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Abstract

Suppose F is a field of characteristic p > 5, and that B is a p-block of the symmetric group Sn

of defect 3. We prove that the Ext1-quiver of B is bipartite, with the bipartition being described in a
simple way using the leg-lengths of p-hooks of partitions.

1 Introduction

Suppose F is a field, and A is a finite-dimensional A-algebra. The Ext1-quiver or ordinary quiver
of A is a directed multi-graph with edges indexed by isomorphism classes of simple A-modules, and
with the number of arrows from S to T being the F-dimension of the space Ext1A(S ,T ). The quiver is a
useful tool for understanding the representation theory of A – indeed, Gabriel’s Theorem asserts that A
is Morita equivalent to a certain quotient of the quiver algebra of A.

In this paper, we shall be concerned with modular representation theory of symmetric groups. So
A will be a block of the group algebra FSn, where n is a non-negative integer and F is a field of prime
characteristic p. In the case of symmetric groups, all simple modules are self-dual, and so the quiver may
be drawn as an undirected (multi-)graph, with an edge indicating an arrow in each direction. Many of
these quivers have been calculated, and have been seen to enjoy certain properties. One property which
remains conjectural in general (but which has important implications for radical filtrations of modules)
is that if A is a block whose defect group is abelian, then the quiver of A is bipartite. This is one of a
variety of nice properties which have been conjectured for symmetric group blocks of abelian defect.
The purpose of this paper is to verify this property in the case of blocks of defect 3.

As is well known, the representations of the symmetric group Sn are indexed by partitions of n. To
each partition is associated a non-negative integer, called the p-weight of the partition; this is a block
invariant, and turns out to be an excellent measure of how complicated the representation theory of
a block is. Indeed, if the weight of a block is less than p, then it coincides with the p-defect of the
block. Much of the representation theory of the symmetric groups has concentrated on blocks of a given
small weight. Blocks of weight 0 and 1 have been understood for some time – the former are simple,
while the latter are described by the Brauer–Dade cyclic defect theory. Blocks of weight 2 were studied
by several authors, including Richards, who gave a combinatorial description of their decomposition
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numbers over a field of odd characteristic [21]. Chuang and the second author built on this work and
were able to describe the quiver of an arbitrary weight 2 block in odd characteristic [2], verifying that
all such quivers are bipartite. Martin and Russell [15] initiated the study of blocks of weight 3 with the
construction of the Ext1-quiver of the principal block of S3p where p > 5. They also attempted to show
that the decomposition numbers for a weight 3 block of abelian defect are at most 1 [16], but mistakes
have been found in their proof. The complete proof was finally announced by the first author of the
present paper in [9].

Among our most important tools are the so-called ‘Rouquier blocks’, which have played an increas-
ingly prominent rôle in the representation theory of the symmetric groups in recent years. These are
blocks defined for any weight and any characteristic which have certain nice properties. In particular,
there exists an explicit description of their Ext1-quivers (in the case where the defect group is abelian),
due to Chuang and the second author [3]. This enables our main theorem to be verified immediately for
Rouquier blocks, and we make significant use of this result in proving the main theorem in general. Our
other important tools are the Mullineux map and Kleshchev’s modular branching rules.

As with any result in the representation theory of the symmetric groups, it is natural to ask whether
our main theorem generalises to the Iwahori–Hecke algebra HF,q(Sn). It seems likely that this is the
case (as long as we make the assumption q , −1), and that our methods would carry over. The major
obstruction is that we do not at present have a description of the Ext1-quiver of the Rouquier blocks of
the Iwahori–Hecke algebras in full generality. (We note however that if q is in the prime subfield of F,
then the Morita equivalence between the Rouquier block of a finite general linear groups and a wreath
product of a ‘weight 1’ block of finite general linear group proved independently by Hida–Miyachi
[12] and Turner [26] can be used to construct an analogous Morita equivalence for the Iwahori–Hecke
algebras. One can then use this Morita equivalence in conjunction with the results of general wreath
products developed by Chuang and the second author [4] to obtain the Ext1-quiver of the Rouquier
blocks of Iwahori–Hecke algebras in this case.)

We now indicate the layout of this paper. In the remainder of this introduction, we set out the
background theory we shall require. In Section 2, we specialise to blocks of small weight, stating the
results we shall need on blocks of weight 0, 1, 2 and 3, and outlining the proof of the main theorem,
which is by induction on n. We concentrate on blocks of particular types in sections 3, 4 and 5, and
conclude with the proof of the main theorem in section 6.

Acknowledgement. This research was carried out while the first author was visiting the National Uni-
versity of Singapore (NUS). He is very grateful to the second author for the invitation, and to NUS for its
hospitality. The second author is supported by Academic Research Fund R-146-000-043-112 of NUS.

1.1 Background theory

We now survey the background theory we shall require. An excellent introduction to the modular
representation theory of the symmetric group may be found in James’s book [13].

We record here some notation that we use later for module structures. If N,N1, . . . ,Nr are modules,
then we may write

N ∼

N1
...

Nr

to indicate that N has a filtration in which the factors are N1, . . . ,Nr from top to bottom. If these factors
are all isomorphic, to M say, then we may just write N ∼ Mr.
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1.1.1 Partitions, blocks and parity

Throughout this paper, we assume that the reader is familiar with the combinatorics of partitions,
Young diagrams and rim hooks. A suitable introduction may be found in [13]. For any partition λ of
n and any field F, one defines a Specht module S λ for FSn. If F has infinite characteristic, then the
Specht modules are irreducible, and afford all the irreducible representations of Sn as λ ranges over the
partitions of n. If F has finite characteristic p, then the Specht modules are not always irreducible. If λ
is p-regular (i.e. if it does not have p or more equal non-zero parts), then S λ has an irreducible self-dual
cosocle Dλ, and the modules Dλ afford all the irreducible representations of Sn as λ ranges over the
p-regular partitions of n.

Given a partition λ and a prime p, we form a new partition by repeatedly removing rim p-hooks
from the Young diagram of λ until we can remove no more. Remarkably, the partition we end up with
does not depend on which rim p-hook we choose to remove at each stage, and this partition is called
the p-core of λ. The p-core of λ is a partition of n − wp for some non-negative integer w, which is
called the p-weight of λ. We may talk simply of the core and weight of λ if the prime p is understood.
Nakayama’s ‘Conjecture’ tells us that if F is a field of characteristic p, then two partitions λ and µ of
n lie in the same block of FSn (by which we mean that the Specht modules S λ and S µ lie in the same
block) if and only if λ and µ have the same p-core. This automatically implies that they have the same
p-weight, and accordingly we may speak of the p-core and p-weight of a block of FSn.

We now define the parity of a partition λ. When we remove rim p-hooks from [λ] to reach the p-core
of λ, we may examine the leg-length of each hook. Morris and Olsson [19, Proposition 2.2 and Corollary
2.3] showed that if l is the sum of these leg-lengths, then (−1)l equals the relative (p-)sign of λ defined
by Farahat [5]. In particular, this shows that while these leg-lengths may depend on which rim hook we
choose to remove at each stage, the parity of their sum does not. We refer to this parity as the parity of
λ, which we write as Pλ. Now we may state the main theorem of this paper.

Theorem 1.1. Suppose that F is a field of characteristic at least 5, and that B is a weight 3 block of
FSn. If λ and µ are p-regular partitions in B with Pλ = Pµ, then Ext1B(Dλ,Dµ) = 0. In particular, the
Ext1-quiver of B is bipartite.

Note that the assumption char(F) > 5 is essential; the Ext1-quivers of weight 3 blocks of symmetric
groups in characteristic 3 have been calculated by the authors in a series of papers [24, 25, 6, 7], and
these are not all bipartite. In characteristic 2, the theorem fails more spectacularly; in particular, there
are self-extensions of simple modules.

1.1.2 The abacus

A useful way to represent partitions, which makes it very clear when two partitions lie in the same
block, is on an abacus. We take an abacus with p vertical runners, which we label 1, . . . , p from left
to right. We mark positions on each runner, and then label the positions on runner i with the integers
i − 1, i + p − 1, i + 2p − 1, . . . from the top down, so that (if p - j) position j − 1 lies directly to the left
of position j. We shall frequently talk of moving beads on runner i of the abacus ‘one space to the left’,
and we wish to include the possibility i = 1 here, so moving a bead at position j one space to the left
will simply mean moving it to position j − 1. Given a partition λ, we take an integer r which is at least
the number of non-zero parts of λ, and then for i = 1, . . . , r we define the beta-number

βi = λi + r − i.
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Now we place a bead at position βi for each i. The resulting configuration is called an abacus display for
λ. The usefulness of the abacus display comes from the fact [14, §2.7] that removing a rim p-hook from
the Young diagram of λ corresponds exactly to moving a bead up to an empty space immediately above
it; therefore an abacus display for the core of λ may be obtained by sliding all the beads as far up their
runners as they will go. So if partitions λ and µ are displayed using abacuses with the same number of
beads, then λ and µ lie in the same block if and only if the numbers of beads on corresponding runners
are the same, and we may specify the abacus for a block of Sn by specifying the number of beads on
each runner, without specifying their positions.

1.1.3 The Jantzen–Schaper dominance order

The dominance order Q is frequently used when working with partitions, and is particularly useful
for representation theory. It will be useful for us to use a coarser version of this order, which depends
on the prime p. If λ and µ are partitions of n, then we say that λ dominates µ in the Jantzen–Schaper
order if λ B µ and if the Young diagram of µ may be obtained from that of λ by removing a rim hook of
length divisible by p and then adding a rim hook of the same length. We extend this order to a partial
order, which we write as Q. No confusion should occur with this notation, since we shall not use the
usual dominance order from now on, and the prime p will always be clear from the context. The first use
of this order is in the following basic theorem, which follows from [13, Corollary 12.2] together with
the Jantzen–Schaper formula [22] – here, and hereafter, [S λ : Dµ] denotes the multiplicity of Dµ as a
composition factor of S λ.

Theorem 1.2. Suppose F is a field of characteristic p, and that λ and µ are partitions of n, with µ

p-regular. Then [S µ : Dµ] = 1, and if [S λ : Dµ] > 0 then µ Q λ.

1.1.4 The Mullineux map

Let sgn denote the 1-dimensional signature representation of Sn. The functor − ⊗ sgn gives a self-
equivalence of the category of FSn-modules. If M lies in a block B of Sn, then M ⊗ sgn lies in the
conjugate block of B, which we denote B]. We wish to describe the effect of the functor − ⊗ sgn on
Specht modules and simple modules. Let λ′ denote the partition conjugate to λ, and for a FSn-module
M, let M∗ denote the dual module.

Theorem 1.3. [13, Theorem 8.15] For any partition λ,

S λ ⊗ sgn � (S λ′)∗.

We note one immediate consequence of this, which is that if B is a block with p-core ν, then B] has
p-core ν′.

The corresponding result for simple modules is more complicated. If µ is a p-regular partition, then
of course Dµ ⊗ sgn is a simple module, and so there is an involutory bijection � from the set of p-regular
partitions of n to itself such that Dµ⊗ sgn � Dµ� . This bijection was given by Mullineux [20] (although a
proof that Mullineux’s bijection is the correct one was not given until much later, by Ford and Kleshchev
[11]). We shall frequently use this bijection, but in order to save space, we refer the reader to [20] for a
description.
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1.1.5 Induction and restriction

If κ is a positive integer, then the natural embedding Sn−κ < Sn gives rise to well-behaved induction
and restriction functors between the module categories of FSn−κ and FSn. Given a module N for FSn,
we write N↓Sn−κ for the restricted module, and if A is a block of FSn−κ, we write N↓A for the projection
of N↓Sn−κ onto A. Similarly, if M is an FSn−κ-module and B is a block of FSn, we write M ↑Sn and
M ↑B for the induced module and its projection onto B. We shall use the fact that these functors are exact
without comment, and we shall frequently employ the Frobenius reciprocity theorem and the Eckmann–
Shapiro relations. We also use the classical Branching Rule [13, Theorem 9.3 & Corollary 17.14] and
Kleshchev’s ‘modular branching rules’ (see for example the discussion in [1, Section 2]).

1.1.6 Scopes equivalences

Some Morita equivalences between symmetric group blocks of the same weight were discovered by
Scopes, and we shall make frequent use of these. Suppose B is a block of Sn of weight w, and that in
some abacus display for B there are κ more beads on runner i than runner i−1. By interchanging runners
i− 1 and i, we obtain an abacus for a weight w block A of Sn−κ. We say that A and B form a [w : κ]-pair.
If we have such a pair with κ > w, then we define a function Φ from the set of partitions in B to the set
of partitions in A by interchanging runners i − 1 and i of the abacus.

Theorem 1.4 ([23]). Suppose that A and B form a [w : κ]-pair as above, with w 6 κ, and suppose λ and
µ are partitions in B with µ p-regular.

1. Φ is a bijection between the set of partitions in B and the set of partitions in A.

2. Φ(λ) is p-regular if and only if λ is p-regular.

3.
S λ↓A∼ (S Φ(λ))κ!, S Φ(λ) ↑B∼ (S λ)κ!.

4.
Dµ↓A� (DΦ(µ))⊕κ!, DΦ(µ) ↑B� (Dµ)⊕κ!.

5.
[S λ : Dµ] = [S Φ(λ) : DΦ(µ)].

6. The bijection µ↔ Φ(µ) is induced by a Morita equivalence between A and B.

1.1.7 Rouquier blocks

A certain class of symmetric group blocks has been shown to have particularly nice properties, and
has proved particularly useful for studying the representation theory of Sn in general. Suppose B is a
block of Sn of weight w, and take an abacus for B. We say that B is Rouquier if for each 1 6 i < j 6 p
either

• there are at least w − 1 more beads on runner j than on runner i, or

• there are at least w more beads on runner i than on runner j.
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It is a simple exercise to check that this property does not depend on the choice of abacus. For a given
prime p and a given choice of w, the Rouquier blocks form a single equivalence class under the ‘Scopes
equivalence’ described in the previous section. If w < p, then we have explicit closed formulae for the
decomposition numbers for Rouquier blocks, and for the dimensions of the Ext1-spaces between simple
modules. It is the latter in which we are interested, and in particular the following corollary.

Proposition 1.5. Suppose F is a field of characteristic p, and that B is a Rouquier block of FSn of weight
w < p. If λ and µ are p-regular partitions in B with Pλ = Pµ, then Ext1B(Dλ,Dµ) = 0.

Proof. This follows from [3, Theorem 6.3], in which the Ext1-quiver of a Rouquier block is given. It is
easy to calculate the parity of a partition in a Rouquier block and hence read off the result. �

2 Blocks of small weight

In this section, we outline some of the basic properties that we shall need for blocks of weight at
most 3. We assume from now on that F is a field of characteristic p > 5.

2.1 Blocks of weight 0

It is a well-known result that a block B of Sn has weight 0 if and only if it is simple. Therefore, a
block of weight 0 contains a single partition λ (which is a p-core), and we have Dλ = S λ = P(Dλ).

2.2 Blocks of weight 1

Blocks of weight 1 have been understood for some time. Their properties may be summarised in the
following theorem.

Theorem 2.1. Suppose B is a block of Sn of weight 1. Then B contains exactly p partitions, which are
totally ordered by the Jantzen–Schaper order: λ(1) C · · · C λ(p). The partition λ(i) is p-regular if and
only if i > 2, and the decomposition number [S λ(i)

: Dλ( j)
] equals 1 if j = i or i + 1, and 0 otherwise.

We have Pλ(i) = Pλ( j) if and only if i and j have the same parity. If i > 2, then the projective cover of
Dλ(i)

has radical length 3, with socle and cosocle both isomorphic to Dλ(i)
, and heart containing factors

Dλ(i−1)
(if i > 3) and Dλ(i+1)

(if i 6 p − 1). Hence

Ext1B(Dλ(i)
,Dλ( j)

) �

F (|i − j| = 1)

0 (otherwise).

In particular, if Pλ(i) = Pλ( j), then Ext1B(Dλ(i)
,Dλ( j)

) = 0.

2.3 Blocks of weight 2

Blocks of weight 2 were systematically studied by Richards [21]. By developing the combinatorics
of these blocks and studying the application of the Jantzen–Schaper formula, he was able to give a
simple description of the decomposition numbers. Chuang and the second author [2] used this to give a
description of the Ext1-spaces between simple modules. The important consequence of this result for us
is the following.
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Proposition 2.2. Suppose B is a block of FSn of weight 2, and that λ and µ are p-regular partitions in
B. If Pλ = Pµ, then Ext1B(Dλ,Dµ) = 0.

Proof. This may be deduced easily from [2, Theorem 6.1]: note that the parity of a partition λ is the
parity of the integer ∂λ defined by Richards. �

2.4 Notation for blocks of weight 3

Now we turn to blocks of weight 3, which are our main object of study. First we describe some
notation for partitions in blocks of weight 3, following Martin and Russell [15]. Suppose B is a block of
weight 3, and that we have an abacus display for the core of B. If λ is a partition in B, then an abacus
display for λ is obtained by moving beads down their runners a total of three spaces. We write:

• λ = 〈i〉 if λ is obtained by moving the lowest bead on runner i down three spaces;

• λ = 〈i, j〉 if λ is obtained by moving the lowest bead on runner i down two spaces, and a bead on
runner j down one space (where j may equal i);

• λ = 〈i, j, k〉 if λ is obtained by moving three beads, on runners i, j and k, down one space each
(where i, j and k may coincide).

If the number of beads on runner i of the abacus is bi, then we refer to this as the 〈b1, . . . , bn〉 notation.

2.5 [3 : κ]-pairs

In view of Scopes’s theorem, the study of blocks of weight 3 centres around [3 : 1]- and [3 : 2]-pairs.
In this section, we set up some notation for these pairs, and prove some basic results.

Suppose A and B are blocks forming a [3 : κ]-pair, and that the abacus for A is obtained from that for
B by interchanging runners i−1 and i. If λ is a partition in B, then say that λ is exceptional for this [3 : κ]-
pair if in the abacus display for λ there are more than κ beads on runner i with no beads immediately to
the left, and non-exceptional otherwise. If λ is p-regular, then we say that Dλ is exceptional if there are
more than κ normal beads on runner i, and non-exceptional otherwise. We make similar definitions for
partitions in A: a partition is exceptional if its abacus has more than κ beads on runner i− 1 with no bead
immediately to the right, and a simple module is exceptional if the abacus display for the corresponding
p-regular partition has more than κ conormal beads on runner i − 1.

Let λ be a partition in B. The abacus display for λ has at least κ normal beads on runner i. We
define the partition Φ(λ) by moving the κ highest normal beads one place to the left. Note that if λ is
non-exceptional, then Φ(λ) is obtained simply by swapping runners i − 1 and i in the abacus display. If
κ > 3 then every partition is non-exceptional, and so the definition of Φ agrees with the definition in
§1.1.6. The following is standard theory for [3 : κ]-pairs.

Proposition 2.3. Suppose A and B form a [3 : κ]-pair as above, and that λ and µ are partitions in B with
µ p-regular.

1. Φ is a bijection from the set of partitions in B to the set of partitions in A.

2. λ is p-regular if and only if Φ(λ) is p-regular.
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3. λ is non-exceptional if and only if Φ(λ) is non-exceptional, and in this case

S λ↓A∼ (S Φ(λ))κ!, S Φ(λ) ↑B∼ (S λ)κ!,

and
[S λ : Dµ] = [S Φ(λ) : DΦ(µ)].

4. Dµ is non-exceptional if and only if DΦ(µ) is non-exceptional, and in this case

Dµ↓A� (DΦ(µ))⊕κ!, DΦ(µ) ↑B� (Dµ)⊕κ!.

We also wish to note that the map Φ is compatible with the Mullineux map; the following is imme-
diate from [11].

Proposition 2.4. Suppose A and B form a [3 : κ]-pair, and that λ is a p-regular partition in B. Let Φ be
the map described above for this pair, and let Φ] be the corresponding map for the [3 : κ]-pair (A], B]).
Then Φ](λ�) = Φ(λ)�.

2.5.1 [3 : 1]-pairs

We suppose now that κ = 1. Then there are 3p exceptional partitions in each of A and B, which we
label as follows (with j ranging over the set {1, . . . , p}):

A B

ᾱ j =


〈i〉 ( j = i)

〈i, i〉 ( j = i − 1)

〈i, j〉 (otherwise);

α j =


〈i, i〉 ( j = i)

〈i, i, i〉 ( j = i − 1)

〈i, i, j〉 (otherwise);

β̄ j =


〈i − 1, i〉 ( j = i)

〈i − 1, i, i〉 ( j = i − 1)

〈i − 1, i, j〉 (otherwise);

β j =

〈i, i − 1〉 ( j = i)

〈i − 1, i, j〉 (otherwise);

γ̄ j =

〈i − 1, i − 1〉 ( j − i)

〈i − 1, i − 1, j〉 (otherwise);
γ j =

〈i − 1〉 ( j = i)

〈i − 1, j〉 (otherwise).

The map Φ has the following effect on exceptional partitions:

α j 7−→ ᾱ j,

β j 7−→ γ̄ j,

γ j 7−→ β̄ j.

The exceptional simple modules are Dᾱ j and Dα j for those j for which α j is p-regular.
The following result comes from the branching rules.

Proposition 2.5. Suppose A and B form a [3 : 1]-pair as above. Then:
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1. for 1 6 j 6 p, we have

S ᾱ j ↑B ∼
S α j

S β j
, S β̄ j ↑B ∼

S α j

S γ j
, S γ̄ j ↑B ∼

S β j

S γ j
,

S α j↓A ∼
S ᾱ j

S β̄ j
, S β j↓A ∼

S ᾱ j

S γ̄ j
, S γ j↓A ∼

S β̄ j

S γ̄ j
;

2. if α j is p-regular, then Dᾱ j ↑B is an indecomposable self-dual module with socle isomorphic to
Dα j and with [Dᾱ j ↑B: Dα j] = 2;

3. if α j is p-regular, then Dα j↓A is an indecomposable self-dual module with socle isomorphic to Dᾱ j

and with [Dα j↓A: Dᾱ j] = 2;

The study of [3 : 1]-pairs is facilitated by looking at blocks of weight 1. Let Ǎ be the block of weight
1 whose abacus is obtained from that for A by moving a bead from runner i to runner i − 1, and denote
the partitions in Ǎ as α̌1 C · · · C α̌p. We let B̂ be the block of weight 1 whose abacus is obtained from
that for B by moving a bead from runner i−1 to runner i. We denote the partitions in B̂ as α̂1 C · · · C α̂p.
The following result is also standard.

Proposition 2.6. There is a permutation π ∈ Sp such that the following hold.

1. If λ is a partition in A, then

S λ↓Ǎ �

S α̌k (if λ equals ᾱπ(k), β̄π(k) or γ̄π(k))

0 (if λ is non-exceptional).

If λ is p-regular, then

Dλ↓Ǎ �

Dα̌k (if λ equals ᾱπ(k))

0 (if Dλ is non-exceptional).

2.

S α̌k ↑A∼

S ᾱπ(k)

S β̄π(k)

S γ̄π(k)

,

and if k > 2 then Dα̌k ↑A is an indecomposable self-dual module with cosocle and socle both
isomorphic to Dᾱπ(k) .

3. If λ is a partition in B, then

S λ ↑B̂ �

S α̂k (if λ equals απ(k), βπ(k) or γπ(k))

0 (if λ is non-exceptional).

If λ is p-regular, then

Dλ ↑B̂ �

Dα̂k (if λ equals απ(k))

0 (if Dλ is non-exceptional).
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4.

S α̂k↓B∼

S απ(k)

S βπ(k)

S γπ(k)

,

and if k > 2 then Dα̂k ↓B is an indecomposable self-dual module with cosocle and socle both
isomorphic to Dαπ(k) .

We also need the following result on decomposition numbers.

Proposition 2.7. The partitions απ( j) and ᾱπ( j) are p-regular if and only if j > 2. In this case, we have

[S λ : Dαπ( j)] =

1 (if λ ∈ {απ( j), βπ( j), γπ( j), απ( j−1), βπ( j−1), γπ( j−1)})

0 (otherwise),

and

[S λ : Dᾱπ( j)] =

1 (if λ ∈ {ᾱπ( j), β̄π( j), γ̄π( j), ᾱπ( j−1), β̄π( j−1), γ̄π( j−1)})

0 (otherwise).

The following lemma follows from the Eckmann-Shapiro relations:

Proposition 2.8 ([17, Lemma 4.11]). Suppose A and B are as above, µ is a p-regular partition in B and
k > 2. If Ext1B(Dαπ(k) ,Dµ) , 0, then exactly one of the following holds:

• µ = απ(k+1);

• µ = απ(k−1);

• Dµ is non-exceptional and occurs in the second radical layer of Dα̂k↓B.

Corollary 2.9. Suppose A and B are as above, µ is a p-regular partition in B and j ∈ {1, . . . , p} \ {π(1)}.
If Pµ = Pα j and Ext1B(Dα j ,Dµ) , 0, then µ Q γ j.

Proof. Let j = π(k). It is straightforward to show (compare the proof of Lemma 2.21 below) that
Pαπ(k±1) , Pαπ(k). Thus by Proposition 2.8, Dµ must appear as a composition factor of Dα̂k↓B. But this
is a quotient of S α̂k↓B, which is filtered by the Specht modules S απ(k) , S βπ(k) and S γπ(k) . The result follows,
since απ(k) B βπ(k) B γπ(k). �

We now prove some results which we shall need later.

Lemma 2.10. The module S γ̄π(k) ↑B has a simple socle, isomorphic to Dαπ(k+1) if k , p and to Dαπ(p) if
k = p. Furthermore, it has a simple cosocle Dβπ(k) if βπ(k) is p-regular.

Analogous statements hold for S γπ(k)↓A.

Proof. If k < p, then γ̄π(k) is the least dominant partition such that [S γ̄π(k) : Dᾱπ(k+1)] , 0; thus, S γ̄π(k) has
socle Dᾱπ(k+1) . If k = p, then S γ̄π(p) is a submodule of S α̌p ↑A= Dα̌p ↑A and so has socle isomorphic to Dᾱp

by Proposition 2.6(2). The socle of S γ̄π(k) ↑B then follows as claimed by Frobenius reciprocity (note that
[Dαπ(l)↓A: Dᾱπ(k)] = 0 whenever l , k; see [17, Proposition 4.2(1)]).

Now suppose βπ(k) is p-regular, and Dλ occurs in the cosocle of S γ̄π(k) ↑B. If Dλ is non-exceptional,
then λ = βπ(k) by Frobenius reciprocity – in fact, Dβπ(k) occurs exactly once in the cosocle. If Dλ is
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exceptional, isomorphic to Dαπ(l) , then Frobenius reciprocity implies that the socle Dᾱπ(l) of Dαπ(l)↓A is a
composition factor of S γ̄π(k) , and that the cosocle Dγ̄π(k) of S γ̄π(k) is a composition factor of Dαπ(l)↓A. The
former yields l = k or k + 1, while the latter implies that Dγ̄π(k) is a composition factor of S απ(l)↓A, and
hence of either S ᾱπ(l) or S β̄π(l) . Thus we get l = k or k + 1, and γ̄π(k) B β̄π(l), which is impossible.

An entirely analogous argument applies to S γπ(k)↓A. �

Lemma 2.11. Let
0 6 M 6 N 6 S α̌k ↑A

be a filtration of (S α̌k ↑A) with (S α̌k ↑A)/N � S ᾱπ(k) , N/M � S β̄π(k) and M � S γ̄π(k) . If β̄π(k) is p-regular,
then N � S γπ(k)↓A; in particular, cosoc(N) � Dβ̄π(k) .

An analogous statement holds for S α̂k↓B.

Proof. We consider the cases k < p and k = p separately. First suppose that k < p. By Theorem 2.1
we have soc(S α̌k ) � Dα̌k+1 ; by Frobenius reciprocity, we find that S α̌k ↑A, and hence N, has socle Dᾱπ(k+1) .
By Lemma 2.10, we also have soc(S γπ(k)↓A) � Dᾱπ(k+1) . Regarding N and S γπ(k)↓A as submodules of the
projective cover of Dᾱπ(k+1) , the claim will follow once we show that N > S γπ(k)↓A, since both modules
have the same composition factors with multiplicities.

The projective module P(Dᾱπ(k+1)) has a filtration by the Specht modules S ᾱπ(k+1) , S β̄π(k+1) , S γ̄π(k+1) ,
S ᾱπ(k) , S β̄π(k) , S γ̄π(k) . Since β̄π(k) does not dominate any of ᾱπ(k+1), β̄π(k+1), γ̄π(k+1) or ᾱπ(k), we have

[P(Dᾱπ(k+1)) : Dβ̄π(k)] = [N : Dβ̄π(k)] (= 2 = [S γπ(k)↓A: Dβ̄π(k)]).

So N > S γπ(k)↓A by [18, Lemma 2.1], since cosoc(S γπ(k)↓A) � Dβ̄π(k) by Lemma 2.10.
Now we suppose k = p. Again, we begin by noting that N and S γπ(p) ↓A have isomorphic simple

socles. This time we have soc(S γπ(p) ↓A) � Dᾱπ(p) by Lemma 2.10, while soc(S α̌p ↑A) � Dᾱπ(p) (by
Proposition 2.6(2) as S α̌p = Dα̌p) implies that soc(N) � Dᾱπ(p) . Now we regard N and S γπ(p) ↓A as
submodules of P(Dᾱπ(p)), and we need to show that N > S γπ(p)↓A.

Note first that P(Dᾱπ(p))/(S α̌p ↑A) � (P(Dα̌p)/S α̌p) ↑A has a simple socle Dᾱπ(p−1) by Frobenius reci-
procity. Since [

S α̌p ↑A +S γπ(p)↓A

S α̌p ↑A
: Dᾱπ(p−1)

]
=

[
S γπ(p)↓A

(S γπ(p)↓A ∩S α̌p ↑A)
: Dᾱπ(p−1)

]
6 [S γπ(p)↓A: Dᾱπ(p−1)] = 0,

we see that S γπ(p) ↓A6 S α̌p ↑A. Now we may apply [18, Lemma 2.1] again to get S γπ(p) ↓A6 N, since
cosoc(S γπ(p)↓A) � Dβ̄π(p) and [N : Dβ̄π(p)] = [S α̌p ↑A: Dβ̄π(p)] (= 2).

An entirely analogous argument applies to S α̂k↓B. �

Corollary 2.12. Suppose A and B are as above, and k > 2, and βπ(k) is p-regular. If Ext1B(Dαπ(k) ,Dµ) , 0,
then exactly one of the following holds:

• µ = απ(k−1);

• µ = απ(k+1);

• µ = βπ(k);
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• Dµ is non-exceptional and occurs in the second radical layer of S απ(k) .

In particular, Ext1B(Dαπ(k) ,Dαπ(k)) = 0 = Ext1B(Dαπ(k) ,Dγπ(k)).

Proof. This follows directly from Proposition 2.8 and Lemma 2.11. �

2.5.2 [3 : 2]-pairs

Now we consider [3 : 2]-pairs. These are much easier to deal with, since there are fewer exceptional
partitions and we need fewer basic results. If A and B form a [3 : 2]-pair with abacuses as above, then
there are four exceptional partitions in each of A and B, which we label as follows:

A B

ᾱ = 〈i〉; α = 〈i, i, i〉;

β̄ = 〈i, i − 1〉; β = 〈i − 1, i, i〉;

γ̄ = 〈i, i − 1, i − 1〉; γ = 〈i − 1, i〉;

δ̄ = 〈i − 1, i − 1, i − 1〉; δ = 〈i − 1〉.

The exceptional simple modules are Dᾱ and Dα, and the effect of the map Φ on exceptional partitions is

α 7−→ ᾱ,

β 7−→ δ̄,

γ 7−→ γ̄,

δ 7−→ β̄.

The following is a consequence of the classical and modular branching rules.

Proposition 2.13.
1.

S ᾱ ↑B ∼

S α

S α

S β

S β

S γ

S γ

, S β̄ ↑B ∼

S α

S α

S β

S β

S δ

S δ

, S γ̄ ↑B ∼

S α

S α

S γ

S γ

S δ

S δ

, S δ̄ ↑B ∼

S β

S β

S γ

S γ

S δ

S δ

,

S α↓A ∼

S ᾱ

S ᾱ

S β̄

S β̄

S γ̄

S γ̄

, S β↓A ∼

S ᾱ

S ᾱ

S β̄

S β̄

S δ̄

S δ̄

, S γ↓A ∼

S ᾱ

S ᾱ

S γ̄

S γ̄

S δ̄

S δ̄

, S δ↓A ∼

S β̄

S β̄

S γ̄

S γ̄

S δ̄

S δ̄

.

2. Dᾱ ↑B� N ⊕ N, where N is a self-dual indecomposable module with socle isomorphic to Dα and
with [N : Dα] = 3.
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3. Dα↓A� M ⊕ M, where M is a self-dual indecomposable module with socle isomorphic to Dᾱ and
with [M : Dᾱ] = 3.

We use two blocks of weight 0 to help us understand the pair (A, B). Let Ǎ be the weight 0 block
whose abacus is obtained from the abacus for A by moving a bead from runner i to runner i − 1, and let
B̂ be the weight 0 block obtained from B by moving a bead from runner i − 1 to runner i. Let α̌ denote
the unique partition in Ǎ, and α̂ the unique partition in B̂.

Proposition 2.14.
1. If λ is a partition in A, then

S λ↓Ǎ �

S α̌ (if λ equals ᾱ, β̄, γ̄ or δ̄)

0 (otherwise).

If λ is p-regular, then

Dλ↓Ǎ �

Dα̌ (if λ equals ᾱ)

0 (otherwise).

2.

S α̌ ↑A∼

S ᾱ

S β̄

S γ̄

S δ̄

,

and Dα̌ ↑A is an indecomposable self-dual module with cosocle and socle both isomorphic to Dᾱ.

3. If λ is a partition in B, then

S λ ↑B̂ �

S α̂ (if λ equals α, β, γ or δ)

0 (otherwise).

If λ is p-regular, then

Dλ ↑B̂ �

Dα̂ (if λ equals α)

0 (otherwise).

4.

S α̂↓B∼

S α

S β

S γ

S δ

,

and Dα̂↓B is an indecomposable self-dual module with cosocle and socle both isomorphic to Dα.

Lemma 2.15. Suppose A and B are as above and that µ is a p-regular partition in B. If [P(Dα) : Dµ] > 0,
then µ Q δ. In particular, we have Ext1B(Dα,Dµ) = 0 unless µ Q δ.
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Proof. Since B̂ has weight 0, we have P(Dα̂) = S α̂. By Frobenius reciprocity we have

P(Dα) = P(Dα̂)↓B∼

S α

S β

S γ

S δ

,

and so if [P(Dα) : Dµ] , 0, then µ dominates one of α, β, γ, δ. But in fact α B β B γ B δ, so µ Q δ. �

Lemma 2.16 ([18, Lemma 5.4(2) and Corollary 5.5(3)]). Let

0 6 L 6 M 6 N 6 S α̌ ↑A

be a filtration of (S α̌ ↑A) with (S α̌ ↑A)/N � S ᾱ, N/M � S β̄, M/L � S γ̄ and L � S δ̄. If β̄ is p-regular, then
N⊕2 � S δ↓A; in particular, cosoc(N) � Dβ̄.

An analogous statement holds for S α̂↓B.

Corollary 2.17. Suppose A and B are as above, and that β is p-regular. If Ext1B(Dα,Dµ) , 0, then either
µ = β or Dµ lies in the second radical layer of S α.

In particular, Ext1B(Dα,Dα) = Ext1B(Dα,Dγ) = Ext1B(Dα,Dδ) = 0.

2.6 [3 : κ]-pairs and parity

The next result is not standard, but is essential to this paper.

Proposition 2.18. Suppose A and B form a [3 : κ]-pair as above, and that λ is a p-regular partition in
B. If κ = 1 and λ is a partition of the form α j, then PΦ(λ) , Pλ. Otherwise, PΦ(λ) = Pλ.

Proof. This is really a matter of comparing abacus displays. When we remove a rim p-hook from [λ],
we move a bead in the abacus up one space, from position x to position x− p, say. The leg-length of the
removed hook is the number of beads in positions x − 1, x − 2, . . . , x − p + 1. If position x does not lie
on runner i − 1 or runner i, then we may also remove a rim p-hook from Φ(λ) by moving a bead from
position x to position x − p, and the leg-length will be the same. So we may ignore these rim hooks
from λ and Φ(λ), and concentrate only on the beads which may be moved up on runners i − 1 and i. If
λ is a non-exceptional partition, and we can remove a rim hook by sliding a bead up from position x to
x − p on runner i, then we can remove a rim hook from Φ(λ) by sliding a bead up from position x − 1
to x − p − 1, and the leg-length will be just the same. A similar statement applies if we remove slide a
bead up on runner i − 1 for a non-exceptional partition λ, and so we suppose λ is exceptional. We now
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examine all possible configurations of these two runners, and we may verify the proposition.

λ Φ(λ)u uu uu
u uuu u

λ Φ(λ)u uu uu
u uuu u

λ Φ(λ)u uuu uuu
u uuu uu u

λ Φ(λ)u uuu u
u uuuu

λ Φ(λ)u uuu u
u uuuu

λ Φ(λ)u uuu uu u
u uuu uuu

λ Φ(λ)u uuuu
u uu uu

λ Φ(λ)u uuuu
u uu uu

λ Φ(λ)u uuu uuu
u uuu uuu

λ Φ(λ)u uu uuu
u uuuu u

λ Φ(λ)u uuu uu
u uuuuu

λ Φ(λ)u uuuu u
u uu uuu

λ Φ(λ)u uuuuu
u uuu uu

�

This enables us to prove the following important result.

Proposition 2.19. For any p-regular partition λ of weight 3, we have Pλ� , Pλ.

In order to prove this, we need to use induction to Rouquier blocks. We define a Scopes sequence to
be a sequence B0, . . . , Br of weight 3 blocks such that B j−1 and B j form a [3 : κ j]-pair, for j = 1, . . . , r.
Lemma 3.1 of [8] states that for any weight 3 block B there is a Scopes sequence B = B0, . . . , Br with
Br a Rouquier block.

Proof of Proposition 2.19. The result may be checked for Rouquier blocks using the results of [3]. Now
suppose λ lies in a weight 3 block B, and take a Scopes sequence B = B0, . . . , Br such that Br is Rouquier.
The partition λ� lies in the block B], and the blocks B] = B]0, . . . , B

]
r form a Scopes sequence, with B]r

Rouquier. The result now follows using Proposition 2.18 and Proposition 2.4 – note that λ is a parti-
tion of the form α j for the [3 : 1]-pair (A, B) if and only λ� is of the form αk for the [3 : 1]-pair (A], B]). �

Of course, Proposition 2.19 implies that Theorem 1.1 holds for partitions λ and µ if and only if
it holds for λ� and µ�. We shall make frequent use of this fact later in the paper. A version of this
proposition holds for arbitrary weight w, where we replace ‘,’ with ‘=’ if w is even. This may be proved
using the v-decomposition numbers defined by Lascoux, Leclerc and Thibon; we do not include details
here.

2.7 Semi-simple induction

Suppose B0, . . . , Br is a Scopes sequence of weight 3 blocks. For i = 1, . . . , r, let Φi be the map
described above from the set of partitions in Bi to the set of partitions in Bi−1. If λ is a p-regular partition
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in B0, then we say that λ induces semi-simply to Br (via B0, . . . , Br) if there are p-regular partitions
λ = λ0, λ1, . . . , λr lying in B0, . . . , Br respectively such that for each i Dλi

is a non-exceptional simple
module for the pair (Bi−1, Bi), with Φi(λi) = λi−1.

In view of Proposition 1.5 and Proposition 2.18, we can see that if λ and µ are p-regular partitions
lying in a weight 3 block B and if there is a Scopes sequence B = B0, . . . , Br with Br a Rouquier block
such that λ and µ both induce semi-simply to Br via B0, . . . , Br, then Theorem 1.1 holds for λ and µ. We
now give a list of the weight 3 partitions which induce semi-simply to Rouquier blocks. In order to do
this, we need to introduce some additional notation, which is a slight re-casting of Richards’s ‘pyramid’
notation [21]. Suppose B is a block of Sn, and fix an abacus display for B. We define a total order 4 on
{1, . . . , p} by putting i ≺ j if and only if

• i < j and there are at least as many beads on runner j as on runner i, or

• i > j and there are more beads on runner j than runner i.

We extend this order to the whole of Z by stipulating that i 4 j if and only if i 6 j, when i and j do not
both lie in {1, . . . , p}. For any integer i, we define i+ to be the smallest (in the 4 order) integer such that
i ≺ i+.

Now for every pair of integers i 4 j, we define an integer ia j as follows:

• if i = j, put ia j = 0;

• if i < j and i and j do not both lie in {1, . . . , p}, put ia j = w − 1;

• if 1 6 i < j 6 p with i ≺ j, let ia j be the difference between the number of beads on runner i and
runner j;

• if 1 6 j < i 6 p with i ≺ j, let ia j be the difference between the number of beads on runner i and
runner j minus 1;

We use shorthand such as i0 j1k to indicate that ia j = 0 and jak = 1, and i1+
k to indicate that

iak > 1. Now we can give a list of partitions of weight 3 which induce semi-simply to a Rouquier block.

Proposition 2.20. If λ is a p-regular partition of weight 3 lying in a block B of Sn, then λ induces semi-
simply to some Rouquier block if and only if λ and the pyramid for B satisfy one of the following sets of
conditions.

λ Conditions on the pyramid for B
〈i〉 i2+

i+

〈i, i〉 i1+
i+

〈i, i, i〉 —
〈i, i+〉 i1+

i++

〈i, j〉 (i+ ≺ j) i1+
i+ , i2+

j

〈 j, i〉 (i ≺ j) i1+
j1+

j+

〈i, i, i+〉 —
〈i, i, j〉 (i+ ≺ j) i1+

j

〈i, j, j〉 (i ≺ j) i2+
j or ( i−1+

j, i1− j, i+0 j)
〈i, i+, i++〉 i0i++ or i1+

i+ or i+1+
i++

〈i, i+, k〉 (i++ ≺ k) i+1+
k

〈i, j, j+〉 (i+ ≺ j) i1+
j

〈i, j, k〉 (i+ ≺ j, j+ ≺ k) i1+
j1+

k
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Moreover, if λ satisfies one of these sets of conditions and B = B0, . . . , Br is any Scopes sequence with
Br a Rouquier block, then λ induces semi-simply to Br via B0, . . . , Br.

Proof. This table in the proposition is a reformulation of that in [10, Proposition 3.4], and the result
may be deduced from there. Alternatively, we may check it directly. Let S denote the set of p-regular
partitions described. It suffices to check the following two statements.

1. S contains every p-regular partition in every Rouquier block;

2. If A and B are weight 3 blocks forming a [3 : κ]-pair and λ is a p-regular partition in B, then

(a) if Dλ is exceptional for this pair, then Φ(λ) < S;

(b) if Dλ is non-exceptional for this pair, then λ ∈ S if and only if Φ(λ) ∈ S.

(1) is easy to check, given that a weight 3 block B is Rouquier if and only if ia j > 2 for every i, j with
i ≺ j. (2) is laborious but straightforward, given the explicit description of the map Φ described above. �

Later we shall need to consider some explicit Scopes sequences which do not end with Rouquier
blocks, and we now introduce some notation which will make it easier to describe these. Suppose we
have a weight 3 block B with an abacus display in which there are more beads on runner i than runner
i + 1. Let C be the weight 3 block obtained by interchanging these two runners; then B and C form
a [3 : κ]-pair. If λ is a p-regular partition in B such that Dλ is non-exceptional for this pair, then we
write fi(λ) for Φ−1(λ). Thus fi is a partial function from the set of p-regular partitions in B to the set of
p-regular partitions in C. The partial function fi depends on the choice of abacus display for B, but we
shall always be clear about which abacus display we use. We tend to compose several of the functions
fi; for example, if p = 5, the partition (13, 6, 12) may be represented as

〈2, 4 | 3, 5, 42, 3〉 =

u u u u uu u u u uu u u u uu u uu ,

and we find that f4f3f2(λ) is defined and equals

〈3 | 3, 42, 3, 5〉 =

u u u u uu u u u uu u u u uu uuu .

2.8 Lowerable partitions

Here we prove some results which will help us to show that certain Ext1-spaces are zero by examin-
ing blocks of smaller weight. Suppose B is a weight 3 block of Sn, and µ is a p-regular partition in B.
If C is a block of Sn−1 of weight less than 3 and if Dµ↓C, 0, then we say that µ is lowerable (to C). In
this case, it is easy to see from the modular branching rules that Dµ↓C is a simple module, say Dµ− .

If µ is lowerable with Dµ↓C� Dµ− , then S µ− ↑B has a filtration by Specht modules S µ(1)
, . . . , S µ(t)

,
where µ(1), . . . , µ(t) are given by the Branching Rule. The partitions µ(1), . . . , µ(t) are totally ordered by
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the Jantzen–Schaper order, and we suppose that µ(1) B · · · B µ(t), so that µ(1) = µ. If w is the weight of
C, then we have t = 4 − w > 2, and we shall be interested in the partition µ(2). The next lemma relates
the parities of µ, µ− and µ(2).

Lemma 2.21. Suppose λ and µ are p-regular partitions lying in a weight 3 block of Sn, and that C is a
block of Sn−1 of weight less than 3.

1. If λ and µ are both lowerable to C, then Pλ = Pµ if and only if Pλ− = Pµ−.

2. If µ is lowerable to C, then Pµ , Pµ(2).

Proof. Suppose the abacus display for C is obtained from that for B by moving a bead from runner i to
runner i − 1. Suppose that in the abacus display for the core of B, the lowest bead on runner i − 1 lies
in position x, and the lowest bead on runner i lies in position y. We list all possible configurations of
runners i − 1 and i of µ, when µ is lowerable to C; in each case, we illustrate µ− and µ(2) as well.

There are twelve possible configurations, as follows.

µ µ− µ(2) µ µ− µ(2) µ µ− µ(2) µ µ− µ(2)

ppp pppu uu u
ppp pppu uuu

ppp pppu uuu
ppp pppu uu u

ppp pppu uuu
ppp pppu uuu

ppp pppu uuu uu
ppp pppu uuu uu

ppp pppu uuu uu
ppp pppu uu

u
ppp pppu uu
u

ppp pppu uu
u

µ µ− µ(2) µ µ− µ(2) µ µ− µ(2) µ µ− µ(2)ppp pppu uu u
ppp pppu uuu

ppp pppu uuu
ppp pppu uuu uu

ppp pppu uuu uu
ppp pppu uuu uu

ppp pppu uu uu u
ppp pppu uuuu u

ppp pppu uuuu u
ppp pppu uuu uu uu

ppp pppu uuu uu uu
ppp pppu uuu uu uu

µ µ− µ(2) µ µ− µ(2) µ µ− µ(2) µ µ− µ(2)ppp pppu uuu u
ppp pppu uuuu

ppp pppu uu uu
ppp pppu uuu u

ppp pppu uuuu
ppp pppu uu uu

ppp pppu uuu uu u
ppp pppu uuu uuu

ppp pppu uuu uuu
ppp pppu uuuu u

ppp pppu uuuuu
ppp pppu uuu uu

To prove (1), we must show that the conditionPµ = Pµ− depends only on the abacus display for the core
of B. If there is a bead on a runner other than i−1 or i of the abacus display for µwhich may be moved up
one space, then the corresponding bead on the display for µ− may also be moved up one space, and the
leg-lengths of the corresponding rim hooks will be the same. So we may move all such beads up in both
abacus displays without affecting the difference between the parities of µ and µ−. Then from the above
diagrams, we see that Pµ = Pµ− if and only if the number of beads in positions y + 1, y + 2, . . . , x + p−1
of the abacus display for the core of B, other than those lying on runners i − 1 and i, is even.

For (2), we may again move beads up on runners other than i − 1 and i of the abacus display for µ,
and move the corresponding beads up in the display for µ(2), without affecting the difference between
the parities of µ and µ(2). We may then verify that Pµ , Pµ(2) directly from the above diagrams. �

For the remainder of this subsection, we assume that B is a weight 3 block ofSn, and µ is a p-regular
partition in B lowerable to a block C ofSn−1, with Dµ↓C� Dµ− . Let µ = µ(1) B · · · B µ(t) be the partitions
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in B that can be obtained from µ− by moving a bead one place to the right. Thus these partitions are
precisely those labelling the Specht modules which appear as factors of the filtration of S µ− ↑B given by
the Branching Rule.

Proposition 2.22. Suppose λ is a p-regular partition in B with Pλ = Pµ. Then Ext1B(Dλ,Dµ) = 0 unless
Dλ lies in the second radical layer of Dµ− ↑B.

Proof. By Lemma 2.21(1), we have Ext1C(Dµ− ,Dλ↓C) = 0, even if Dλ↓C is non-zero, since the Ext1-
quiver of C is bipartite. Hence Ext1B(Dµ− ↑B,Dλ) = 0. Thus if Ext1B(Dλ,Dµ) , 0, then Dλ lies in the
second radical layer of Dµ− ↑B. �

We say that µ is regular-lowerable if the partition µ(2) is p-regular.

Proposition 2.23. Suppose µ is regular-lowerable. If Dλ is a simple module lying in the second radical
layer of Dµ− ↑B, then either λ = µ(2) or Dλ lies in the second radical layer of S µ.

Proof. Suppose that
S µ− ↑B= F0 > · · · > Ft = 0

is the filtration given by the Branching Rule, with Fi−1/Fi � S µ(i)
for i = 1, . . . , t. Since Dµ− ↑B is a

quotient of S µ− ↑B, it suffices to show that F1 has a simple cosocle Dµ(2)
. If C has weight 2 (so that

t = 2), then this is trivial, since in this case F1 = S µ(2)
.

Now suppose that C has weight 1, so that t = 3. The abacus display for B then has one more bead
on runner i − 1 than runner i; if we let D be the weight 3 block obtained by swapping runners i − 1 and
i, then B and D form a [3 : 1]-pair. The fact that Dµ− , 0 means that µ is a partition of the form ᾱk for
this pair, by Proposition 2.6, with µ− = α̌π−1(k) and µ(2) = β̄k. By Lemma 2.11, we have F1 � S γk↓B, and
thus have a simple cosocle Dβ̄k = Dµ(2)

.
The case where C has weight 0 (so that t = 4) follows in a very similar way, using Lemma 2.16. �

Corollary 2.24. Let λ be a p-regular partition in B with Pλ = Pµ. If either of the following conditions
holds, then Ext1B(Dλ,Dµ) = 0:

1. λ S µ(t);

2. µ is regular-lowerable to C, and λ 6B µ.

Proof. Suppose Ext1B(Dλ,Dµ) , 0. Then by Proposition 2.22, Dλ lies in the second radical layer of
Dµ− ↑B. By the Branching Rule, S µ− ↑B has a filtration in which the factors are precisely S µ(1)

, S µ(2)
, . . . , S µ(t)

.
Since Dµ− ↑B is a quotient of S µ− ↑B, we see that [S µ(i)

: Dλ] , 0 for some i, so that λ Q µ(i) Q µ(t).
If µ is regular-lowerable, then by Proposition 2.23 and Lemma 2.21(2), this implies that Dλ lies in

the second radical layer of S µ, so that λ B µ. �

3 Blocks forming two [3 : κ]-pairs

In this section, we suppose that B is a weight 3 block of Sn, and that there are distinct blocks A1 and
A2 of Sn−κ1 and Sn−κ2 respectively, such that Ar forms a [3 : κr]-pair with B, for r = 1, 2; we suppose
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that there is no other block A forming a [3 : κ]-pair with B. By induction, we assume that Theorem 1.1
holds for A1 and A2.

Suppose the abacus for A1 is obtained from the abacus for B by interchanging runners i − 1 and i,
while the abacus for A2 is obtained by interchanging runners j − 1 and j. Re-labelling A1 and A2 and
adjusting the number of beads in the abacus display if necessary, we may assume that i < j and that
there are at least as many beads on runner j − 1 as on runner i − 1.

Let λ and µ be p-regular partitions in B with Pλ = Pµ. If neither Dλ nor Dµ is exceptional for the
[3 : κr]-pair (Ar, B), then by induction, Proposition 2.18 and the Eckmann–Shapiro relations, we have
Ext1B(Dλ,Dµ) = 0. So we assume that one of Dλ and Dµ is exceptional for the pair (A1, B) and one is
exceptional for the pair (A2, B); in particular, we have κ1, κ2 6 2. Since a simple module in B cannot
be exceptional for both of these pairs, we find that (without loss of generality) Dλ is exceptional for the
pair (A1, B) and Dµ is exceptional for the pair (A2, B). We use some additional notation for exceptional
simple modules: if (A, B) is a [3 : κ]-pair and Dµ is an exceptional simple module in B, then we write

µ↓ =

γ j (if κ = 1 and µ = α j)

δ (if κ = 2 and µ = α).

By Corollary 2.9 and Lemma 2.15, we must have both λ Q µ↓ and µ Q λ↓ if Ext1B(Dλ,Dµ) , 0. We
consider the possible values of κ1 and κ2.

3.1 The case κ1 = κ2 = 2

This case is easily dealt with. The abacus for B can take one of three different forms:

1.

〈3a+1, 5b+1, 4c, 3d+1, 5e+1, 4 f , 3g〉 =

u pp p u u u u pp p u u pp p u u pp p u u u u pp p u u pp p u u pp p uu pp p u u u u pp p u u pp p u u pp p u u u u pp p u u pp p u u pp p uu pp p u u u u pp p u u pp p u u pp p u u u u pp p u u pp p u u pp p upp p u u pp p u u pp p u pp p u u pp p u u pp p u pp ppp p u u pp p u pp p pp p u u pp p u pp p pp ppp p pp p pp p pp p pp p pp p pp p ;

2.

〈3a+1, 5b+1, 4c+1, 6d+1, 5e, 4 f , 3g〉 =

u pp p u u u u pp p u u pp p u u u u pp p u u pp p u u pp p u u pp p uu pp p u u u u pp p u u pp p u u u u pp p u u pp p u u pp p u u pp p uu pp p u u u u pp p u u pp p u u u u pp p u u pp p u u pp p u u pp p upp p u u pp p u u pp p u u u u pp p u u pp p u u pp p u pp ppp p u u pp p u pp p u u pp p u u pp p u pp p pp ppp p pp p pp p u u pp p u pp p pp p pp ppp p pp p pp p pp p pp p pp p pp p
;

3.

〈3a+1, 5b+1, 7c+1, 6d, 5e, 4 f , 3g〉 =

u pp p u u u u pp p u u u u pp p u u pp p u u pp p u u pp p u u pp p uu pp p u u u u pp p u u u u pp p u u pp p u u pp p u u pp p u u pp p uu pp p u u u u pp p u u u u pp p u u pp p u u pp p u u pp p u u pp p upp p u u pp p u u u u pp p u u pp p u u pp p u u pp p u pp ppp p u u pp p u u u u pp p u u pp p u u pp p u pp p pp ppp p pp p u u pp p u u pp p u pp p pp p pp ppp p pp p u u pp p u pp p pp p pp p pp ppp p pp p pp p pp p pp p pp p pp p
.

In each of these abacus displays, a, b, c, d, e, f , g are non-negative integers. We have λ = 〈i, i, i〉 and
µ = 〈 j, j, j〉, where i = a + 2 and

j =


a + b + c + d + 4 (in case (1))

a + b + c + 4 (in case (2))

a + b + 3 (in case (3)).
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In none of these cases do we have λ Q µ↓, and so Ext1B(Dλ,Dµ) = 0 by Lemma 2.15.

3.2 The case κ1 = 2, κ2 = 1

In this case the abacus takes one of following three possible forms:

〈3a+1, 5b+1, 4c, 3d+1, 4e+1, 3 f 〉; 〈3a+1, 5b+1, 4c+1, 5d+1, 4e, 3 f 〉; 〈3a+1, 5b+1, 6c+1, 5d, 4e, 3 f 〉.

Here a, b, c, d, e, f are non-negative integers, and we have λ = 〈i, i, i〉 and µ = 〈 j, j〉 or 〈 j, j, l〉 for some
l , j − 1, where i and j are as in the previous section. If Ext1B(Dλ,Dµ) , 0, then we have λ Q µ↓ by
Corollary 2.9, which implies that µ = 〈 j, j, l〉 for 1 6 l 6 a + 1. But this implies that µ S λ↓, and so
Ext1B(Dλ,Dµ) = 0 by Lemma 2.15.

3.3 The case κ1 = 1, κ2 = 2

We consider B], λ�, µ�. We have Pλ� = Pµ� by Proposition 2.19, so that Ext1
B]

(Dλ� ,Dµ�) = 0 by
appealing to the previous case. Thus, Ext1B(Dλ,Dµ) = 0.

3.4 The case κ1 = κ2 = 1

Here the abacus for B takes one of two following forms:

1. 〈3a+1, 4b+1, 3c+1, 4d+1, 5e〉;

2. 〈3a+1, 4b+1, 5c+1, 4d, 3e〉.

Now λ = 〈i, i〉 or 〈i, i, l〉 for some l , i − 1, and µ = 〈 j, j〉 or 〈 j, j,m〉 for some m , j − 1. The only way
we can have λ Q µ↓ and µ Q λ↓ is in case (2) with b = 0, where we have

λ = 〈a + 2, a + 2, a + 3〉 or 〈a + 2, a + 2〉

and
µ = 〈a + 3, a + 3, a + 1〉 or 〈a + 3, a + 3, a + 3〉.

Note that P 〈a + 2, a + 2, a + 3〉 = P 〈a + 3, a + 3, a + 1〉 , P 〈a + 2, a + 2〉 = P〈a + 3, a + 3, a + 3〉, so
that it suffices to consider the cases

λ = 〈a + 2, a + 2, a + 3〉, µ = 〈a + 3, a + 3, a + 1〉

and
λ = 〈a + 2, a + 2〉, µ = 〈a + 3, a + 3, a + 3〉.

In the first case, we find that λ and µ both induce semi-simply to a Rouquier block, by Proposition 2.20,
and so Ext1B(Dλ,Dµ) = 0. In the second case we have λ = µ↓, and so Ext1B(Dλ,Dµ) = 0 by Corollary
2.12.

To summarise, we have proved the following in this section.

Proposition 3.1. Suppose B is a weight 3 block of Sn, and that there are exactly two blocks A1, A2

forming [3 : κi]-pairs with B. If Theorem 1.1 holds for A1 and A2, then it holds for B.
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4 Blocks with rectangular cores

In this section, we suppose that B is a weight 3 block of Sn, and that there is exactly one block A
forming a [3 : κ]-pair with B, with κ = 1. This means that B has a ‘rectangular’ core of the form (ab) for
some positive integers a and b with a + b 6 p. We put c = p − a − b, and represent partitions in B using
the 〈3a, 4b, 3c〉 abacus notation. An abacus display for A may be obtained by interchanging runners a
and a + 1.

We suppose that λ and µ are p-regular partitions in B, with Pλ = Pµ. If neither Dλ nor Dµ is excep-
tional for the [3 : 1]-pair (A, B), then by induction (together with Proposition 2.18 and the Eckmann–
Shapiro relations) Theorem 1.1 holds for λ and µ. So we suppose that Dλ is exceptional, i.e. λ is of the
form

α j =

〈a + 1, a + 1〉 ( j = a + 1)

〈a + 1, a + 1, j〉 ( j , a + 1)

for some j , a. Note that Dα�j is an exceptional simple module for the [3 : 1]-pair (A], B]).
By Corollary 2.9, we may assume that µ Q λ↓ = γ j.

4.1 Case 1: λ Q µ

We suppose in this subsection that λ Q µ. The condition α j Q µ Q γ j implies that µ is one of α j,
β j or γ j. Since Pβ j , Pα j, we only need to consider the cases µ = α j and µ = γ j. Furthermore, if β j

is p-regular, then Ext1B(Dα j ,Dα j) = 0 = Ext1B(Dα j ,Dγ j) by Corollary 2.12. Thus we may assume β j is
p-singular, for which we must have either both a = 2 and j = 1, or both a = 1 and 2 6 j 6 b + 1. We
note that the case µ = α j is dealt with in [16, Section 6], but in view of the general unease about that
paper, we provide a separate proof here.

For µ = α j, we may apply the Mullineux map and assume that α�j has a similar form. As noted
in [16], this implies that either a = 1, b = 2 and j = 2, or a = 2, b = 1 and j = 1; these two cases
correspond to each other under the Mullineux map, so it suffices to consider only the first. We apply the
partial function f = fpfp−1 · · · f3, and we find f(α j) = 〈2, 2 | 5, 4, 3p−3, 2〉. This is regular-lowerable, and
we may appeal to Corollary 2.24(2) to get Ext1(Df(α j),Df(α j)) = 0, and hence Ext1B(Dα j ,Dα j) = 0.

It remains to consider the case µ = γ j, with either both a = 2 and j = 1, or both a = 1 and
2 6 j 6 b + 1. We shall show that in these cases we have Ext1

B]
(Dα�j ,Dγ�j ) = 0. Applying the Mullineux

map to γ j, we find

γ�j =



〈b + 2, b + 3〉 (a = 2, j = 1, c > 1)

〈b + 2, b + 1〉 (a = 2, j = 1, c = 0)

〈b + 2, 1〉 (a = 1, j = 2, c > 1)

〈1〉 (a = 1, j = 2, c = 0)

〈b + 2, b + 3 − j〉 (a = 1, 3 6 j 6 b + 1, c > 1)

〈b + 3 − j〉 (a = 1, 3 6 j 6 b + 1, c = 0),

where the partitions on the right are written with the 〈3b, 4a, 3c〉 notation. First we note that γ�j is

always regular-lowerable in these cases, and so in order to have non-zero Ext1
B]

(Dα�j ,Dγ�j ) we need

[S γ�j : Dα�j ] > 0 by Propositions 2.22 and 2.23. But Dα�j is an exceptional simple module for the pair
(A], B]), and so by Proposition 2.7 we know in which Specht modules it lies. In particular, if γ�j is not an

exceptional partition for the pair (A], B]), then we have [S γ�j : Dα�j ] = 0, and hence Ext1
B]

(Dα�j ,Dγ�j ) = 0.
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Looking at the above list, we see that the only case where γ�j is an exceptional partition is where a = 1,
j = 3 and c = 0, where γ�j = 〈b〉. In this case we apply the Mullineux map to α j, and find that

α�j = 〈b + 1, b + 1〉. But now we have Ext1
B]

(Dα�j ,Dγ�j ) = 0 by Corollary 2.12, since the partition
〈b + 1, b | 3b, 4〉 is p-regular.

4.2 Case 2: λ S µ

Now we assume that λ S µ. First we note that if µ is a partition of the form αl for some l, then we
may interchange λ and µ; by Proposition 2.7 and Theorem 1.2, the partitions αl are totally ordered by
the dominance order, and so we then have λ Q µ, and we may appeal to the previous section. So we
assume that µ is not one of the partitions αl. If µ is regular-lowerable, then we get Ext1B(Dλ,Dµ) = 0 by
Corollary 2.24(2). If µ is lowerable, but not regular-lowerable, then µ is one of the partitions described
in the following table.

µ Conditions on a, b, c µ(2)

〈a + 1, 2〉 a > 2 〈a + 1, 1〉
〈a + 1, a + 2, 2〉 a, b > 2 〈a + 1, a + 2, 1〉

Here, if C is the block to which µ is lowerable, with Dµ↓C� Dµ− , then µ(2) is the other partition in B
that can be obtained from µ− by moving a bead one place to the right. Observe that in these cases, if
λ = α j S µ, then λ S µ(2), so that Ext1B(Dλ,Dµ) = 0 by Corollary 2.24(1).

So we turn to those partitions µ which are not lowerable. These were listed in [9, Table 1], and are
as follows.

µ Conditions on a, b, c
A 〈a + 1〉 —
B 〈a + b + 1, a + 1〉 b = 1, c > 1
C 〈a + 1, a + 2〉 b > 2
D 〈a + 1, a + b + 1〉 c > 1
E 〈1, a + 1〉 a > 2, c = 0
F 〈1, a + 1, a + b + 1〉 c > 1
G 〈a + 1, a + 2, a + 3〉 b > 3
H 〈a + 1, a + 2, a + b + 1〉 b > 2, c > 1
I 〈a + 1, a + b + 1, a + b + 2〉 c > 2
J 〈1, 2〉 a > 3, c = 0
K 〈1, 2, a + b + 1〉 a > 3, c > 1
L 〈1, a + b + 1, a + b + 2〉 a > 2, c > 2
M 〈a + b + 1, a + b + 2, a + b + 3〉 c > 3
N 〈1, a + b + 1〉 a > 2, c = 1

Recalling that λ = α j and µ Q γ j for some j , a, we may immediately discount cases J,K,L,M,N,
since in these cases there is no such j. We deal with most of the other cases by inducing both Dλ and
Dµ through a Scopes sequence until Dµ becomes regular-lowerable; the remaining cases are dealt with
by ad hoc methods.
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4.2.1 Induction 1

Consider the partial function f = fa−1fa−2 · · · f1fp. The effect of this is to move a bead (or two beads,
if c = 0) from runner p up to runner a. Applying this to λ = α j, we find that f(λ) is always defined; we
get

f(α j) =



〈a + 1, a + 1, p〉 ( j = 1 < a)

〈a + 1, a + 1, j − 1〉 (2 6 j 6 a − 1)

〈a + 1, a + 1〉 ( j = a + 1)

〈a + 1, a + 1, j〉 (a + 2 6 j 6 p − 1)

〈a + 1, a + 1, a〉 ( j = p > a + 1),

where the partitions on the right are in the 〈3a−1, 4b+1, 3c−1, 2〉 notation if c > 0, or the 〈3a−1, 5, 4b−1, 2〉
notation if c = 0.

Applying f to µ, we find in several cases that f(µ) is defined and regular-lowerable, with f(λ) S f(µ).
This gives Ext1(Df(λ),Df(µ)) = 0 by Corollary 2.24(2), and hence Ext1B(Dλ,Dµ) = 0 by the Eckmann–
Shapiro relations. We find that this works in cases A (except when b = 1, c = 0), C (except when
b = 2, c = 0), D, and G (except when c = 0). So in these cases we are done.

We now deal with cases E and F by applying the Mullineux map; if µ is in case E, then by [9, Table
1], µ� is in case A or case C for the block B], while if µ is in case F, then µ� is in case D for B]. So by
the cases we have already dealt with we have Ext1

B]
(Dλ� ,Dµ�) = 0, and so Ext1B(Dλ,Dµ) = 0.

4.2.2 Induction 2

Now assume c > 0, and consider the partial function f = fa+1fa+2 · · · fa+b. Again, we find that f(λ) is
always defined, with

f(α j) =


〈a + 2, a + 1, j〉 (1 6 j 6 a − 1 or j > a + b + 2)

〈a + 2, a + 1〉 ( j = a + 1)

〈a + 2, a + 1, j + 1〉 (a + 2 6 j 6 a + b)

〈a + 2, a + 2, a + 1〉 ( j = a + b + 1)

in the 〈3a+1, 4b, 3c−1〉 notation. Let f(λ)− be the partition obtained from f(λ) by moving the (unique
movable) bead on runner a + 1 one place to its left, and let C be the weight 2 block in which f(λ)−

lies. Let f(λ)(2) be the other partition besides f(λ) that can be obtained from f(λ)− by moving a bead on
runner a one place to its right. Since f(λ) is lowerable to the block C, we see that if f(µ) is defined and
Ext1(Df(λ),Df(µ)) , 0, then f(µ) Q f(λ)(2) by Corollary 2.24(1). For cases B, H and I, we find that f(µ) is
always defined, with

f(µ) =

〈a + 1, a + 2〉 , if µ is in Case B or H

〈a + 1, a + b + 2〉 if µ is in Case I.

Furthermore, f(µ) is always regular-lowerable to the block C. Thus, if Ext1(Df(λ),Df(µ)) , 0, we must
also have f(λ) B f(µ) by Corollary 2.24(2). By checking the above lists, we see that it is impossible to
have f(λ) B f(µ) Q f(λ)(2), so that Ext1(Df(λ),Df(µ)) = 0, and hence Ext1B(Dλ,Dµ) = 0 by the Eckmann-
Shapiro relations.
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4.2.3 Exceptional cases

Now we deal with the remaining cases. First suppose we are in case G, so that µ = 〈a+1, a+2, a+3〉
and b > 3, and we further assume that c = 0. Since µ Q γ j, we have j 6 a + 3 and j , a + 1. We can
also bound j below by applying the Mullineux map: Dα�j is an exceptional simple module for the pair
(A], B]), and so if Ext1

B]
(Dλ� ,Dµ�) , 0, then we have µ� Q λ�↓. We have

µ� =


〈b + 1, b + 2, b + 3〉 (a > 3)

〈b + 1, b + 2〉 (a = 2)

〈b + 1〉 (a = 1),

λ� =



〈b + 1, b + 1〉 ( j = 1, a > 2)

〈b + 1, b + 1, b + 2〉 ( j = a + 2, a > 2)

〈b + 1, b + 1〉 ( j = a + 2, a = 1)

〈b + 1, b + 1, 1〉 ( j = a + 1)

〈b + 1, b + 1, p + 2 − j〉 (otherwise),

so that

λ�↓ =



〈b〉 ( j = 1, a > 2)

〈b, b + 2〉 ( j = a + 2, a > 2)

〈b〉 ( j = a + 2, a = 1)

〈b, 1〉 ( j = a + 1)

〈b, p + 2 − j〉 (otherwise),

with all partitions written in the 〈3b, 4a〉 notation. The condition µ� Q λ�↓ implies that j > a − 1.
So we assume that j is one of a + 3, a + 2 or a − 1 (if a > 2). Examining parities, we see that if

j = a + 3 or a − 1 then Pλ , Pµ. So we may assume that j = a + 2, i.e. λ = 〈a + 1, a + 1, a + 2〉. But
now λ and µ both induce semi-simply to a Rouquier block by Proposition 2.20, and so we may appeal
to Proposition 1.5 and the Eckmann–Shapiro relations.

By applying the Mullineux map, we also deal with the exceptions in cases A and C. We conclude
the following.

Proposition 4.1. Suppose B is a weight 3 block of Sn, and that there is exactly one block A forming a
[3 : κ]-pair with B, with κ = 1. If Theorem 1.1 holds for A, then it holds for B.

5 Blocks with birectangular cores

In this section, we suppose B is a weight 3 block of Sn and that there is exactly one block A forming
a [3 : κ]-pair with B, and that κ = 2. This means that B has a ‘birectangular’ core ((2a + d)b, ab+c) for
some non-negative integers a, b, c, d summing to p, with a, b > 1. We represent the partitions in B on an
abacus with the 〈3a, 5b, 4c, 3d〉 notation, and we use the notation α, β, γ, δ for the exceptional partitions,
as described in §2.5.2.

We suppose λ and µ are p-regular partitions in B with Pλ = Pµ. If neither Dλ nor Dµ is exceptional
for the pair (A, B), then by induction, Proposition 2.18 and the Eckmann–Shapiro relations, we have
Ext1B(Dλ,Dµ) = 0. So we suppose that λ = α = 〈a+1, a+1, a+1〉. By Lemma 2.15, we can also assume
that µ Q λ↓ = δ = 〈a〉. We note that by Proposition 2.20, λ = α induces semi-simply to a Rouquier
block.
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5.1 Case 1: λ Q µ

If λ Q µ Q δ, then µ must be one of α, β, γ or δ. But Pβ = Pδ , Pα, so in fact we have µ = α

or γ. The case µ = α is easy to deal with – since α induces semi-simply to a Rouquier block, we have
Ext1B(Dα,Dα) = 0 by Proposition 1.5 and the Eckmann–Shapiro relations. So we are left with µ = γ.
If β is p-regular, then by Corollary 2.17 we have Ext1B(Dλ,Dµ) = 0; so we assume that β is p-singular,
which happens if and only if a = 1. The assumption that µ = γ is p-regular means that d > 1. We now
apply the Mullineux map, and we find

γ� = 〈b + 2, b + 2〉, α� = 〈b + 1, b + 1, b + 1〉

in the 〈3b, 5, 4d, 3c〉 notation. So γ� is regular-lowerable with α� S γ�, and we have Ext1
B]

(Dλ� ,Dµ�) = 0
by Corollary 2.24(2), and hence Ext1B(Dλ,Dµ) = 0.

5.2 Case 2: λ S µ

In this section, we suppose that λ S µ Q λ↓. If µ is regular-lowerable, then we have Ext1B(Dλ,Dµ) =

0 by Corollary 2.24(2). If µ is lowerable, but not regular-lowerable, then µ is one of the partitions
described in the following table.

µ Conditions on a, b, c µ(2)

〈a + 1, 2〉 a = 2 〈a + 1, 1〉
〈a + 1, a + 2, 2〉 a = 2, b > 2 〈a + 1, a + 2, 1〉
〈a + 1, a + b + 1, 2〉 a = 2, c > 1 〈a + 1, a + b + 1, 1〉

Here, if C is the block to which µ is lowerable, with Dµ↓C� Dµ− , then µ(2) is the other partition in B that
can be obtained from µ− by moving a bead one place to the right. Observe that in these cases, λ S µ(2)

so that Ext1B(Dλ,Dµ) = 0 by Corollary 2.24(1).
Thus we may assume that µ is not lowerable. The possibilities for such µ are listed in the following

table.

µ Conditions on a, b, c, d
A 〈a + 1〉 —
B 〈a + 1, a + 1〉 —
C 〈a + 1, a + 2〉 b > 2
D 〈a + 1, a + b + c + 1〉 d > 1
E 〈a + 1, a + b + 1〉 c > 1
F 〈a + b + 1, a + 1〉 b = 1, c > 1
G 〈a + 1, a + 2, a + b + 1〉 b > 2, c > 1
H 〈a + 1, a + b + 1, a + b + 1〉 c > 1
I 〈a + 1, a + b + 1, a + b + 2〉 c > 2
J 〈a + 1, a + b + 1, a + b + c + 1〉 c > 1, d > 1
K 〈a + 1, a + 1, a + b + c + 1〉 d > 1
L 〈a + b + c + 1, a + 1〉 c = 0, d > 1
M 〈a + 1, a + 1, a + 2〉 —
N 〈a + 1, a + 1, a + b + 1〉 c > 1
O 〈a + 1, a + 2, a + 3〉 b > 3
P 〈a + 1, a + 2, a + b + c + 1〉 b > 2, d > 1
Q 〈a + 1, a + b + c + 1, a + b + c + 2〉 d > 2
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5.2.1 Induction 1

Suppose b > 2, and consider the partial function f = fa−1fa−2 · · · f1fpfp−1 · · · fa+b. The effect of this is
to move a bead from runner a + b up to runner a + b + c, then two beads from runner a + b + c to runner
p, and then three beads from runner p up to runner a. We find that f(α) is defined, with

f(α) = 〈a + 1, a + 1, a + 1 | 3a−1, 6, 5b−1, 4c, 3d, 2〉.

In cases A, B, C (provided b > 3) and D, we find that f(µ) is defined and regular-lowerable, with
f(α) S f(µ). This means that Ext1(Df(λ),Df(µ)) = 0 by Corollary 2.24(2), so that Ext1B(Dλ,Dµ) = 0.

5.2.2 Induction 2

Now we suppose that c > 1, and consider f = fa−1fa−2 · · · f1fpfp−1 · · · fa+b+c. The effect of this is to
move a bead from runner a + b + c to runner p, and then to move two beads from runner p to runner a.
We find that

f(α) = 〈a + 1, a + 1, a + 1 | 3a−1, 5b+1, 4c−1, 3d, 2〉,

and that in the following cases f(µ) is defined and regular-lowerable, with f(α) S f(µ): cases E, F
(provided c > 2), G (provided c > 2), H (provided c > 2), I (provided c > 3), and J. So we have
Ext1B(Dλ,Dµ) = 0 for these cases.

5.2.3 Induction 3

Next we consider cases K and L; in these cases, d > 1. Let f = fa+1fa+2 · · · fa+b+c. We find that

f(λ) = 〈a + 2, a + 2, a + 1 | 3a+1, 5b, 4c, 3d−1〉,

f(µ) =

〈a + 1, a + 2 | 3a+1, 5b, 4c, 3d−1〉, if µ is in case K

〈a + 1 | 3a+1, 5b, 4c, 3d−1〉, if µ is in case L.

Let f(λ)− be the partition obtained from f(λ) by moving the (unique removable) bead on runner a + 1
one place to its left, and let C be the weight 2 block in which f(λ)− lies. Let f(λ)(2) = 〈a + 2, a +

2, a | 3a+1, 5b, 4c, 3d−1〉; then f(λ)(2) is the other partition that can be obtained from f(λ)− by moving
a bead on runner a one place to its right. Since λ is lowerable to C, and f(µ) S f(λ)(2), we see that
Ext1(Df(λ),Df(µ)) = 0 by Corollary 2.24(1), and thus Ext1B(Dλ,Dµ) = 0.

5.2.4 Inducing to a Rouquier block

As noted above, the partition α induces semi-simply to a Rouquier block. We also find that µ induces
semi-simply to a Rouquier block in all the remaining cases, so that Ext1B(Dλ,Dµ) = 0 by the Eckmann–
Shapiro relations.

We conclude the following.

Proposition 5.1. Suppose B is a weight 3 block of Sn, and that there is exactly one block A forming a
[3 : κ]-pair with B, with κ = 2. If Theorem 1.1 holds for A, then it holds for B.
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6 Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1. We do this by induction on n, with the initial case
being the principal block of S3p, with empty core. The Ext1-quiver of this block was found explicitly
by Martin and Russell [15, Theorem 5.1]. By checking through their explicit description, it is easy to
see that Theorem 1.1 holds for this block.

Now we suppose that B is a weight 3 block other than the principal block of S3p, and that λ and µ
are p-regular partitions in B. There is at least one block A such that A and B form a [3 : κ]-pair. If neither
Dλ nor Dµ is exceptional for this [3 : κ]-pair, then Theorem 1.1 holds for λ and µ by induction, using the
Eckmann–Shapiro relations and Proposition 2.18. So we may suppose that for every such A, at least one
of Dλ and Dµ is exceptional for the pair (A, B). A given exceptional simple module can be exceptional
for at most one such pair, and so we find that there are at most two blocks forming [3 : κ]-pairs with
B, and that for each such block we have κ 6 2. The case where there are two blocks is dealt with in
Section 3; the cases where there is only one are dealt with in Sections 4 (for κ = 1) and 5 (for κ = 2).
The theorem follows by induction.
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