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Abstract
We consider the t-core of an s-core partition, when s and t are coprime positive integers.

Olsson has shown that the t-core of an s-core is again an s-core, and we examine certain
actions of the affine symmetric group on s-cores which preserve the t-core of an s-core.
Along the way, we give a new proof of Olsson’s result. We also give a new proof of a result
of Vandehey, showing that there is a simultaneous s- and t-core which contains all others.
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1 Introduction

In this paper, we define a partition to be a infinite weakly decreasing sequence of non-
negative integers with finite sum. If s is a positive integer, then a partition is an s-core if it has
no rim s-hooks, or equivalently if none of its hook lengths is divisible by s. The s-core of an
arbitrary partition is obtained by removing as many rim s-hooks as possible.

The notion of an s-core was introduced in the representation theory of the symmetric group:
when s is a prime, the s-blocks of all symmetric groups of a given defect are indexed by the
s-cores, and the relationships between these blocks are controlled by the combinatorics of s-
cores. This can be generalised to representations of Iwahori–Hecke algebras of type A at an sth
root of unity (where s > 2 no longer needs to be prime).

This representation-theoretic work reveals a relationship between the set of s-cores and the
alcove geometry for the Coxeter group of type As−1, when s > 2. Specifically, s-cores are in
bijection with alcoves in the dominant region of the weight space, which in turn are in bijection
with cosets of the finite Coxeter group (of type As−1) in its affine counterpart (of type Ãs−1).
Furthermore, the action of these groups of the set of alcoves can be interpreted in terms of the
relationships between s-cores.

A recent trend in the study of s-cores has been to compare s-cores and t-cores, for different
integers s, t. For s > 2 there are infinitely many s-cores, but if s and t are coprime, there are
only finitely many partitions which are simultaneously s-cores and t-cores. The exact number
was found by Anderson [A], and these ‘(s, t)-cores’ have since been studied in more detail. In
particular, it is known that there is an (s, t)-core which is larger than the others, having size
1
24 (s2

− 1)(t2
− 1), and it was asked by Olsson and Stanton [OS] whether this partition contains

all (s, t)-cores. This question has been answered affirmatively by Vandehey in an unpublished
thesis [V]; in the present paper we give a simpler proof. Another avenue is pursued by Fishel
and Vazirani [FV], who examine (s, t)-cores in connection with alcove geometry in the cases
where t ≡ ±1 (mod s), exhibiting natural bijections between (s, t)-cores and (bounded) regions
in the extended Shi arrangement.

Another aspect of the comparison of s- and t-cores is a result of Olsson [O] which says that
if s and t are coprime and one takes the t-core of an s-core, then the resulting partition is still an
s-core. The main focus of this paper is to ask which (s, t)-core one obtains by taking the t-core of
an s-core. We explore how the symmetry of the set of s-cores is manifested when one replaces
each s-core with its t-core. One by-product of this is a new proof of Olsson’s result. We remark
here that the hypothesis that s and t are coprime in Olsson’s result is unnecessary, as observed
by Nath [N].

Experts in combinatorial representation theory will be aware of the theory of bar partitions
and m-bar-cores which control the combinatorics of spin representation of the symmetric group;
it is natural to ask whether analogues of these results in the present paper hold in this context.
We address these issues in a forthcoming paper [F].

We now summarise the layout of this paper. In Section 2, we give a brief account of s-cores
and abacus displays. In Section 3 we discuss alcove geometry and the affine Weyl group in
type A. We go into more detail here, since the conventions we use for alcoves are slightly
unusual. In Section 4 we connect s-cores with alcove geometry and prove our main results on
the symmetry inherent in taking the t-core of an s-core. Finally in Section 5 we examine the
largest (s, t)-core, and prove that it contains all (s, t)-cores.
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2 Partitions

2.1 Partitions and s-cores

A partition is a sequence λ = (λ1, λ2, . . . ) of non-negative integers such that λ1 > λ2 > · · ·
and the sum λ1 +λ2 + . . . is finite. When writing a partition, we usually omit the trailing zeroes.
A partition is often represented by its Young diagram, which is the set

[λ] =
{
(i, j) ∈ N2

∣∣∣ j 6 λi

}
.

We draw the Young diagram as an array of boxes in the plane; for example, the array

represents the partition (6, 6, 2, 1). (It is usual to use a symbol such as ∅ in place of the Young
diagram for the partition (0, 0, . . . ), but in this paper we shall just use an empty diagram.) The
rim of λ is the set of nodes (i, j) ∈ [λ] for which (i + 1, j + 1) < [λ].

Now fix a positive integer s. If λ is a partition, a rim s-hook of λ is a connected portion of
the rim, consisting of exactly s boxes, which can be removed from [λ] to leave a new Young
diagram. A partition is an s-core if it has no rim s-hooks. Starting from any partition λ and
repeatedly removing rim s-hooks, one obtains an s-core, which is independent of the choice of
rim hook removed at each stage; this s-core is referred to as the s-core of λ.

For example, the marked boxes in the following Young diagram for (6, 6, 2, 1) constitute
a rim 5-hook. When this is removed, the remaining partition is (5, 2, 2, 1), which has no rim
5-hooks, and so is the 5-core of (6, 6, 2, 1).

•

• • • •

The notion of an s-core derives from the representation theory of the symmetric group:
if s is a prime and λ, µ are two partitions of size n, the corresponding ordinary irreducible
representations of Sn lie in the same s-block of Sn if and only if λ and µ have the same s-core.
So the results in this paper can be interpreted as comparing the representation theory of the
symmetric group for two different primes. But from a combinatorial point of view, there is no
need to assume that s is prime.

2.2 Beta-numbers

Now we define beta-numbers and the abacus; these were introduced by James [J]. Given a
partition λ, define

βi = λi − i

for i ∈ N. Then the sequence β1, β2, . . . is a strictly decreasing sequence such that βi = −i for
sufficiently large i. Conversely, any such sequence is the sequence of beta-numbers of some
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partition. We refer to the set {β1, β2, . . . } as the beta-set of λ. Given a positive integer s, the
s-runner abacus is an abacus with s infinite vertical runners, numbered 0, . . . , s − 1 from left to
right; for each j, runner j has marked positions labelled by the integers congruent to j modulo
s increasing down the runner. For example, the 4-runner abacus is as follows.

0 1 2 3ppp ppp ppp ppp
−4 −3 −2 −1

0 1 2 3

4 5 6 7ppp ppp ppp ppp
The s-runner abacus display for λ is obtained by placing a bead on the abacus at position βi for
each i. The abacus display makes it very easy to see whether a partition is an s-core, since
removing a rim s-hook corresponds to moving a bead up into an empty space immediately
above it. Hence λ is an s-core if and only if in the s-runner abacus display for λ every bead has
a bead immediately above it. Moreover, it is easy to obtain the abacus display for the s-core of
λ from the abacus display for λ: one just slides beads up until there is no bead with an empty
space above it.

Example. Suppose λ = (6, 6, 2, 1). Then the beta-set for λ is

{5, 4,−1,−3,−5,−6,−7, . . . }.

So the 5-runner abacus display for λ is as follows.
0 1 2 3 4ppp ppp ppp ppp pppv v v v vv v v v vv v vvv
ppp ppp ppp ppp ppp

The abacus display of the 5-core (5, 2, 2, 1) of λ is obtained by moving the lowest bead on runner
0 up one position.

3 Alcoves and the affine symmetric group

In this section we introduce alcoves and the affine symmetric group. This material will be
very familiar to many readers, but we give a detailed account here because the conventions we
use are slightly unusual.

3.1 Alcoves and s-points

As before, we assume s is a positive integer. In fact, from now on we assume that s > 2. Let
Ps denote the affine space

Ps =
{

p ∈ Rs
∣∣∣∣ p1 + · · · + ps =

( s
2

)}
.
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We define the dominant region to be the subset of Ps consisting of points p for which p1 6 · · · 6 ps.
(Note that this is unconventional – the inequalities are usually taken the other way round.)

For each 1 6 i, j 6 s with i , j and for each integer k, we define the hyperplane

Hk
i j =

{
p ∈ Ps

∣∣∣ p j − pi = ks
}
,

and we letH =
{

Hk
i j

∣∣∣∣ 1 6 i < j 6 s, k ∈ Z
}
. The connected components of the complement in Ps

of the union of the hyperplanes inH are called alcoves. We will abuse terminology by referring
to the point (0, 1, . . . , s− 1) as the origin, and denoting it �. The alcove A containing this point is
called the fundamental alcove, and is bounded by the hyperplanes H0

i(i+1) (for 1 6 i < s) and H1
1s.

We define an s-point to be a point p ∈ Ps whose coordinates are integers which are pairwise
incongruent modulo s. Obviously each s-point is contained in some alcove, and as we shall see
below, each alcove contains a unique s-point.

Example. In the case s = 3, we can draw a picture of part of the plane Ps with 3-points and
hyperplanes marked as follows.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •�

0,−2, 5 −1, 0, 4 −2, 2, 3 −3, 4, 2

1,−1, 3 0, 1, 2 −1, 3, 1

3,−2, 2 2, 0, 1 1, 2, 0 0, 4,−1

0,−1, 4 −1, 1, 3 −2, 3, 2

2,−2, 3 1, 0, 2 0, 2, 1 −1, 4, 0

3,−1, 1 2, 1, 0 1, 3,−1

For any i, j, k as above, let rk
i j denote the orthogonal (with respect to the usual inner product

on Rs) reflection in the hyperplane Hk
i j; this is given by

rk
i j : p 7−→ p − (p j − pi − ks)(e j − ei),

where e1, . . . , es are the standard basis vectors. rk
i j preserves the set of hyperplanesH ; indeed,

one can check that

rk
i j(H

n
lm) =


Hn

lm ({i, j} ∩ {l,m} = ∅)
Hn−k

jm (i = l, j , m)

H2k−n
lm (i = l, j = m).

Hence the group generated by all the rk
i j preserves the set of alcoves. It also preserves the

set of s-points, and we can regard it as acting on the set of alcoves or the set of s-points, as
appropriate.
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3.2 The affine symmetric group

Now we consider the affine symmetric group. This is the group Ŝs with generators
σ0, . . . , σs−1 and relations

σ2
i = 1 for i = 0, . . . , s − 1,

σiσ j = σ jσi for i . j ± 1 (mod s),

σiσ jσi = σ jσiσ j for i ≡ j + 1 . j − 1 (mod s).

A level t action of Ŝs

There is a well-known action of Ŝs on Ps given by mapping the generators σ0, . . . , σs−1 to
the reflections in the walls of the fundamental alcove. In fact, we give a more general version
of this action. For any positive integer t, define the level t action ψt of Ŝs by

σi 7−→ r0
i(i+1) for i = 1, . . . , s − 1,

σ0 7−→ rt
1s.

Using the above formula for rk
i j(H

n
lm), one obtains conjugacy relations between the reflections

rk
i j, and from these it is easy to check that this really does give an action of Ŝs. Given σ ∈ Ŝs,

we shall write σ̌ for the image of σ under ψt, if t is understood. We may view ψt as an action
on the set of alcoves, or on the set of s-points, as appropriate.

It is worth while to write down explicitly the action of the generators σ0, . . . , σs−1:

σ̌i : (p1, . . . , ps) 7−→ (p1, . . . , pi−1, pi+1, pi, pi+2, . . . , ps) for i = 1, . . . , s − 1;

σ̌0 : (p1, . . . , ps) 7−→ (ps − st, p2, . . . , ps−1, p1 + st).

The next lemma, which is well-known, concerns the case t = 1.

Lemma 3.1. The image of the action ψ1 includes all the reflections rk
i j, and is transitive on the set of

alcoves.

Proof. Let G denote the image of ψ1. Then we have r1
1s ∈ G, and we also have

r0
1s = r0

(s−1)sr
0
(s−2)(s−1) . . . r

0
23r0

12r0
23 . . . r

0
(s−2)(s−1)r

0
(s−1)s ∈ G.

By repeatedly composing r0
1s and r1

1s, we find that rk
1s ∈ G for all k. And now we can see that

rk
i j ∈ G for all i, j, k with i < j by downwards induction on j− i: if j− i < s−1, then we have either

i > 1 or j < s. If i > 1, then then by induction rk
(i−1) j ∈ G, and hence rk

i j = r0
(i−1)ir

k
(i−1) jr

0
(i−1)i ∈ G.

On the other hand, if j < s, then rk
i( j+1) ∈ G by induction, and hence rk

i j = r0
j( j+1)r

k
i( j+1)r

0
j( j+1) ∈ G.

To see that the action is transitive on alcoves, we note that we can get from any alcove B
to any other alcove C by crossing some finite sequence of hyperplanes in H . Applying the
reflections in each of these hyperplanes in turn takes B to C. �

Since the fundamental alcove A clearly contains a unique s-point (namely the origin �), we
see that each alcove contains exactly one s-point. This gives a useful one-to-one correspondence
between s-points and alcoves.
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A second level t action of Ŝs

Now we assume that s, t are coprime, and consider another level t action of Ŝs on the set
of s-points. Given an s-point p and given i ∈ {0, . . . , s − 1}, let j, k be the unique elements of
{1, . . . , s} such that

p j ≡ (i − 1)t, pk ≡ it (mod s).

Define σ̃i(p) to be the point obtained by replacing p j with p j + t, and pk with pk − t. Clearly σ̃i(p)
is an s-point, and it is routine to verify that the map

χt : σi 7−→ σ̃i

defines an action of Ŝs on the set of s-points. Given any σ ∈ Ŝs, we write σ̃ for the image of σ
under χt, if t is understood.

Note that the maps σ̃ are not isometries, and there is no natural way to extend them to give
an action on the whole of Ps. However, using the natural correspondence between alcoves
and s-points, we may abuse notation and regard χt as an action of Ŝs on the set of alcoves.
Recalling that A denotes the alcove containing the origin (0, 1, . . . , s − 1), we then have the
following lemma, which is easy to check.

Lemma 3.2.
1. If t is a positive integer coprime to s, then the actions ψt, χt on the set of alcoves commute.

2. If t = 1 and i ∈ {0, . . . , s − 1}, then σ̌i(A) = σ̃i(A).

Now say that two alcoves are adjacent if there is only one hyperplane inH separating them.

Corollary 3.3. Suppose B is an alcove, and i ∈ {0, . . . , s − 1}, and define σ̃i using the level 1 action χ1.
Then σ̃i(B) is adjacent to B.

Proof. Write σ̌ for the image of σ ∈ Ŝs under the level 1 action ψ1. Since this action is transitive
on the set of alcoves, we can write B = σ̌(A) for some σ. Hence

σ̃i(B) = σ̃i(σ̌(A))

= σ̌(σ̃i(A)) by Lemma 3.2(1)

= σ̌(σ̌i(A)). by Lemma 3.2(2)

Clearly A and σ̌i(A) are adjacent, and since σ̌ is an affine transformation of Ps, it preserves
adjacency of alcoves. �

Using a very similar argument, one can show that if p is an s-point and B the alcove
containing it, then each alcove adjacent to B contains the point σ̃i(p) for some i.

3.3 s-sets

Define an s-set to be a set of s integers which are pairwise incongruent modulo s and whose
sum is

( s
2

)
. There is an s!-to-1 map from s-points to s-sets, given by forgetting the order of

coordinates. When restricted to the set of s-points in the dominant region, this map becomes
a bijection. Given the correspondence between s-points and alcoves, we have an s!-to-1 map
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from the set of alcoves to the set of alcoves in the dominant region; this is given by ‘folding’ Ps

along the hyperplanes H0
i j for all i, j. This folding will be useful in understanding symmetry

later.
Note that our second action χt of Ŝs on the set of s-points descends to an action on s-sets

(although the action ψt does not). We use the same notation χt (and σ̃) for this action on s-sets
without fear of confusion.

4 The t-core of an s-core

Now we come to the main part of the paper. We suppose s, t are coprime integers with
s > 2, and we compare the t-cores of different s-cores. By representing s-cores as s-points, we
use the geometric symmetry of the last section to see the symmetry of t-cores of s-cores.

4.1 s-cores and s-sets

Recall that a partition is an s-core if and only if in its s-runner abacus display every bead
has a bead immediately above it. This means that if we take an s-core λ and then for each
i = 0, . . . , s − 1 define ai to be the number of the highest unoccupied position on runner i, then
ai ≡ i (mod s) for each i, and

a0 + · · · + as−1 = 0 + 1 + 2 + · · · + s − 1 =
( s

2

)
.

Hence the set {a0, . . . , as−1} is an s-set. We denote this s-set Q(λ), and we let pλ be the corre-
sponding s-point in the dominant region, i.e. the point whose coordinates are the elements of
Q(λ) arranged in ascending order.

For example, taking s = 5 and returning to the 5-core (5, 2, 2, 1) from the example in §2.2,
we have

Q((5, 2, 2, 1)) = {5,−4, 2,−2, 9}, p(5,2,2,1) = (−4,−2, 2, 5, 9).

It is easy to check that any s-set is obtained from an s-core in this way: given an s-set Q,
construct an abacus display in which there is a bead at position b if and only if there is an
element of Q below b on the same runner; this is then the abacus display of an s-core λ, with
Q(λ) = Q. Hence we have a natural bijection between s-cores and s-sets, and therefore between
s-cores and alcoves in the dominant region. Using this bijection, we may regard the action χt

of the affine symmetric group on s-sets as an action on the set of s-cores.

Example. In Figure 1 we illustrate the bijection between 3-cores and alcoves in the dominant
region of P3, by drawing the Young diagram of a 3-core inside the corresponding alcove. (Recall
that we use the empty diagram for the partition (0, 0, . . . ).)

The aim of this paper is to compare the t-cores of different s-cores, when s and t are coprime
integers. If we take t = 4, and expand and redraw Figure 1 with each 3-core replaced by its
4-core, we get the diagram on the first page of this paper.

Remark. In the case t = 1, there is a more familiar description of the action χ1 on s-cores; this
is described in [L, §4] and elsewhere. Given a partition λ, say that a box in [λ] is removable if
it can be removed to leave the Young diagram of a partition (i.e. it constitutes a rim 1-hook),
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Figure 1: the correspondence between 3-cores and dominant alcoves in P3

while a box not in [λ] is an addable box of λ if it can be added to [λ] to give a Young diagram.
The residue of the box (i, j) is defined to be the residue of j − i modulo s.

Now when t = 1, the action of σ̃k on an s-core λ is given by adding all the addable boxes of
residue k to λ, or removing all the removable boxes of residue k (an s-core cannot have addable
and removable boxes of the same residue). In terms of the abacus display forλ, this corresponds
to interchanging the (k − 1)th and kth runners of the abacus (with a slight modification in the
case k = 0).

This interpretation can be generalised to t > 1, if one considers addable and removable
rim t-hooks, with a suitable notion of residue. We leave the interested reader to work out the
details.

4.2 s-cores having the same t-core

In comparing the t-cores of different s-cores, the following proposition will be crucial.

Proposition 4.1. Suppose s, t are coprime positive integers. Suppose λ, µ are s-cores, and that there is
a bijection φ : Q(λ) → Q(µ) such that φ(b) ≡ b (mod t) for every b ∈ Q(λ). Then λ and µ have the
same t-core.

Proof. We use induction on the size of λ. If λ is not itself a t-core, then there is some b in the
beta-set for λ such that b− t is not in the beta-set for λ. If we let a be the element of Q(λ) which
is congruent to b modulo s, then the element of Q(λ) congruent to b − t is a − t − ds for some
d > 0. Let λ− be the s-core defined by

Q(λ−) = Q(λ) ∪ {a − t, a − ds} \ {a, a − t − ds}.
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The beta-set for λ− is obtained from the beta-set for λ by replacing

a − s, a − 2s, . . . , a − ds

with
a − t − s, a − t − 2s, . . . , a − t − ds.

Hence λ− is obtained from λ by removing d rim t-hooks. So λ− is smaller than λ, and has the
same t-core. λ− and µ satisfy the hypotheses of the proposition, so by induction λ− has the
same t-core as µ, and we are done.

So we may assume that λ is a t-core. Symmetrically, we may assume µ is a t-core, and we
must show that λ = µ. In other words, we need to show that a partition λ which is both an
s-core and a t-core is determined uniquely by the integers

ni =
∣∣∣∣{a ∈ Q(λ)

∣∣∣ a ≡ i (mod t)
}∣∣∣∣

for i = 0, . . . , t − 1.
Since s and t are coprime, we can write the elements ofQ(λ) as b0, . . . , bs−1 in such a way that

b j ≡ −t j (mod s) for each j. The fact that λ is a t-core means that for every a in the beta-set for λ
we have a− t also in the beta-set for λ, and this gives b j > b j−1 − t for each j (reading subscripts
modulo s). So if we write b j = b j−1 − t + m js for each j, then m0, . . . ,ms−1 are non-negative
integers which sum to t.

Now consider the following cyclic sequence of length s + t:

S = (b0 − t, b0 − t + s, b0 − t + 2s, . . . , b1,

b1 − t, b1 − t + s, b1 − t + 2s, . . . , b2,

...

bs−1 − t, bs−1 − t + s, bs−1 − t + 2s, . . . , b0).

The steps between consecutive terms of S are either −t (s times) or +s (t times). Hence modulo
t, the steps are 0 or +s. Since s generates the cyclic group of integers modulo t, this means that
S contains at least one term of each residue class modulo t. Moreover, the terms in S change
modulo t only t times, so the terms in a given residue class modulo t must be consecutive in S.

Claim. For each i, S contains at least ni + 1 terms congruent to i modulo t.

Proof. We have just seen that this is true if ni = 0, so suppose ni > 0. S contains all the
ni elements of Q(λ) congruent to i modulo t, and if we let a denote the smallest of these
integers, then S also contains a − t < Q(λ).

Since
∑

i(ni + 1) = s + t, there must be exactly ni + 1 terms in S congruent to i modulo t for
each i. And now S is determined up to translation and cyclic permutation by the integers ni:
starting from the largest term divisible by t, S consists of n0 + 1 terms divisible by t (with steps
of −t between them), and then a step of +s, then ns + 1 terms congruent to s modulo t (with
intervening steps of −t), and then a step of +s, and so on.

So the integers ni determineSup to translation and cyclic permutation, and hence determine
Q(λ) up to translation. But the sum of the elements of Q(λ) must be

( s
2

)
, so Q(λ), and hence λ,

is determined. �
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Using this proposition, we see that the action χt of Ŝs on the set of s-cores preserves the
t-core of a partition.

Proposition 4.2. Suppose s and t are coprime positive integers with s > 1, and for i ∈ {0, . . . , s − 1}
write σ̃i for the image of σi under the action χt. If λ is an s-core, then λ and σ̃i(λ) have the same t-core.

Proof. By definition, σ̃i does not change the multiset of residues modulo t of the elements of an
s-set. Hence by Proposition 4.1, it does not change the t-core of the corresponding s-core. �

We shall refer to an orbit in the set of s-cores under the action χt as a level t orbit. From
Proposition 4.2, we see that two s-cores have the same t-core if they lie in the same level t orbit.
In fact, we shall see that they have the same t-core only if they lie in the same level t orbit; the
way we do this is to show that each level t orbit contains a t-core. Before we do this, it will be
helpful to introduce some more notation: for s, t coprime, define Rs

t to be the level t rhomboid

R
s
t =

{
p ∈ Ps

∣∣∣ 1 6 pi+1 − pi 6 t for i = 1, . . . , s − 1
}
.

For example, the rhomboid R3
4 is the shaded portion of the dominant region of P3 shown in the

following diagram.

•

•

•

•

−3, 1, 5

0, 1, 2

−1, 0, 4 −2, 2, 3

Now we have the following; recall that pν denotes the dominant s-point corresponding to
an s-core ν.

Proposition 4.3. Suppose s and t are coprime integers with s > 1, and that O is a level t orbit. Let ν be
an element of O for which the sum

∑
k∈Q(ν) k2 is minimised. Then pν lies in Rs

t , and ν is a t-core.

Proof. Suppose pν = (p1, . . . , ps) lies outside Rs
t . By definition we have p1 < · · · < ps, so the

fact that pν is outside Rs
t means that p j+1 − p j > t for some j. If we let f be the permutation of

{1, . . . , s} such that p f (i) ≡ it (mod s) for each i, then there must be some i such that f (i − 1) 6 j
and f (i) > j (reading i − 1 modulo s); this then implies that p f (i) − p f (i−1) > t. But now consider
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Q(σ̃i(ν)); this is obtained fromQ(ν) by replacing p f (i−1) and p f (i) with p f (i−1) + t and p f (i)− t. Since
p f (i) − p f (i−1) > t, this gives ∑

k∈Q(σ̃i(ν))

k2 <
∑

k∈Q(ν)

k2,

a contradiction.
So pν lies in Rs

t . Proving that ν is a t-core is very similar: if it is not, then we can find j, k
such that pk − p j = t + as for some a > 0. Letting i be such that pk ≡ it (mod s) and applying σ̃i,
we derive a contradiction as above. �

As a consequence, we see that the element ν ∈ O is uniquely defined, since by Proposition
4.2 O cannot contain more than one t-core. Another consequence is a new proof of the following
result of Olsson [O, Theorem 1].

Theorem 4.4. Suppose s and t are coprime positive integers, and λ is an s-core. Then the t-core of λ is
also an s-core.

Proof. The case s = 1 is trivial, so we may assume s > 1. Then by Proposition 4.3, the level t
orbit O containing λ also contains a t-core ν. By Proposition 4.2 λ and ν have the same t-core,
i.e. ν is the t-core of λ. Since ν ∈ O, ν is an s-core. �

Another consequence of Proposition 4.3 is that two s-cores have the same t-core only if they
lie in the same level t orbit.

Corollary 4.5. Suppose s and t are coprime integers, and that λ and µ are s-cores which have the same
t-core. Then λ and µ lie in the same level t orbit.

Proof. Let ν be the t-core of λ and µ. Then ν lies in both the level t orbit containing λ and the
level t orbit containing µ; so these orbits coincide. �

4.3 Symmetry

Now we consider the symmetry in the diagram on the first page. We have seen that under
the actionχt on s-cores, the t-core of an s-core is preserved. However, this symmetry is obscured
in the diagram on the first page because of the replacement of s-points by s-sets, or equivalently
alcoves by dominant alcoves.

To show the symmetry corresponding to χt, we consider the whole of the space Ps. In our
examples, we continue to take s = 3 and t = 4. Figure 2 shows part of the plane P3. The marked
3-points are those in the level 4 orbit containing the origin.

To see the corresponding orbit on 3-sets, we fold the diagram in Figure 2 along the bold
lines (which represent the hyperplanes H0

12, H0
23, H0

13). We obtain the diagram in Figure 3,
which shows just the alcoves in the dominant region. Comparing this with the diagram on the
first page, we see that this orbit corresponds to the set of 3-cores whose 4-core is empty.

Now we consider the additional symmetry in the diagram on the first page: the reader will
observe that the cores in the diagram are invariant under reflection in the bold lines. These
reflections (extended to the whole plane P3) are the reflections contained in the image of the
action ψ4. The next proposition shows that this symmetry holds in general.
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2: the level 4 orbit of the origin in P3

Proposition 4.6. Suppose s, t are coprime, and p, q are s-points which lie in the same orbit under the
level t action ψt. Then the s-cores corresponding to p, q have the same t-core.

Proof. This is immediate from Proposition 4.1 and the formulæ for σ̌0, . . . , σ̌s−1 in §3.2. �

Note that, unlike the orbits for the action χt, different orbits under ψt can yield the same
t-core; this can be seen in the diagram on the first page, where there are six different orbits
yielding the empty partition.

There is further symmetry in the diagram on the first page. The image of the action ψt is
generated by the reflections in the hyperplanes H0

i(i+1) for 1 6 i < s, and Ht
1s. These hyperplanes

bound a simplex which may be obtained by dilating the fundamental alcove by a factor of t,
fixing the point x0 = ( s−1

2 , . . . ,
s−1

2 ). The vertices of this simplex are the points x0, . . . , xs−1 defined
by

(xi) j =


s − 1

2
+ (i − s)t ( j 6 i)

s − 1
2

+ it ( j > i).

There is a unique affine-linear map αt : Ps
→ Ps which permutes these vertices cyclically: this
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• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3: the level 4 orbit of the origin in the dominant region of P3

is given by
αt(p1, . . . , ps) = (ps − (s − 1)t, p1 + t, p2 + t, . . . , ps−1 + t).

One can check that this map preserves the set of s-points, and also the set of alcoves. Using
Proposition 4.1 and the formula above, we see that if p is an s-point, then the s-cores corre-
sponding to p and αt(p) have the same t-core. In the diagram on the first page, this can be seen
as a rotational symmetry: the dilated fundamental alcove is the large triangle at the top of the
diagram bounded by bold lines, and one can see that rotating this triangle through angle 2π

3
preserves the t-cores in the diagram.

5 The largest (s, t)-core

We continue to assume that s, t are coprime positive integers with s > 2. An (s, t)-core means
a partition which is both an s-core and a t-core. It can be inferred from the results in previous
sections that there are only finitely many (s, t)-cores. In fact, the exact number of (s, t)-cores is

1
s + t

( s + t
s

)
, as was shown by Anderson [A, Theorems 1 & 3].

The aim in this section is to show that one of these (s, t)-cores contains all the others. To
describe this (s, t)-core and to set up the proof, recall the level t rhomboid

R
s
t =

{
p ∈ Ps

∣∣∣ 1 6 pi+1 − pi 6 t for i = 1, . . . , s − 1
}
.

Proposition 4.3 implies that if ν is an (s, t)-core, then the point pν lies in Rs
t .

The vertex of Rs
t opposite the origin will be denoted O; this has coordinates(

s − 1 + t(1 − s)
2

,
s − 1 + t(3 − s)

2
,

s − 1 + t(5 − s)
2

, . . . ,
s − 1 + t(s − 1)

2

)
.



The t-core of an s-core 15

Since at least one of s, t is odd, these coordinates are integers, and so O is an s-point. Looking
at the beta-set of the corresponding s-core, we see that it is a t-core (cf. the proof of Proposition
4.1). Following [OS] we denote this partition κs,t. This partition has been studied before; it was
conjectured by Kane [K] that its size is 1

24 (s2
− 1)(t2

− 1), and this was proved by Olsson and
Stanton [OS, Theorem 4.1], together with the fact that κs,t is the unique largest (s, t)-core. In
fact, the following stronger statement is true.

Theorem 5.1. [V, Theorem 2.4] Suppose s and t are coprime positive integers, and λ is an (s, t)-core.
Then [λ] ⊆ [κs,t].

This theorem answers a question of Olsson and Stanton [OS, Remark 4.11], who prove the
theorem in the case t = s + 1. Our aim in this section is to give a new proof of this theorem.

We shall prove Theorem 5.1 using the correspondence between alcoves and s-cores. First
we need a result about hyperplanes meeting Rs

t .

Lemma 5.2. Suppose 1 6 i < j 6 s and k ∈ Z are such that the hyperplane Hk
i j intersects Rs

t . Then the

origin and the point O lie on opposite sides of Hk
i j.

Proof. For every point in p ∈ Rs
t we have j − i 6 p j − pi 6 ( j − i)t, so the statement that Hk

i j

meets Rs
t implies that

j − i
s
< k <

( j − i)t
s

(equality cannot hold on either side because
j − i

s
,

( j − i)t
s

are not integers). Writing � = (�1, . . . ,�s) for the origin, we have � j − �i = j − i; on the other
hand, writing O = (O1, . . . ,Os), we have O j − Oi = ( j − i)t. Hence � and O lie on opposite sides
of Hk

i j. �

For the rest of this section σ̃0, . . . , σ̃s−1 denote the images of the generators σ0, . . . , σs−1 under
the level 1 action χ1 (not the level t action) of Ŝs.

First we show that if λ is an s-core, then one of the Young diagrams [λ], [σ̃i(λ)] contains the
other.

Lemma 5.3. Suppose λ is an s-core, and i ∈ {0, . . . , s−1}. Let a and b be the elements ofQ(λ) congruent
to i − 1 and i modulo s, respectively. If b 6 a + 1, then [σ̃i(λ)] ⊇ [λ].

Proof. We obtainQ(σ̃i(λ)) fromQ(λ) by replacing a, b with a+1, b−1. Since b 6 a+1, this means
that the beta-set for σ̃i(λ) is obtained from the beta-set for λ by increasing each of the numbers

b − 1, b − 1 + s, b − 1 + 2s, . . . , a − s

by 1. So for each j the jth beta-number for σ̃i(λ) is either equal to or one greater than the jth
beta-number for λ; hence for each j we have either (σ̃i(λ)) j = λ j or (σ̃i(λ)) j = λ j + 1. And so
[σ̃i(λ)] ⊇ [λ]. �

We now consider this containment relation in terms of alcoves. Recall that for any alcove B
and for any i, the alcove σ̃i(B) is adjacent to B.

Lemma 5.4. Suppose p is an s-point, and i ∈ {0, . . . , s − 1}. Let B be the alcove containing p, let H be
the unique hyperplane inH separating B and σ̃i(B), and let λ be the s-core corresponding to p. Suppose
the origin lies on the same side of H as p. Then [σ̃i(λ)] ⊇ [λ].
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Proof. Write p = (p1, . . . , ps), and let j, l be such that p j ≡ i − 1 and pl ≡ i (mod s). Then σ̃i(p) is
obtained by replacing p j with p j + 1 and pl with pl − 1.

If we let k =
p j − pl + 1

s
, then we see that p and σ̃i(p) lie on opposite sides of Hk

l j. Hence we

must have H = Hk
l j. We have p j − pl < sk, so the fact that the origin lies on the same side of H as

p means that j − l < sk, whence k > 0, so that pl 6 p j + 1. Now the result follows from Lemma
5.3. �

Now we can prove Theorem 5.1. In fact, we prove a stronger statement.

Proposition 5.5. Suppose s, t are coprime and p is an s-point in Rs
t , and let λ be the corresponding

s-core. Then [λ] ⊆ [κs,t].

Proof. Consider the hyperplanes in H which meet the line segment joining p to O. Each of
these hyperplanes meets Rs

t , so by Lemma 5.2 has the origin and O on opposite sides of it.
By slightly deforming the line segment from p to O if necessary, we can construct a path

which meets each of these hyperplanes once without meeting two of them simultaneously, and
does not meet any other hyperplane in H . If we let B0, B1, . . . , Bd be the alcoves meeting this
path, and p0, . . . , pd the s-points contained in these alcoves, then we have p0 = p and pd = O.
Moreover, for each l = 1, . . . , d, the points pl−1 and pl lie in adjacent alcoves, so there is some il
such that pl = σ̃il(p

l−1). If we let H(l) be the hyperplane separating Bl−1 and Bl, then pl lies on the
same side of H(l) as O, and so the origin lies on the opposite side of H(l) to pl. Hence, if we write
λ(l) for the s-core corresponding to pl for each l, then by Lemma 5.4 we have

[λ] = [λ(0)] ⊆ [λ(1)] ⊆ · · · ⊆ [λ(d)] = [κs,t]. �

Since pν ∈ Rs
t for every (s, t)-core ν, Proposition 5.5 implies Theorem 5.1.

Remark. In fact, our results can be interpreted as a rather stronger result than just saying that
κs,t contains every (s, t)-core, by considering further the Coxeter group Ŝs. We summarise this
very briefly. The level 1 action of Ŝs on alcoves is faithful; under the s!-to-1 map that sends
alcoves to dominant alcoves, the alcoves that map to the fundamental alcove A are precisely
those of the form σ̃(A) for σ in the parabolic subgroupSs of Ŝs generated by σ1, . . . , σs−1. Hence
there is a bijection between dominant alcoves and left cosets of Ss in Ŝs, given by σ̃(A)↔ σSs.
Given our bijection between dominant alcoves and s-cores, we have a bijection between the set
of s-cores and the set Ŝs/Ss of left cosets of Ss in Ŝs.

There are two well-known partial orders on Ŝs/Ss: the Bruhat order and the left order. To
describe these, we need to recall that each left coset contains a unique minimal representative,
i.e. an element whose length with respect to the generators σ0, . . . , σs−1 is minimised. Given
two elements σ, τ which are minimal representatives of their cosets σSs and τSs, we say that
σSs 6 τSs in the Bruhat order if there is a reduced expression for τ from which we can delete
some terms to yield an expression for σ. On the other hand, we say that σSs 6 τSs in the left
order if there is a reduced expression for τ from which we can delete an initial segment to yield
an expression for σ. Obviously the Bruhat order is a refinement of the left order.

Now suppose λ and µ are the s-cores corresponding to σ, τ. It is shown in [L, Proposition
4.1] that [λ] ⊆ [µ] if and only if σSs 6 τSs in the Bruhat order. What the results in this section
show is that if ν is an (s, t)-core and πSs, ρSs are the cosets corresponding to ν and κs,t, then
πSs 6 ρSs in the left order, which is a stronger condition.
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