pi+1, . . . , pe−1}. Define the partition si(µ) by moving
the bead at position p̂ down one space.

Now suppose B is a weight p block ofHn, and that i−1Bi > 0 for some i; take an abacus for B, and
suppose that the numbers of beads on the runners are b0, . . . , be−1 from left to right. Let

µ̃ = 〈 | b0, . . . , be−1〉,

i.e. the core of B, and let
λ̃ = 〈i(12) | b0, . . . , be−1〉,

a partition of weight 2 with the same core as B. Now set

µi
B = sp

i (µ̃),

λi
B = sp−2

i (λ̃).

Since the function si obviously preserves the core of a partition and increases its weight by 1, both λi
B

and µi
B lie in B.
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Example. Suppose e = 6 and p = 7, and let B be the block with core (19, 14, 92, 52, 4, 24). This has an
abacus display with (b0, . . . , b5) = (8, 10, 9, 11, 13, 7):

1 3 2 4 5 0ppp ppp ppp ppp ppp pppu u u u u uu u u u uu u u uu u uu uuu
.

Taking i = 2, we get the following abacus displays for µi
B and λi

B:

1 3 2 4 5 0ppp ppp ppp ppp ppp pppu u u u u uu u u u uu u uu uuu u uu u
,

1 3 2 4 5 0ppp ppp ppp ppp ppp pppu u u u u uu u u uu u u uu uuu u u uu
.

So we have

µi
B = 〈2(3), 3(3), 4(1) | 8, 10, 9, 11, 13, 7〉 = (19, 17, 153, 12, 72, 32, 2),

λi
B = 〈2(3,1), 3(2), 4(1) | 8, 10, 9, 11, 13, 7〉 = (19, 144, 12, 72, 34, 12).

Proposition 5.1 will follow immediately from the next result.

Proposition 5.2. Suppose B is as above. Then λi
B , µ

i
B, and the (λi

B, µ
i
B)-entry of the adjustment matrix for B

is 1.

In order to prove this, we use downwards induction via Scopes pairs, as follows.

Lemma 5.3. Suppose B and C are weight p blocks forming a [p : κ]-pair, and that there exists 1 6 i 6 e−1 such
that i−1Bi > 0. Then the partitions λi

B, µi
B, λi

C and µi
C are all e-regular, and λi

B and µi
B are non-exceptional for

the pair (B,C), with

Dλi
B ↑

C � (Dλi
C)⊕κ!, Dλi

C↓B � (Dλi
B)⊕κ!,

Dµi
B ↑

C � (Dµi
C)⊕κ!, Dµi

C↓B � (Dµi
B)⊕κ!.

Hence the (λi
B, µ

i
B)-entry of the adjustment matrix for B equals the (λi

C, µ
i
C)-entry of the adjustment matrix for

C.

Example. Continuing the last example, let C be the weight 7 block with core (19, 14, 92, 53, 24). This
has an abacus with (b0, . . . , b5) = (8, 9, 10, 11, 13, 7), and B and C form a [7 : 1]-pair. We have

µ2
C =

1 2 3 4 5 0ppp ppp ppp ppp ppp pppu u u u u uu u u u uu u uu uuu u uu u
, λ2

C =

1 2 3 4 5 0ppp ppp ppp ppp ppp pppu u u u u uu u u uu u u uu uuu u u uu
,

and we may verify Lemma 5.3 using Proposition 2.8 and the discussion preceding it.
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Proof of Lemma 5.3. Suppose that an abacus for C is obtained from an abacus for B by swapping
runners j and k, where j < k (so runner k lies immediately to the left of runner j in the abacus for B).

First we consider the partition ξ = µi
B. The abacus display for this partition has the following

properties:

1. if l < i, then ξ[l] = ∅;

2. if l > i, then ξ[l] has at most one non-zero part;

3. if l < m and ξ[m] = ∅, then the first empty space on runner m occurs after the lowest bead on
runner l;

4. if both ξ[l] and ξ[m] are non-empty, then the positions of the lowest beads on runners l and m
differ by less than e;

5. ξ has weight p.

Moreover, these properties determine ξ uniquely. This may easily be proved inductively: one can
show that for any j, properties 1–4 uniquely specify a partition of weight j (namely, s j

i (µ̃)).
Given properties 1 and 2, we can show that ξ is e-regular. For if it is not, then there is sequence of

e consecutive positions on the abacus all occupied by beads, with at least one empty space occurring
before these beads. One of these positions must lie on runner 0, but properties 1 and 2 together with
the fact that i > 0 imply that the last bead on runner 0 occurs before the first empty space on any
runner; contradiction.

Now we use properties 1–4 to find all the possible configurations of runners j and k in the abacus
for ξ, and work out the signature. In each case, the signature of ξ consists either of just κ + signs, or
of +− followed by κ + signs. Either way, ξ is non-exceptional, so there is a partition ξ+ in C such that

Dξ
↑

C� (Dξ+
)⊕κ!, Dξ+

↓B� (Dξ)⊕κ!.

Moreover, it will be apparent from a comparison of the abacus displays for ξ and ξ+ that properties 1–5
hold for ξ+ too, so (by the above statement that properties that these properties uniquely determine
a partition) we must have ξ+ = µi

C.
There are five possibilities for the configuration of runners j and k, as follows:

ξ[k] = ∅
ξ[ j] = ∅

ξ ξ+

k jppp pppu uu uuu pppuu

j kppp pppu uu uuuppp uu
ξ[k] = (l)
ξ[ j] = ∅

ξ ξ+

k jppp pppu uu uuu pppuu
ppp

u

j kppp pppu uu uuuppp uu
ppp
u

ξ[k] = ∅
ξ[ j] = (l)
(l 6 jBk)

ξ ξ+

k jppp pppu uu uuu pppuuu uuu pppuu

j kppp pppu uu uuuppp uuu uuuppp uu
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ξ[k] = (l)
ξ[ j] = (l + jBk)

ξ ξ+

k jppp pppu uu uuu pppuu
ppp

u u

j kppp pppu uu uuuppp uu
ppp

u u

ξ[k] = (l)
ξ[ j] = (l + jBk − 1)

ξ ξ+

k jppp pppu uu uuu pppuu
ppp
uu

j kppp pppu uu uuuppp uu
ppp
uu

.

The result follows for µi
B. For the partition ξ = λi

B, we follow the same line of proof, with slightly
different details; here property 2 must be replaced with

2. if l > i, then ξ[l] has at most one non-zero part, while if l = i then ξ[l] has the form (r, 1) for some
r.

The e-regularity of λi
B follows in the same way as the e-regularity of µi

B; the fact that 0Bi > 0 ensures
the condition that the last bead on runner 0 occurs before the first empty space on any runner. For
the induction to C, there are four additional possibilities for the abacus display, which arise if j or k
equals i:

k = i
ξ[k] = (l, 1)
ξ[ j] = ∅

ξ ξ+

k jppp pppu uu uuu pppuuu
ppp

u

j kppp pppu uu uuuppp uuu
ppp
u

j = i
ξ[k] = ∅
ξ[ j] = (l, 1)
(l 6 jBk)

ξ ξ+

k jppp pppu uu uuu uuu pppuuu uuu pppuu

j kppp pppu uu uuu uuuppp uuu uuuppp uu

j = i
ξ[k] = (l)
ξ[ j] = (l + jBk, 1)

ξ ξ+

k jppp pppu uu uuu uuu pppuu
ppp

u u

j kppp pppu uu uuu uuuppp uu
ppp

u u

j = i
ξ[k] = (l)
ξ[ j] = (l + jBk − 1, 1)

ξ ξ+

k jppp pppu uu uuu uuu pppuu
ppp
uu

j kppp pppu uu uuu uuuppp uu
ppp
uu

.
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Note that the condition i−1Bi > 0 guarantees that the configuration

k=i jppp pppu uu uuu
ppp

u
cannot occur in ξ; so we really can use the same reasoning as for the partition µi

B, and the result is
proved. �

Using Lemma 5.3 and Lemma 2.9, we need only prove Proposition 5.2 for Rouquier blocks; in this
case, the result is straightforward.

Lemma 5.4. Suppose B is a Rouquier block ofHn of weight p. Then we have

λi
B = 〈i(p−1,1)〉, µi

B = 〈i(p)〉,

and Proposition 5.2 holds for B.

Proof. Since iBi+1 > p − 1, the function si will always move the lowest bead on runner i down one
space; so the partitions µi

B and λi
B are as claimed.

To show that the (λi
B, µ

i
B)-entry of the adjustment matrix is non-zero, we examine de

λµ and dep
λµ

,

where λ = λi
B and µ = µi

B. By applying Theorem 2.14 e − 1 − i times and then using Theorem 2.11 (or
by using the known decomposition numbers for Rouquier blocks in infinite characteristic [3, 21]), we
find that de

λµ = 0; by Proposition 2.10 (or by using the well-known decomposition numbers for blocks

of weight 1), we get dep
λµ
> 0. Lemma 2.7(1) now implies that there is some ξ in B with µ B ξ Q λ

such that the (ξ, µ)-entry of the adjustment matrix for B is non-zero. But it is a simple matter to check
that there is no partition in B lying strictly between µ and λ in the dominance order, so ξ = λ and the
result is proved. �

We can now immediately deduce Proposition 5.2 and hence Proposition 5.1.

6 q-Schur algebras

In this section, we deal with blocks of the q-Schur algebra. Given our work on Iwahori–Hecke
algebras, we are already most of the way to proving our main result.

Proposition 6.1. Suppose B is a block of the q-Schur algebra Sn of weight w > p. Then the adjustment matrix
for B is not the identity matrix.

Proof. Let B′ be the block of Hn with the same core as B. Then the adjustment matrix for B′ occurs
as a submatrix of the adjustment matrix for B, so the result is true when w > p or when 0B1 > 0, by
Propositions 4.1 and 5.1. So we assume that w = p and 0B1 = 0. We define

λ = 〈0(1p)〉, µ = 〈0(1p−1), 1(1)〉, ν = 〈1(1p)〉.
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Now ν lies in an ep-block of weight 1, and furthermore is the most dominant partition in this block
which is dominated by µ. So by Lemma 2.7(2) it suffices to show that de

νµ > 0 and dep
λν
> de

λµ.

Proposition 2.10 yields dep
λν
> 0, while for the decomposition numbers de

νµ and de
λµ, we may use

Theorem 2.14 e − 2 times to reduce to the case e = 2; in this case the partitions are

λ =

uu uu uppp pppu uu uu
= (12p), µ =

u uuu uppp pppu uuu u
= (22, 12p−4), ν =

uu uu uppp pppu uu uu
= (2, 12p−2),

and by Theorem 2.12 we get
de
νµ = 1, de

λµ = 0.

�

Remark. Proposition 6.1 does not give a complete picture for q-Schur algebras. We have chosen to
restrict attention to the Schur algebraSF,q(n,n), but one could ask which blocks of the q-Schur algebra
SF,q(N,n) have trivial adjustment matrix, when N and n are arbitrary. The answer for N > n will be
the same as for N = n, but for N < n the situation is more complicated: here there only exist Weyl
modules and simple modules corresponding to partitions λwith λ1 6 N, and the classification of the
blocks (due to Cox [5]) is not so straightforward. We hope to address this question in future.

7 More counterexamples to Rouquier’s conjecture

In personal communication, Raphaël Rouquier described to the author his conjectured algorithm
for computing the decomposition matrices of the symmetric groups, and the counterexample to this
conjecture which arose after some computation; this conjecture is also mentioned in [15, Example
3.2]. The conjecture suggests that the decomposition numbers should be the smallest possible integers
which are consistent with all decomposition maps from Iwahori–Hecke algebras in infinite character-
istic, i.e. with Theorem 2.6 for all values of i. Rouquier’s own counterexample to this conjecture arose
for the principal block of the symmetric group S13 in characteristic 2. The left-hand matrix below
gives the adjustment matrix predicted by Rouquier’s conjecture for this block, while the matrix on
the right is the correct adjustment matrix.

(13) 1 · · · · · · · · · ·

(11, 2) 1 1 · · · · · · · · ·

(10, 2, 1) · · 1 · · · · · · · ·

(9, 4) 1 1 · 1 · · · · · · ·

(9, 3, 1) 2 · · · 1 · · · · · ·

(8, 4, 1) · · · · · 1 · · · · ·

(7, 6) 1 · · 1 · · 1 · · · ·

(7, 5, 1) · · · · 1 · · 1 · · ·

(7, 4, 2) 1 1 · 1 · · 1 · 1 · ·

(6, 4, 3) 2 · 1 · · · · · · 1 ·

(5, 4, 3, 1) 4 2 · · · · · · · · 1

(13) 1 · · · · · · · · · ·

(11, 2) 1 1 · · · · · · · · ·

(10, 2, 1) · · 1 · · · · · · · ·

(9, 4) 1 1 · 1 · · · · · · ·

(9, 3, 1) 2 · · · 1 · · · · · ·

(8, 4, 1) 1 · · · · 1 · · · · ·

(7, 6) 1 · · 1 · · 1 · · · ·

(7, 5, 1) · · · · 1 · · 1 · · ·

(7, 4, 2) 1 1 · 1 · · 1 · 1 · ·

(6, 4, 3) 2 · 1 · · · · · · 1 ·

(5, 4, 3, 1) 4 2 · · · · · · · · 1
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Although Rouquier’s conjecture is false, it is natural to ask in the context of the present paper whether
the following special case is true: that the adjustment matrix for a block is the identity matrix if and
only if this is consistent with Theorem 2.6. Unfortunately, this too is false; there are blocks for
which Rouquier’s conjecture suggests a trivial adjustment matrix, but for which the results of this
paper show that the adjustment matrix is non-trivial. So we have further, and in some sense simpler,
counterexamples to Rouquier’s conjecture. The first such example (extending the conjecture to blocks
of Iwahori–Hecke algebras generally, rather than just symmetric group algebras) occurs with e = 4
and p = 3, with B being the weight 3 block of H16 with 4-core (22). It can be checked that an
adjustment matrix equal to the identity would be consistent with Theorem 2.6. (What this says is that

for any i there is a matrix A(i) with non-negative integer entries such that D(4)
B = D(4.3i)

B A(i). In fact, this
needs checking only for i = 1, since for i > 2 the matrix D(4.3i) is the identity matrix.) However, the
pyramid of B satisfies 1B2 = 1, so by Proposition 5.1 B has non-trivial adjustment matrix; in fact, the
((62, 3, 1), (9, 7))-entry is non-zero.

Of course, this example could have been observed from [13]. But the results of this paper provide
a wealth of such counterexamples; in particular, there are more counterexamples in the symmetric
group case. The first such occurs in characteristic 5, for the block of S31 with 5-core (32).

In both Rouquier’s counterexample and ours, the adjustment matrix entries which are not ex-
plained by Theorem 2.6 can be explained by semi-simple induction and restriction of simple mod-
ules. In Rouquier’s case, the troublesome ((8, 4, 1), (13))-entry of the adjustment matrix must equal
the ((8, 4), (12))-entry of the adjustment matrix for S12 in characteristic 2 by Proposition 2.8, and one
can show using Theorem 2.6 that this entry is non-zero. In our case, we found non-trivial entries
of adjustment matrices by restricting simple modules from Rouquier blocks. So a way to rescue
Rouquier’s conjecture might be to examine all blocks of a given weight simultaneously, and to hope
that the entries of the adjustment matrix for any block might be the smallest integers consistent
with Theorem 2.6 and with Proposition 2.8. Not having checked this suggestion against all known
adjustment matrices, the author refrains from calling it a conjecture.
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