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Abstract

We study combinatorial blocks of multipartitions, exploring further the notions of weight,
hub and core block introduced by the author in earlier papers. We answer the question of which
pairs (w, θ) occur as the weight and hub of a block, and we examine the action of the affine Weyl
group on the set of blocks.

1 Introduction

The study of the representation theory of the symmetric groups (and, more recently, the Iwahori–
Hecke algebras of type A) has always been inextricably linked with the combinatorics of partitions.
More recently, the complex reflection group of type G(r, 1,n) and its Hecke algebras (the Ariki–Koike
algebras or cyclotomic Hecke algebras) have been studied, and it is clear that there is a similar link
to algebraic combinatorics, but with multipartitions playing the rôle of partitions. This paper is
intended as a contribution to the study of the combinatorics of multipartitions, as it relates to the
Ariki–Koike algebra.

An important manifestation of multipartition combinatorics is in the block classification for
Ariki–Koike algebras. Given an Ariki–Koike algebra Hn of G(r, 1,n) and a multipartition λ of
n with r components, there is an important Hn-module Sλ called a Specht module. Each Specht
module lies in one block of Hn and each block contains at least one Specht module, so the block
classification forHn amounts to deciding when two Specht modules lie in the same block. Graham
and Lehrer [4] gave a combinatorially-defined equivalence relation ∼ on the set of multipartitions,
and conjectured that Specht modules Sλ and Sµ lie in the same block of Hn if and only if λ ∼ µ.
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This was recently proved by Lyle and Mathas [5], and their proof uses some of the author’s earlier
work on the relation ∼ and its equivalence classes (which are referred to as combinatorial blocks or
blocks of multipartitions).

Despite this important application, blocks of multipartitions are not well understood, except
in the case r = 1. In [1, 2], the author introduced the notions of weight, hub and core block in an
attempt to generalise some familiar notions from the case r = 1. In this paper, we continue to study
these notions, by addressing the question of existence of a block with given weight and hub, and
studying the natural action of the affine Weyl group of type A(1)

e−1 on the set of blocks.

2 Background and notation

2.1 Multipartitions, residues and blocks

A partition is a non-increasing sequence λ = (λ1, λ2, . . . ) of non-negative integers such that the
sum |λ| = λ1 + λ2 + . . . is finite. We say that λ is a partition of |λ|. The unique partition of 0 is
referred to as the empty partition, and written as �.

If λ and µ are partitions, then we say that λ dominates µ and write λ Q µ if

λ1 + · · · + λi > µ1 + · · · + µi

for all i > 1. If λ is a partition, then the conjugate partition λ′ is given by

λ′j =
∣∣∣∣{i > 1

∣∣∣ λi > j
}∣∣∣∣ .

It is easy to show that λ Q µ if and only if µ′ Q λ′.
Throughout this paper r is a fixed positive integer. A multipartition is an r-tupleλ = (λ(1), . . . , λ(r))

of partitions, which are called the components of λ. We write |λ| = |λ(1)
|+ · · ·+ |λ(r)

|, and say that λ is
a multipartition of |λ|. The unique multipartition of 0 is referred to as the empty multipartition, and
written as ∅.

If λ is a multipartition, the Young diagram of λ is a subset ofN2
× {1, . . . , r}; we refer to elements

of the latter set as nodes, and write them in the form (i, j)k, with i, j ∈ N and 1 6 k 6 r. The Young
diagram of λ is the set {

(i, j)k ∈N
2
× {1, . . . , r}

∣∣∣∣ j 6 λ(k)
i

}
,

whose elements are called the nodes of λ. We may abuse notation by not distinguishing between
λ and its Young diagram. A node (i, j)k of λ is removable if λ \ {(i, j)k} is the Young diagram of some
multipartition, while a node (i, j)k not in λ is an addable node of λ if λ∪ {(i, j)k} is the Young diagram
of a multipartition.

Now suppose e ∈ {2, 3, . . . } ∪ {∞} and that a = (a1, . . . , ar) ∈ (Z/eZ)r. If (i, j)k is a node, then its
residue is defined to be the element j− i + ak ofZ/eZ. A node of residue l is referred to as an l-node.
The content of a multipartition λ is the e-tuple (cl(λ))l∈Z/eZ, where cl(λ) is the number of nodes of λ
of residue l. If λ and µ are multipartitions, then we write λ ∼ µ if λ and µ have the same content.
Clearly ∼ is an equivalence relation, and we refer to an equivalence class under this relation as a
block (of multipartitions). These definitions depend on the choice of e and a, and we may write
λ ∼e;a µ or use the terms ‘(e; a)-residue’ or ‘(e; a)-block’ if necessary.
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2.2 Notational conventions

It is customary for authors to abuse notation when dealing with the additive group Z/nZ,
identifying this set with the set of integers {0, . . . ,n − 1}, and performing arithmetic modulo n. In
this paper we find it more convenient to take a more strict approach: we regard each element of
Z/nZ as a set of integers, namely the set i + nZ = {i + nz | z ∈ Z} for some i ∈ Z. The additive group
structure on Z/nZ is then derived from addition of sets, defined in the usual way. We also freely
use the additive action of Z on Z/nZ without comment. Note that this interpretation naturally
extends to the case n 6 0 (though now the cardinality ofZ/nZ = Z/(−n)Zmay no longer be equal
to n). With this in mind we will allow the multiplication of an element of Z/nZ by any integer z,
interpreting the result as an element ofZ/znZ; see for example, the definition of the constants ti in
§4.1.

In this paper we frequently have cause to consider a variable e, which is either an integer greater
than or equal to 2, or is∞. When e is finite, we may write i instead of i + eZ for any integer i. When
e = ∞, the set Z/eZ should be read simply as Z.

2.3 ‘Root space’ notation

In this short section, we outline some notation which will arise later in various guises. Suppose
that (I, I′) is one of the following ordered pairs of sets:

• I = I′ = Z;

• I = I′ = Z/nZ, for some positive integer n;

• I = {0, 1, . . . ,n}, I′ = {1, . . . ,n − 1}, for some positive integer n.

WriteZI for the freeZ-module with I as a basis; we view an element ofZI as an I-tuple x = (xi)i∈I
of integers (of which only finitely many are non-zero, if I = Z). For i ∈ I′ we define the element αi
of ZI by

(αi) j = −δ(i−1) j + 2δi j − δ(i+1) j,

and set
Q+ =

⊕
i∈I′
Z>0αi

(where Z>0 denotes the set of non-negative integers). In the case I = Z or I = {0, . . . ,n}, an
element q of Q+ can be uniquely written in the form

∑
i∈I′ miαi with each mi ∈ Z>0, and we define

ht(q) =
∑

i∈I′ mi in these cases. In the case where I = Z/eZ, we have
∑

i∈I αi = 0 (and hence
Q+ =

⊕
i∈I′ Zαi), so the coefficients mi in an expression q =

∑
i∈I miαi for an element of Q+ are

not uniquely determined. However, there is a unique way to choose the mi such that all are
non-negative and at least one is zero, and we define ht(q) =

∑
i∈I mi for this particular choice of mi.

Given x, y ∈M, we write x 7→ y if y − x ∈ Q+. In order to clarify the setting, we may write

x ∞7→ y, x n
7→ y, or x

0,n
7→ y,

as I equals Z, Z/nZ or {0, . . . ,n} respectively. Notice that ∞7→ and
0,n
7→ are partial orders, while n

7→ is
an equivalence relation.
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Remark. The title of this subsection alludes to the fact that the notation described above resembles
notation from the theory of Kac–Moody algebras. In fact, this phenomenon occurs frequently in
the study of blocks of multipartitions. Indeed, the weight of a multipartition (defined in the next
section) can alternatively be written in terms of a standard invariant bilinear form for the Kac–
Moody algebra of type A(1)

e−1. The implications of this connection to Kac–Moody algebras are still
unclear to the author.

2.4 Hub and weight

Suppose e ∈ {2, 3, . . . } ∪ {∞}. An e-hub is defined to be an element θ of the Z-module ZZ/eZ for
which

∑
i∈Z/eZ θi = −r. We often just use the term ‘hub’ if the value of e is clear. A hub θ is called

negative if θi 6 0 for all i.
Now suppose a ∈ (Z/eZ)r, andλ is a multipartition. The (e; a)-hub ofλ is the e-tuple (θ(λ))i∈Z/eZ,

where θi(λ) is defined to be the number of removable i-nodes of λ minus the number of addable
i-nodes of λ. We often use the term ‘hub’, if e and a are clear. It is easy to see that the hub of λ is
an e-hub, as defined above: λ has only finitely many nodes and addable nodes, so certainly only
finitely many θi(λ) are non-zero, and it is easy to show that the total number of addable nodes of
each component of λ exceeds the number of removable nodes by 1, so that

∑
i∈Z/eZ θi(λ) = −r.

Warning. Note that we have made a slight change of notation from [1, 2]; there, the hub of λ is
written as δ(λ). We have made this change to enable us to reserve the symbol δ for the Kronecker
delta. We hope that no confusion will result.

We identify a particular hub, which will be very useful later on. Define Θ = Θ(e; a) by

Θi = −

r∑
j=1

δia j

for i ∈ Z/eZ. That is, Θ(e; a) is the (e; a)-hub of the empty multipartition.
Now we define the (e; a)-weight (or simply the weight) of a multipartition λ. With the content

(ci)i∈Z/eZ as defined in §2.1, the weight of λ is defined to be

w(λ) =

r∑
j=1

ca j(λ) −
1
2

∑
i∈Z/eZ

(ci(λ) − ci−1(λ))2.

Though it is not obvious from this formula, w(λ) is always a non-negative integer. What is clear
from the formula is that any two partitions in the same block have the same weight. In fact, it is
proved in [1, Proposition 3.2] that two multipartitions lie in the same block if and only if they have
the same hub and the same weight. So we may speak of the weight and hub of a block B (meaning
the weight and hub of any multipartition lying in B), which we write as w(B) and θ(B).

The main question that we address in this paper is: for which hubs θ and weights w does there
exist a block with weight w and hub θ?



Core blocks of Ariki–Koike algebras II 5

2.5 Beta-numbers

In this section we fix e ∈ {2, 3, . . . } ∪ {∞} and a ∈ (Z/eZ)r. A multicharge (for a) is defined to be
an r-tuple â = (â1, . . . , âr) ∈ Zr such that for each i ∈ Z/eZ we have ai = âi. (If e = ∞, then there is
only one possible choice of multicharge, namely â = a.) Given a multicharge â and a multipartition
λ, we define the beta-numbers

β
j
i = λ

( j)
i + â j − i

for all i > 1 and all j ∈ {1, . . . , r}. For any j, the beta-numbers β j
1, β

j
2, . . . are distinct, and we refer to

the sets
B j =

{
β

j
i

∣∣∣∣ i > 1
}

as the beta-sets for λ corresponding to â. Note that for each j, B j has the following property.

For i sufficiently large, the number of elements of B j greater than or equal to −i is â j + i. (∗)

Conversely, it is easy to see that given a multicharge â, any r subsets B1, . . . ,Br of Z satisfying (∗)
for each j are the beta-sets of some multipartition.

There is an important link between beta-numbers and addable and removable nodes. Given
beta-sets B1, . . . ,Br for a multipartition λ, it is easy to see that there is a removable l-node in row i

of the jth component of λ if and only if β j
i = l and β j

i − 1 < B j. Furthermore, if µ is the multipartition
obtained by removing this removable node, then the beta-sets for µ are

B1, . . . ,B j−1,B j
\ {β

j
i } ∪ {β

j
i − 1},B j+1, . . . ,Br.

This enables us to express the hub of a multipartition in terms of its beta-numbers.

Lemma 2.1. Suppose λ is a multipartition, with beta-sets B1, . . . ,Br. Then for l ∈ Z/eZ we have

θl(λ) =

r∑
j=1

∣∣∣∣{β ∈ B j
∣∣∣ β = l, β − 1 < B j

}∣∣∣∣ − ∣∣∣∣{β ∈ B j
∣∣∣ β = l − 1, β + 1 < B j

}∣∣∣∣ .
Corollary 2.2. Suppose λ and µ are multipartitions, and µ is obtained by removing a removable l-node from
λ. Then for i ∈ Z/eZ we have

θi(µ) = θi(λ) + δ(i−1)l − 2δil + δ(i+1)l.

2.6 Multicores and core blocks

Suppose e and a are as above, and λ is a multipartition, with beta-sets B1, . . . ,Br. If e is finite,
we say that λ is a multicore if there do not exist i ∈ Z and j ∈ {1, . . . , r} such that i ∈ B j and i− e < B j.
It is easy to show that this condition is independent of the choice of multicharge â. In fact, λ is a
multicore if and only if each component λ(i) of λ is an e-core, i.e. none of the hook lengths of λ(i) is
divisible by e. If e = ∞, then we deem every multipartition to be a multicore.
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We define some more notation, which arises from examining beta-numbers modulo e: if e is
finite, then for each i ∈ Z/eZ and each j ∈ {1, . . . , r}we write

bâ
i j(λ) = max

{
β ∈ B j

∣∣∣ β = i
}
.

If e = ∞, then we define

Bi j(λ) =

1 (i ∈ B j)
0 (i < B j)

for i ∈ Z, j ∈ {1, . . . , r}. We can now recall one of the main results from [2], which motivates the
definition of a core block.

Theorem 2.3. [2, Theorem 3.1] Suppose e is finite, and that λ is a multipartition lying in a block B. Then
the following are equivalent.

1. λ is a multicore, and there exist a multicharge â and integers (bi)i∈Z/eZ such that for each i ∈ Z/eZ
and j ∈ {1, . . . , r} we have

bâ
i j(λ) ∈ {bi, bi + e}.

2. There is no block with the same hub as B and smaller weight.

3. Every multipartition in B is a multicore.

If e < ∞, we say that a block is a core block if the conditions of Theorem 2.3 are satisfied for any
(and hence every) λ ∈ B. If e = ∞, then every block is deemed to be a core block; it follows from [2,
Proposition 1.3] that when e = ∞ a block is uniquely determined by its hub, so that property (2) of
Theorem 2.3 holds for every block when e = ∞; property (3) holds too, since every multipartition
is defined to be a multicore.

The idea of the definition is that a core block should behave like ‘a block at e = ∞’. In fact, this
can be made precise, via the notion of a ‘lift’ of a core block (see [2, §3.4]). When r = 1, a block B is
a core block if and only if it has weight 0, which happens if and only if |B| = 1; furthermore, every
multicore lies in a core block.

Example 2.4. Suppose r = 3 and e = 4, and a = (0, 0, 2). Let λ = ((2),�, (1)). Given the multicharge
â = (0, 0, 2), we get the beta-sets

B1 = {. . . ,−3,−2, 1},

B2 = {. . . ,−3,−2,−1},

B3 = {. . . ,−3,−2,−1, 0, 2}.

Hence

bâ
01

(λ) = −4, bâ
02

(λ) = −4, bâ
03

(λ) = 0,

bâ
11

(λ) = 1, bâ
12

(λ) = −3, bâ
13

(λ) = −3,

bâ
21

(λ) = −2, bâ
22

(λ) = −2, bâ
23

(λ) = 2,

bâ
31

(λ) = −5, bâ
32

(λ) = −1, bâ
33

(λ) = −1,
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and we see that condition (1) in Theorem 2.3 holds, so λ lies in a core block. It is easy to see that
(3) holds too: any multipartition µ in the same block as λ has |µ| = |λ| = 3, and it is easy to show in
general that if |µ| < e then µ is a multicore.

The use of core blocks will help us to answer our main question. The fact that the core blocks
are the blocks satisfying property (2) of Theorem 2.3 implies that if there exists a block B with hub
θ then there exists a core block with hub θ; since a block is determined by its hub and weight, this
core block is unique. So we may speak of the core block with hub θ, when we know that there is
some block with hub θ. If B is a block with hub θ and C is the core block with this hub, then it
follows from [2, Proposition 1.3] that w(B) − w(C) is an integer multiple of r. Conversely, given a
core block C and a non-negative integer n, it is easy to construct a block with the same hub and
weight w(C) + nr (by adding n rim e-hooks to a multipartition in C), so we have the following.

Lemma 2.5. Suppose e < ∞. Then there exists a block with hub θ and weight w if and only if

• there exists a core block C with hub θ, and

• w − w(C) is a non-negative integer multiple of r.

In view of this, we can re-state our main question as follows. Given a hub θ, does there exist a
block with hub θ, and if so, what is the weight of the core block with hub θ?

Remark. Blocks are actually slightly peripheral to this paper, in the sense that it would be possible
to state all the results in terms of multipartitions; in [5], Lyle and Mathas introduced the term
‘reduced multicore’ for a multipartition lying in a core block, and so we could ask: given a hub θ,
does there exist a multipartition with hub θ, and if so, what is the weight of a reduced multicore
with hub θ? However, since the notions of hub and weight were introduced precisely in order to
study blocks, the results here are naturally stated in terms of blocks.

We conclude this section by observing that the hub of a multipartition λ can be recovered from
the integers bâ

i j(λ) or Bi j(λ).

Lemma 2.6. [2, Lemma 3.2 & proof of Proposition 3.6] Suppose e and a are as above, and â is a
multicharge for a.

1. If e is finite, then

θi(λ) =

∑r
j=1

(
ba

i j(λ) − ba
(i−1) j(λ)

)
− r

e
for i ∈ Z/eZ.

2. If e = ∞, then

θi(λ) =

r∑
j=1

(
Bi j(λ) −B(i−1) j(λ)

)
for i ∈ Z.
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2.7 Actions of the affine Weyl group

Given e as above, let We denote the Weyl group of type A(1)
e−1 (or type A∞, if e = ∞). This is the

Coxeter group with generators si for i ∈ Z/eZ, and relations

s2
i = 1 for all i,

sis j = s jsi whenever i , j ± 1,
sis jsi = s jsis j whenever i = j + 1 , j − 1.

There are several actions of We which are of interest to us. First we recall the well-known permu-
tation action on Z, which gives We the name ‘generalised symmetric group’ (if e < ∞) or ‘finitary
symmetric group’ (if e = ∞).

Lemma 2.7. There is an action of We on Z given by

si( j) =


j + 1 ( j = i − 1)
j − 1 ( j = i)
j (otherwise),

for all i ∈ Z/eZ and j ∈ Z.

Next we give an action on hubs. The following lemma is straightforward; the slightly nebulous
expression using the Kronecker delta obviates the need for a separate definition for the case e = 2.

Lemma 2.8. There is an action of We on the set of e-hubs, given by

(si(θ)) j = θ j + θi

(
δ(i−1) j − 2δi j + δ(i+1) j

)
,

for a hub θ and i, j ∈ Z/eZ.

Now we describe an action on multipartitions, which yields an action on blocks. Fix e ∈
{2, 3, . . . } ∪ {∞} and a ∈ (Z/eZ)r.

Proposition 2.9. Given a multipartition λ and i ∈ Z/eZ, define si(λ) to be the multipartition obtained by
simultaneously removing all removable i-nodes and adding all addable i-nodes. This defines an action of We
on the set of multipartitions. Moreover, we have

w(si(λ)) = w(λ), θ(si(λ)) = si(θ(λ))

for any multipartition λ, where si(θ(λ)) is as defined in Lemma 2.8.

Proof. Choose a multicharge â, and for j ∈ {1, . . . , r} define the beta-sets B j(λ) and B j(si(λ)) for λ
and si(λ) as in §2.5. As noted in [1, §4.2.1], we have

B j(si(λ)) = si

(
B j(λ)

)
,

where the action on the right-hand side is the permutation action of We on Z described in Lemma
2.7. This implies that the definition of si(λ) gives an action. The statements concerning the weight
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and hub of si(λ) are proved in [1, Proposition 4.6]. �

Since two partitions lie in the same block if and only if they have the same hub and weight, we
see that the action of We on multipartitions given in Proposition 2.9 reduces to an action on the set
of blocks, with the property that

w(si(B)) = w(B)

and
θ(si(B)) = si(θ(B))

for any block B and any i ∈ Z/eZ.
We give a corollary which is of great importance to the main question in this paper.

Corollary 2.10. Suppose e, a are chosen as above, and that θ and κ are hubs lying in the same We-orbit.
Then:

1. there exists a block with hub θ if and only if there exists a block with hub κ;

2. if there exist such blocks, then the core blocks with hubs θ and κ lie in the same We-orbit and have the
same weight.

Proof. It suffices to assume that κ = si(θ) for some i ∈ Z/eZ.

1. If B is a block with hub θ, then (from above) the block si(B) has hub κ. The ‘if’ part is similar.

2. Let B and C be the core blocks with hubs θ, κ respectively. The block si(B) has hub κ, and
since C has the smallest weight of any block with hub κ, we have

w(C) 6 w(si(B)) = w(B).

Similarly, we have w(B) 6 w(C), so that w(B) = w(C). This gives w(C) = w(si(B)), and since a
block is determined by its hub and weight, we deduce that C = si(B).

�

3 The case e = ∞

Throughout this section we fix e = ∞ and a ∈ Zr, and answer our main question in this case.

3.1 Negative hubs

We address first the existence of blocks with negative hubs; it will then be a simple matter to
extend to the general case, using the action of W∞.

Using the integersBi j(λ), we can interpret the question of the existence of a multipartition (and
hence a block) with hub θ by looking at the existence of zero–one matrices. Suppose that θ is a
negative hub, and let di = di(θ) be defined for i ∈ Z by

di = r +

i∑
l=−∞

θl.
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Then the sequence (di)i∈Z is weakly decreasing, and for sufficiently large i we have d−i = r and
di = 0. Choose and fix k sufficiently small that dk = r and a j > k for each j, and l sufficiently large
that dl = 0 and a j 6 l for each j.

If there is a multipartition λwith hub θ, then by Lemma 2.6 we have

di =

r∑
j=1

Bi j(λ)

for all i. In particular, Bi j(λ) = 1 for all j when i < k, and Bi j(λ) = 0 for all j when i > l. So by
property (∗) from §2.5 the sum

Bkj(λ) +B(k+1) j(λ) + · · · +Bl j(λ)

equals a j − k, for each j ∈ {1, . . . , r}. Hence the (l − k + 1) × r matrix with (i, j)-entry B(i+k−1) j(λ) is a
zero–one matrix with row sums dk > . . . > dl from top to bottom, and columns sums a1− k, . . . , ar− k
from left to right.

Conversely, suppose we have a zero–one matrix A with these row and column sums. Then it
easy to construct a multipartition λwith hub θ, by setting

Bi j(λ) =


1 (i < k)
A(i+1−k) j (k 6 i 6 l)
0 (i > l)

for each i, j. So we have shown the following.

Lemma 3.1. Suppose θ is a negative hub, and choose k, l as above. There exists a block with hub θ if and
only if there exists an (l− k + 1)× r zero–one matrix with columns sums a1 − k, . . . , ar − k from left to right,
and row sums dk, . . . , dl from top to bottom.

Necessary and sufficient conditions for the existence of zero–one matrices with prescribed row
and column sums are given by the Gale–Ryser Theorem [3, 6]. For each integer t ∈ {k, . . . , l}, let ct
be the number of values j for which a j > t. The Gale–Ryser Theorem can be stated in our notation
as follows.

Theorem 3.2. A zero–one matrix as in Lemma 3.1 exists if and only if

ck + · · · + ct > dk + · · · + dt

for each t ∈ {k, . . . , l}, with equality when t = l.

In other words, if we letσbe the partition (ck, ck+1, . . . , cl, 0, 0, . . . ), and τ the partition (dk, dk+1, . . . ),
then there exists a block with hub θ if and only if |σ| = |τ| and σ Q τ. Since the dominance order
is reversed under conjugation of partitions, this is equivalent to saying that |σ′| = |τ′| and σ′ P τ′.
The latter interpretation will be more convenient for our purposes.
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We wish to re-state the conditions of Theorem 3.2 in a way which is more convenient for
generalising to arbitrary hubs. To begin with, re-arrange a1, . . . , ar in ascending order as b1 6 . . . 6 br.
Since θ is a negative hub, there exist integers f1 6 . . . 6 fr such that

θi = −
∣∣∣∣{ j ∈ {1, . . . , r}

∣∣∣ f j = i
}∣∣∣∣

for each i. (If λ is a multipartition with hub θ, then f1, . . . , fr may be interpreted as the residues of
the addable nodes of λwith multiplicity, where ‘with multiplicity’ entails cancelling addable nodes
with removable nodes.) Note that we have

di =
∣∣∣∣{ j ∈ {1, . . . , r}

∣∣∣ f j > i
}∣∣∣∣

for each i, which gives the following.

Proposition 3.3. Suppose θ is a negative hub, and let b1, . . . , br, f1, . . . , fr be as above. Then there exists a
block with hub θ if and only if

b1 + · · · + b j > f1 + · · · + f j

for each j ∈ {1, . . . , r}, with equality when j = r.

Proof. We have

σ′ = (br − k, br−1 − k, . . . , b1 − k, 0, 0, . . . )

and

τ′ = ( fr − k, fr−1 − k, . . . , f1 − k, 0, 0, . . . ).

The condition |σ′| = |τ′| is therefore equivalent to

b1 + · · · + br = f1 + · · · + fr,

and the condition σ′ P τ′ is equivalent to

br + br−1 + · · · + bt 6 fr + fr−1 + · · · + ft

for all t, which (in the presence of the condition |σ′| = |τ′|) is equivalent to

b1 + · · · + b j > f1 + · · · + f j

for each j ∈ {1, . . . , r}. �

We wish to generalise this to arbitrary hubs, and give an expression for the weight of a block in
terms of its hub. First we give a different statement of the conditions in Proposition 3.3, which will
be useful in the next section. This requires some more notation.
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Write Zr,6 for the set of r-tuples m = (m1, . . . ,mr) of integers such that m1 6 . . . 6 mr. Given
m,n ∈ Zr,6, write m{ n if there exist 1 6 p < q 6 r such that

n j =


mp − 1 ( j = p)
mq + 1 ( j = q)
m j (otherwise)

for j = 1, . . . , r. Note that this condition automatically implies that mp−1 < mp if p > 1, and mq < mq+1
if q < r. Informally, m { n if n is obtained from m by moving two values mp,mq apart without
changing the order of m1, . . . ,mr.

Now recall the definition of Θ = Θ(e; a), and the notation x ∞7→ y from §2.3.

Proposition 3.4. Suppose θ is a negative hub, and let b1 6 . . . 6 br and f1 6 . . . 6 fr be as above. Then the
following are equivalent.

1. There exists a block with hub θ.

2. We have b1 + · · · + b j > f1 + · · · + f j for any j ∈ {1, . . . , r}, with equality when j = r.

3. There exist m0, . . . ,ms ∈ Zr,6 such that

(b1, . . . , br) = m0 { . . .{ ms = ( f1, . . . , fr).

4. Θ
∞
7→ θ.

Proof.

(2)⇒(1) This is part of Proposition 3.3.

(3)⇒(2) Since the relation in (2) is transitive, we may assume that (b1, . . . , br) { ( f1, . . . , fr). So
suppose 1 6 p < q 6 r and

f j =


bp − 1 ( j = p)
bq + 1 ( j = q)
b j (otherwise).

Then for 1 6 j 6 r, we have

f1 + · · · + f j =


b1 + · · · + b j ( j < p)
b1 + · · · + b j − 1 (p 6 j < q)
b1 + · · · + b j (q 6 j),

and (2) holds.

(4)⇒(3) Suppose θ = Θ +
∑

i∈Zmiαi, with each mi non-negative. If every mi equals 0 then the result
is trivial, so we assume otherwise. Let s be minimal such that ms > 0, and let t > s be minimal
such that mt+1 = 0. Set κ = θ − (αs + · · · + αt). Then we claim that κ is a negative hub. Since
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θ is a negative hub, we just need to show that κs−1, κt+1 6 0, i.e. that θs−1 and θt+1 are strictly
negative. But since ms−1 = mt+1 = 0 while ms,mt > 0, the (s − 1)th and (t + 1)th entries of∑

i∈Zmiαi are strictly negative, and the fact that Θs−1,Θt+1 6 0 completes the proof of the
claim.

So κ is a negative hub, and Θ 7→ κ 7→ θ. If we let g1 6 . . . 6 gr be the integers such that
κi = −

∣∣∣{ j ∈ {1, . . . , r} | g j = i}
∣∣∣, then by induction on

∑
i mi, condition (3) holds with g1, . . . , gr

in place of f1, . . . , fr. So, by the transitivity of the relation in (3), it suffices to show that
(g1, . . . , gr){ ( f1, . . . , fr).

Note that we have
θi = κi + δis − δi(s−1) + δit − δi(t+1)

for each i; in particular, κs and κt are strictly negative, i.e. there exist p and q such that gp = s
and gq = t. Letting p be minimal such that gp = s, and q maximal such that gq = t, we set

f ′j =


gp − 1 ( j = p)
gq + 1 ( j = q)
g j (otherwise).

Then we have f ′1 6 . . . 6 f ′r and θl = −

∣∣∣∣∣{ j ∈ {1, . . . , r}
∣∣∣∣ f ′j = l

}∣∣∣∣∣, which means that f ′j = f j for

all j and we are done.

(1)⇒(4) We show that (1)⇒(4) for any hub θ, not just a negative one. If there exists a multipartition
λ with hub θ, then we can reach the empty multipartition from λ by successively removing
removable nodes. Each time we remove an i-node, we subtract αi from the hub, by Corollary
2.2. Since the empty multipartition has hub Θ, the result follows.

�

Example 3.5. Suppose r = 4 and a = (1, 2, 1, 0). Define θ by

θi =


−2 (i = 0)
−1 (i = 1)
−1 (i = 3)
0 (otherwise).

Then θ is a negative hub, and we may verify the conditions of Proposition 3.4 for θ. First we note
that the multipartition (�, (1), (1),�) has hub θ: its Young diagram, with the residue of nodes and
addable nodes marked, may be drawn as follows.

1
1
2 3

0
1 2 0
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So (1) holds. For (2) and (3), we note that (b1, b2, b3, b4) = (0, 1, 1, 2) and ( f1, f2, f3, f4) = (0, 0, 1, 3), so
(2) and (3) are readily verified. For (4), we have

(θ −Θ)i =



−1 (i = 0)
1 (i = 1)
1 (i = 2)
−1 (i = 3)
0 (otherwise),

so that θ = Θ + α1 + α2.

3.2 Arbitrary hubs

Now we give necessary and sufficient conditions on an arbitrary hub θ for the existence of a
block with hub θ, and give an expression for the weight of such a block.

As before, we define

di = di(θ) = r +

i∑
l=−∞

θl

for i ∈ Z. And as before, ifλ is a multipartition with hubθ, then di will be the sumBi1(λ)+· · ·+Bir(λ).
In particular, for such a λ to exist we must have 0 6 di 6 r for each i; we say that θ is plausible if this
condition holds. Now for j = 1, . . . , r − 1 define

v j(θ) = |{i ∈ Z | di = j}|.

Also define

v0(θ) = |{i < 0 | di = 0}| − |{i > 0 | di , 0}|,
vr(θ) = |{l > 0 | di = r}| − |{i < 0 | di , r }|.

Note that since we have di = 0 and d−i = r for i sufficiently large, v0(θ), v1(θ), . . . , vr(θ) are well-
defined integers. Moreover, we have v0(θ) + · · · + vr(θ) = 0 if and only if θ is plausible. We let
v(θ) = (v0(θ), . . . , vr(θ)), regarded as an element of Z{0,...,r}.

Recalling from Lemma 2.8 the W∞-action on the set of hubs, we have the following.

Lemma 3.6. The action of W∞ on the set of hubs preserves the set of plausible hubs. If θ, κ are plausible
hubs, then θ and κ lie in the same W∞-orbit if and only if v(θ) = v(κ). Each W∞-orbit of plausible hubs
contains exactly one negative hub.

Proof. If i, l ∈ Z, then it is easy to check that

dl(siθ) =


di−1(θ) (l = i)
di(θ) (l = i − 1)
dl(θ) (otherwise).
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Hence two hubs θ and κ lie in the same W∞-orbit if and only if there is some finitary permutation π
of Z such that dl(κ) = dπ(l)(θ) for all l; this proves the first two statements. For the third statement,
observe that θ is negative if and only if the sequence (diθ) is weakly decreasing. �

Now we can give our main result for e = ∞; recall the notation x
0,r
7→ y and ht(y − x) from §2.3.

Theorem 3.7. Suppose θ is a hub. Then there exists a block with hub θ if and only if v(Θ)
0,r
7→ v(θ), and if

this is the case then the unique such block has weight ht(v(θ) − v(Θ)).

Proof. Let us suppose first that v(Θ) 7→ v(θ). This implies that

v0(θ) + · · · + vr(θ) = v0(Θ) + · · · + vr(Θ);

since Θ is obviously plausible, we see that θ is plausible. In proving the existence of a block with
hub θ, we may (in view of Lemma 3.6) replace θ with any other hub in the same W∞-orbit; in
particular, since any orbit of plausible hubs contains a negative hub, we may assume that θ is
negative. Given this assumption, we will show that there exists a block with hub θ by verifying
condition (2) of Proposition 3.4.

Letting b1 6 . . . 6 br and f1 6 . . . 6 fr be as in the previous section, we have

v j(Θ) = br+1− j − br− j, v j(θ) = fr+1− j − fr− j

for j = 0, . . . , r, where we interpret b0, br+1, f0, fr+1 as zero. Hence we have

vr+1− j(Θ) + 2vr+2− j(Θ) + · · · + jvr(Θ) =b1 + · · · + b j,

vr+1− j(θ) + 2vr+2− j(θ) + · · · + jvr(θ) = f1 + · · · + f j

for each j. The condition v(Θ) 7→ v(θ) says that we have v(θ) = v(Θ) +
∑r−1

j=1 m jα j with each m j
non-negative, and we find

(b1 + · · · + b j) − ( f1 + · · · + f j) =
(
vr+1− j(Θ) − vr+1− j(θ)

)
+ 2

(
vr+2− j(Θ) − vr+2− j(θ)

)
+ · · · + j

(
vr(Θ) − vr(θ)

)
=

mr− j (1 6 j 6 r − 1)
0 ( j = r).

So we have
b1 + · · · + b j > f1 + · · · + f j

for all j, with equality when j = r, and so by Proposition 3.3 there exists a block with hub θ.
Conversely, suppose λ is a multipartition with hub θ. We will prove by induction on |λ| that

v(Θ) 7→ v(θ), and that λ has weight ht(v(θ) − v(Θ)). In the case |λ| = 0 we have θ = Θ and w(λ) = 0,
so the result is trivial. So we suppose |λ| > 0, and choose i ∈ Z such that λ has a removable i-node.
We consider two cases.

θi(λ) > 0:
Let ν = si(λ). Then ν has hub si(θ), and we have w(ν) = w(λ), v(si(θ)) = v(θ) and |ν| =
|λ| − θi(λ) < |λ|, and the result follows by induction.
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θi(λ) 6 0:
Let ν be a multipartition obtained by removing a removable i-node from λ, and let κ be the
hub of ν. Write x = di(θ) and y = di−1(θ). Then θi = x − y, and so by [1, Lemma 3.6] we have
w(λ) − w(ν) = y − x + 1. We also have di(κ) = x − 1 and di−1(κ) = y + 1, so that

v j(θ) = v j(κ) + δ jx + δ jy − δ j(x−1) − δ j(y+1).

Since x 6 y, this implies that v(θ) = v(κ) + αx + αx+1 + · · · + αy. So v(κ) 7→ v(θ), and
ht(v(θ) − v(κ)) = w(λ) − w(ν); now the result follows by induction.

�

Example 3.8. As in the last example, suppose r = 4 and a = (1, 2, 1, 0). Let λ = ((1), (12), (12), (2)).
The Young diagram of λ is

0
1 2

0
1
2 3

−1
0
1 2

−1
0 1 2

and this yields θ(λ) = κ, where

κi =



−2 (i = −1)
−1 (i = 0)
3 (i = 1)
−3 (i = 2)
−1 (i = 3)
0 (otherwise).

Note that κ = s1s0θ, where θ is the hub from Example 3.5. We have

v(κ) = v(θ) = (−3, 2, 1, 0, 0)

and
v(Θ) = (−2, 1, 0, 1, 0),

so v(κ) = v(Θ) + α1 + α2; and indeed, we may verify that the weight of λ is 2.

4 The case e < ∞

For this section we fix e ∈ {2, 3, . . . } and a ∈ (Z/eZ)r. As in Section 3, we answer our main
question by considering negative hubs first, and then generalise using the We-action. The results
of Section 3 play an important rôle.
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4.1 Each We-orbit contains one negative hub

We begin by considering the orbits of the We-action on the set of hubs; we show how to identify
the orbit containing a given hub, and prove that each orbit contains exactly one negative hub.

Proposition 4.1. Each We-orbit of hubs contains at least one negative hub.

Proof. For any hub θ, define

F(θ) =
∑

i, j∈Z/eZ, i, j

(θi + θi+1 + · · · + θ j−1)2.

We shall prove that if θk > 0 for some k, then F(sk(θ)) < F(θ). The proposition will then follow:
given an orbit, a hub θ in that orbit for which the quantity F(θ) is minimised will necessarily be a
negative hub.

So we assume that θk > 0, and let κ = sk(θ). Recall that this means that

(sk(θ)) j = θ j + θk

(
δ(k−1) j − 2δkj + δ(k+1) j

)
for each j. Putting fi j(θ) = (θi + θi+1 + · · · + θ j−1)2, we have

fi j(θ) = fi j(κ)

if the range (i, i + 1, . . . , j − 1) contains all or none of k−1, k, k+1. We also have

fik(θ) = fi(k+1)(κ), fi(k+1)(θ) = fik(κ) for i , k, k+1
fkj(θ) = f(k+1) j(κ), f(k+1) j(θ) = fkj(κ) for j , k, k+1

and
fk(k+1)(θ) = fk(k+1)(κ).

So

F(θ) − F(κ) = f(k+1)k(θ) − f(k+1)k(κ)

= (θk+1 + θk+2 + · · · + θk−2 + θk−1)2
− ((θk + θk+1) + θk+2 + · · · + θk−2 + (θk−1 + θk))2

= (−r − θk)2
− (−r + θk)2

= 4rθk

> 0,

as required. �

To show that different negative hubs lie in different orbits, we introduce a set of invariants.
Given a hub θ and i ∈ Z/eZ, define ti ∈ Z/erZ by

ti(θ) = ri + θi−1 + 2θi−2 + · · · + (e − 1)θi+1.

The following simple observation will be very useful.
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Lemma 4.2. For each i ∈ Z/eZ we have

ti(θ) − ti−1(θ) = −eθi + erZ.

Now we show that the multiset {ti(θ) | i ∈ Z/eZ} is an invariant of the action of We on hubs.
Then we show that if θ is negative then it is uniquely determined by this multiset, which implies
that any orbit of hubs contains at most one negative hub.

Proposition 4.3. Suppose θ and κ are hubs lying in the same We-orbit. Then there is a permutation π of
Z/eZ such that

ti(κ) = tπ(i)(θ)

for all i.

Proof. It suffices to consider the case where κ = sk(θ) for some k. In this case, it is easy to see that
we have ti(κ) = ti(θ) unless i = k − 1 or k, while

tk−1(κ) = rk − r + θk−2 + 2θk−3 + · · · + (e − 3)θk+2 + (e − 2)(θk + θk+1) + (e − 1)(−θk)

= rk +
(∑

j∈Z/eZ θ j

)
+ θk−2 + 2θk−3 + · · · + (e − 2)(θk+1) − θk

= rk + θk−1 + 2θk−2 + · · · + (e − 1)θk+1

= tk(θ);

similarly we have tk(κ) = tk−1(θ), and the result follows. �

Proposition 4.4. Suppose θ and κ are negative hubs, and that there is a permutation π of Z/eZ such that

ti(κ) = tπ(i)(θ)

for all i. Then θ = κ.

To prove Proposition 4.4, we consider cyclic ordering. Given a positive integer n and an e-tuple
t = (ti)i∈Z/eZ of elements ofZ/nZ, we say that t is in cyclic order modulo n if there exist non-negative
integers ( ji)i∈Z/eZ summing to n such that ti − ti−1 = ji + nZ for all i.

Example 4.5. Suppose e = 4 and n = 8, and write (ti)i∈Z/4Z as (t0, t1, t2, t3). Then (0 + 8Z, 0 + 8Z, 3 +
8Z, 3 + 8Z) and (0 + 8Z, 1 + 8Z, 4 + 8Z, 7 + 8Z) are in cyclic order modulo 8, but (0 + 8Z, 3 + 8Z, 0 +
8Z, 3 + 8Z) and (0 + 8Z, 1 + 8Z, 6 + 8Z, 5 + 8Z) are not.

Proof of Proposition 4.4. First we deal with the case where all the ti(θ) (and hence all the ti(κ)) are
equal. In this case, Lemma 4.2 implies that each θi is divisible by r; this means that θ j equals −r for
some j, and θi = 0 for all i , j. Similarly, we have κk = −r for some k, with κi = 0 for i , k. But now
the equality t j(θ) = tk(κ) gives rj = rk (as elements of Z/erZ), so that j = k, and hence θ = κ.

Now we turn to the case where the ti(θ) are not all equal. This means that each θi and each κi
lies in the range {0,−1, . . . , 1 − r}. Since the integers −eθi are non-negative integers summing to er,
Lemma 4.2 implies that the e-tuple (ti(θ))i∈Z/eZ is in cyclic order modulo er. Similarly, (ti(κ))i∈Z/eZ
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is in cyclic order modulo er. This means that we may take the permutation π to be a cyclic shift,
i.e. there exists k ∈ Z/eZ such that

ti(κ) = ti+k(θ)

for all i. But now Lemma 4.2 gives

−eκi + erZ = ti(κ) − ti−1(κ) = ti+k(θ) − ti+k−1(θ) = −eθi+k + erZ

for each i; since 0 > θi, κi > 1 − r, we get
κi = θi+k

for each i. This in turn implies that

ti(κ) = ri + θi+k−1 + 2θi+k−2 + · · · + (e − 1)θi+k+1

= r(i + k) + θi+k−1 + 2θi+k−2 + · · · + (e − 1)θi+k+1 − rk
= ti+k(θ) − rk
= ti(κ) − rk.

We deduce that k = 0, so κ = θ. �

Example 4.6. Suppose e = 2. If θ is a hub, then we have

t0(θ) = θ1 + 2rZ,

t1(θ) = r + θ0 + 2rZ = −t0(θ).

There are exactly r + 1 different unordered pairs (x,−x) for x ∈ Z/2rZ, and hence r + 1 orbits of W2
of the set of hubs. And it is easy to see that there are exactly r + 1 different negative hubs.

4.2 The existence of a block with a given hub

Now we turn to the problem of finding a necessary and sufficient condition for the existence of
a block with a given hub. We shall prove the following theorem, in which Θ is the hub Θ(e; a).

Theorem 4.7. Suppose θ is a hub. The following are equivalent.

1. There exists a block with hub θ.

2. Θ
e
7→ θ.

3.

 ∑
i∈Z/eZ

iθi

 + eZ =

 ∑
i∈Z/eZ

iΘi

 + eZ.

First we observe that the second condition is invariant under the action of We.

Lemma 4.8. Suppose θ and κ are hubs lying in the same We-orbit. Then θ e
7→ κ.
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Proof. It suffices to assume that κ = slθ for some l ∈ Z/eZ. Then (from Lemma 2.8) we have
κ = θ − θiαi. �

Proof of Theorem 4.7.

(1)⇒(2) This is proved in exactly the same way as the implication (1)⇒(4) in Proposition 3.4.

(2)⇒(3) This is straightforward, since for any j we have ∑
i∈Z/eZ

i(α j)i

 + eZ = 0.

(3)⇒(2) We write ζ = θ−Θ, and we must show that ζ is a linear combination of the αi, with integer
coefficients. Note that since Θ and θ are both hubs, we have∑

i∈Z/eZ

ζi = 0,

and (assuming (3)) we have  ∑
i∈Z/eZ

iζi

 + eZ = 0.

We define m0 = 0 and

mx =
1
e

 x∑
y=1

y(e − x)ζy +

e−1∑
y=x+1

x(e − y)ζy


for 1 6 x 6 e − 1. First we observe that each mx is an integer, since we have

x∑
y=1

y(e − x)ζy +

e−1∑
y=x+1

x(e − y)ζy ≡

e−1∑
y=1

(−xy)ζy ≡ −x
e−1∑
y=0

yζy ≡ 0 (mod e).

Now we set ζ′ =
∑

i miαi, and show that ζ′ = ζ, i.e. ζ′x = ζx for all x ∈ {0, . . . , e − 1}. For
2 6 x 6 e − 2, we have

ζ′x = −mx−1 + 2mx −mx+1

=
1
e

(
−

x−1∑
y=1

y(e − x + 1)ζy + 2
x−1∑
y=1

y(e − x)ζy −

x−1∑
y=1

y(e − x − 1)ζy

−

e−1∑
y=x+1

(x − 1)(e − y)ζy + 2
e−1∑

y=x+1

x(e − y)ζy −

e−1∑
y=x+1

(x + 1)(e − y)ζy

− (x − 1)(e − x)ζx + 2x(e − x)ζx − x(e − x − 1)ζx

)
= ζx.

The cases x = 0, 1, e − 1 are similar but simpler.
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(2)⇒(1) Using Lemma 4.8 and the transitivity and symmetry of e
7→, we may replace θwith any hub

in the same We-orbit. In particular, since each orbit of hubs contains a negative hub, we may
assume that θ is negative.

Assuming (2), let (mi)i∈Z/eZ be the unique e-tuple of non-negative integers such that θ =

Θ +
∑

i miαi and some mk is zero. Choose such a k, and let k̂ be an integer such that k = k̂.
Now for each i ∈ Z/eZ define ı̂ to be the unique integer in the range {k̂, . . . , k̂ + e− 1} such that
i = ı̂. Define â = (â1, . . . , âr) ∈ Zr. Now let Θ̂ be the ∞-hub Θ(∞, â); that is, Θ̂ı̂ = Θi for each
i ∈ Z/eZ, and Θ̂ j = 0 for all other j. Define the∞-hub θ̂ to be

θ̂ = Θ̂ +
∑

i∈Z/eZ

miαı̂

Obviously Θ̂
∞
7→ θ̂, so by Proposition 3.4 there is an (∞; â)-block with hub θ̂. If we take a

multipartition λ lying in this block, then the (e; a)-block B containing λ clearly has hub θ.

�

Example 4.9. Suppose r = 4, e = 3 and a = (1, 2, 1, 0). Then the hub Θ = Θ(e; a) satisfies

Θ0 = −1, Θ1 = −2, Θ2 = −1.

Let θ be the hub with

θ0 = −3, θ1 = −1, θ2 = 0.

We shall verify the conditions of Theorem 4.7 for θ. We have θ = Θ + α1 + α2, so (2) holds. For (3),
we have  ∑

i∈Z/3Z

iθi

 + 3Z = 2 =

 ∑
i∈Z/3Z

iΘi

 + 3Z.

For (1), we follow the proof of Theorem 4.7. Taking k = 0, we choose k̂ = 0, so that Θ̂ and θ̂ are the
hubs called Θ and θ in Example 3.5. Taking the multipartition µ = (�, (1), (1),�) from that example,
we see that the (e; a)-hub of µ is θ.

4.3 The weight of a core block

In this section, we suppose that θ is a hub satisfying the conditions of Theorem 4.7. This means
that there is a block, and hence a unique core block, with hub θ. We compute the weight of this
core block; via Lemma 2.5, this enables us to identify all possible pairs (θ,w) such that there is a
block with hub θ and weight w.

Suppose throughout this section that θ is a hub satisfying the conditions of Theorem 4.7. We
begin, as usual, with the case where θ is negative. In this case, we let k, k̂, â and B be as in the proof
of Theorem 4.7.
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Lemma 4.10. B is a core block.

Proof. By construction we have Θ̂i = 0 unless k̂ 6 i 6 k̂ + e− 1, and hence θ̂i = 0 unless k̂ 6 i 6 k̂ + e.
(For the fact that θ̂k̂−1 = 0, recall that mk = 0.) So if we let λ be a multipartition in B and calculate
the beta-sets B1, . . . ,Br for λ using the multicharge â, then by Lemma 2.6(2) we must have

{i ∈ Z | i 6 k̂ − 1} ⊆ B j
⊆ {i ∈ Z | i 6 k̂ + e − 1}

for each j. Hence for i ∈ Z/eZ and j ∈ {1, . . . , r}we have bâ
i j(λ) ∈ {ı̂ − e, ı̂}, so B is a core block. �

Now we give an expression for the weight of our core block B, analogous to the expression
ht(v(θ) − v(Θ)) of Theorem 3.7. First we note the following lemma; this is a special case of a fact
which is mentioned in [2, §3.4].

Lemma 4.11. The (e; a)-weight of B equals the (∞; â)-weight of B.

Proof. Let λ be a multipartition in B. We claim that the (∞; â)-residue of any node of λ lies in the set
{k̂ + 1, . . . , k̂ + e− 1}. To prove the claim, we assume λ , ∅ and let m be the maximum (∞; â)-residue
of any node. If the node (i, j)l is a node of λ with residue m, then the node (i, j + 1)l is an addable
node of λ with residue m + 1. Since there are no removable nodes of residue m + 1, we must have
θ̂m+1 < 0. But from the proof of Lemma 4.10 we have θ̂i = 0 unless i 6 k̂ + e, so we must have
m 6 k̂ + e − 1. Similarly the minimal (∞; â)-residue of any node of λ is at least k̂ + 1, and the claim
is proved.

We see that λ has no nodes of (e; a)-residue k, and that for i , k a node of λ has (e; a)-residue i if
and only if it has (∞; â)-residue ı̂. Now it is clear from the formula for weight that the (e; a)-weight
and the (∞; â)-weight coincide. �

Recall from §4.1 the definition of ti(θ), ti(Θ) ∈ Z/erZ. By Lemma 4.2 we see that all the ti(θ) are
congruent modulo e, meaning that for any i, j there is an integer x such that ti(θ)− t j(θ) = ex + erZ.
Similarly, all the ti(Θ) are congruent modulo e. In fact, our assumption that Θ

e
7→ θ implies that the

ti(Θ) are congruent to the ti(θ) modulo e. To see this, recall that we have

θ = Θ +
∑

i∈Z/eZ

miαi

with mk = 0; comparing this with the definitions of tk(θ) and tk(Θ) yields

tk(θ) − tk(Θ) = emk+1 + erZ, (∗)

so tk(θ) and tk(Θ) are congruent modulo e.
Let h be the unique integer in the set {0, . . . , e − 1} such that ti(θ) = ti(Θ) = h for each i. Then

both the expressions h − ti(Θ) and h − ti(θ) are divisible by e; given j ∈ Z/rZ, we write

v j(Θ) =
∣∣∣∣{i ∈ Z/eZ ∣∣∣ h − ti(Θ) = ej

}∣∣∣∣ ,
v j(θ) =

∣∣∣∣{i ∈ Z/eZ ∣∣∣ h − ti(θ) = ej
}∣∣∣∣ .

Now define v(θ) to be the element of ZZ/rZ with coordinates v j(θ). Define v(Θ) analogously.
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Proposition 4.12. Suppose θ is a negative hub such that Θ
e
7→ θ, and define v(θ), v(Θ) as above. Then

v(Θ) r
7→ v(θ), and the block B has weight ht(v(θ) − v(Θ)).

Proof. Let λ be a multipartition in B. By Lemma 4.11, the (e; a)-weight of λ equals its (∞; â)-
weight, and by Theorem 3.3, this is ht(v(θ̂) − v(Θ̂)). So we must show that v(Θ) r

7→ v(θ) and
ht(v(θ) − v(Θ)) = ht(v(θ̂) − v(Θ̂)).

Recall the definition of the integers dl(θ̂) for l ∈ Z. By construction, we have

dl(θ̂) =


r (l 6 k̂ − 1)
r + θ̂k̂ + θ̂k̂+1 + · · · + θ̂l (l = ı̂, some i ∈ Z/eZ)
0 (l > k̂ + e),

with a similar expression for Θ̂. Recalling the construction of Θ̂ and θ̂, we see that For i ∈ Z/eZ,
we have

Θ̂ı̂ = Θi, θ̂ı̂ =

Θk −mk+1 (i = k)
θi (i , k).

(†)

Let h be as above, and let } be the element of Z/rZ such that h − tk(Θ) = e}. Now take
1 6 x 6 r, and write x = x −Θk + }. Since 0 6 dl(Θ) 6 r for each l, we have dl(Θ) = x if and only if
dl(Θ) ≡ x (mod r). Hence

vx(Θ) =
∣∣∣∣{i ∈ Z/eZ ∣∣∣ h − ti(Θ) = ex

}∣∣∣∣
=

∣∣∣∣{i ∈ Z/eZ ∣∣∣ tk(Θ) − ti(Θ) = ex + tk(Θ) − h
}∣∣∣∣

=
∣∣∣∣{i ∈ Z/eZ ∣∣∣ e(Θk+1 + · · · + Θi) + erZ = ex + tk(Θ) − h

}∣∣∣∣ by Lemma 4.2

=
∣∣∣∣{i ∈ Z/eZ ∣∣∣ Θk+1 + · · · + Θi + rZ = x − }

}∣∣∣∣
=

∣∣∣∣{i ∈ Z/eZ ∣∣∣ Θ̂k̂ + · · · + Θ̂ı̂ + rZ = x − } + Θk

}∣∣∣∣ by (†)

=
∣∣∣∣{i ∈ Z/eZ ∣∣∣ dı̂(Θ̂) ≡ x (mod r)

}∣∣∣∣
=

∣∣∣∣{l ∈ Z ∣∣∣ dl(Θ̂) = x
}∣∣∣∣

= vx(Θ̂).
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For θ, we have

vx(θ) =
∣∣∣∣{i ∈ Z/eZ ∣∣∣ h − ti(θ) = ex

}∣∣∣∣
=

∣∣∣∣{i ∈ Z/eZ ∣∣∣ tk(θ) − ti(θ) − emk+1 = ex + tk(θ) − emk+1 − h
}∣∣∣∣

=
∣∣∣∣{i ∈ Z/eZ ∣∣∣ e(θk+1 + · · · + θi −mk+1) + erZ = ex + tk(Θ) − h

}∣∣∣∣ by Lemma 4.2 and (∗)

=
∣∣∣∣{i ∈ Z/eZ ∣∣∣ θk+1 + · · · + θi −mk+1 + rZ = x − }

}∣∣∣∣
=

∣∣∣∣{i ∈ Z/eZ ∣∣∣ θ̂k̂ + · · · + θ̂ı̂ + rZ = x − } + Θk

}∣∣∣∣ by (†)

=
∣∣∣∣{i ∈ Z/eZ ∣∣∣ dı̂(θ̂) ≡ x (mod r)

}∣∣∣∣
=

∣∣∣∣{l ∈ Z ∣∣∣ dl(θ̂) = x
}∣∣∣∣

= vx(θ̂).

Also, since
r∑

x=0

vx(Θ̂) = 0 and
∑

j∈Z/rZ

v j(Θ) = e,

we have

v}−Θk(Θ) = v0(Θ̂) + vr(Θ̂) + e;

similarly

v}−Θk(θ) = v0(θ̂) + vr(θ̂) + e.

Now we can complete the proof: the statement v(Θ̂)
0,r
7→ v(θ̂) says that there are non-negative

integers n1, . . . ,nr−1 such that

v(θ̂) = v(Θ̂) +

r−1∑
x=1

nxαx,

and this combined with the above expressions gives

v(θ) = v(Θ) +

r−1∑
x=1

niαx.

This yields an expression for v(Θ)−v(θ) as a linear combination of the (αi)i∈Z/rZ with all coefficients
non-negative integers and at least one coefficient (namely, the coefficient of α}−Θk) equal to zero.
Hence we have v(Θ) r

7→ v(θ), and

ht(v(θ) − v(Θ)) =

r−1∑
x=1

nx = ht(v(θ̂) − v(Θ̂)),
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as required. �

Example 4.13. Retain the notation from Example 4.9. We may calculate

t0(Θ) = 7 + 12Z, t1(Θ) = 1 + 12Z, t2(Θ) = 4 + 12Z,

t0(θ) = 10 + 12Z, t1(θ) = 1 + 12Z, t2(θ) = 1 + 12Z.

So h = 1, and

v0+4Z(Θ) = 1, v1+4Z(Θ) = 0, v2+4Z(Θ) = 1, v3+4Z(Θ) = 1,
v0+4Z(θ) = 2, v1+4Z(θ) = 1, v2+4Z(θ) = 0, v3+4Z(θ) = 0.

We see that v(θ) = v(Θ) + α0+4Z + α1+4Z, so v(Θ) 4
7→ v(θ) and ht(v(θ) − v(Θ)) = 2. And indeed, the

(e; a)-weight of µ is 2.

Now we can generalise to the case where θ is not necessarily negative, and give our main
theorem about the weight of a core block, in the case where e is finite.

Theorem 4.14. Suppose e < ∞ and θ is a hub satisfying the conditions of Theorem 4.7, and define v(θ) as
above. Then v(Θ) r

7→ v(θ), and the weight of the core block with hub θ is ht(v(θ) − v(Θ)).

Proof. In the case where θ is negative, the theorem follows from Lemma 4.10 and Proposition 4.12.
To extend to arbitrary hubs, we note that the following are preserved under the We-action on hubs:

• the existence or not of a block with hub θ (Corollary 2.10(1));

• the weight of the core block with hub θ, if one exists (Corollary 2.10(2));

• the multiset {ti(θ) | i ∈ Z/eZ} (Proposition 4.3), and hence v(θ).

Hence by Proposition 4.1 the result holds for all hubs. �
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