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Abstract

We examine blocks of the Ariki–Koike algebra, in an attempt to generalise the combina-
torial representation theory of the Iwahori–Hecke algebra of type A. We identify a particular
type of combinatorial block, which we call a core block, which may be viewed as an ana-
logue of a simple block of the Iwahori–Hecke algebra. We give equivalent characterisations
of core blocks, and examine their basic combinatorics.

1 Introduction

Let F be a field and q a non-zero element of F. For each n > 0, one defines the Iwahori–Hecke
algebra Hn = HF,q(Sn) of the symmetric group Sn. This algebra (of which the group algebra
FSn is a special case) arises naturally, and its representation theory has been extensively
studied. There are important Hn-modules indexed by partitions of n, and there are many
theorems concerning Hn which reduce representation-theoretic notions to statements about the
combinatorics of partitions and Young diagrams.

In this paper, we consider the representation theory of the Ariki–Koike algebra. This is
a deformation of the group algebra of the complex reflection group Cr o Sn, defined using
parameters q,Q1, . . . ,Qr ∈ F. The development of the representation theory of this algebra is still
in its early stages, but already it seems that in many respects the Ariki–Koike algebra behaves in
the same way as the Iwahori–Hecke algebra; many of the combinatorial theorems concerning
Hn have been generalised to the Ariki–Koike algebra, with the rôle of partitions being played by
multipartitions. In fact, much of the difficulty of understanding the Ariki–Koike algebra seems
to lie in finding the right generalisations of the combinatorics of partitions to multipartitions –
very simple combinatorial notions (such as the definition of an e-restricted partition) can have
rather nebulous generalisations (such as ‘Kleshchev’ multipartitions). This paper is intended
as a contribution towards understanding the combinatorics of multipartitions, as it relates to
the Ariki–Koike algebra. This paper may also be read from the point of view of quantum
groups – the decomposition matrices of Ariki–Koike algebras are in certain cases described
using canonical bases of higher-level Fock spaces for the quantum groups Uv(ŝle), and the
combinatorial notions here should be invaluable for studying these Fock spaces. Our results
apply also to the cyclotomic q-Schur algebra of Dipper, James and Mathas [2], although the
statements about Kleshchev multipartitions are of less importance there.
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In the representation theory of the Iwahori–Hecke algebra, the weight and core of a partition
play an important rôle; they give rise to block invariants which provide information about
the representation theory of a block – the weight of a block is an excellent measure of how
complicated the representation theory of that block is. In [4], we generalised the notion of
weight to multipartitions. We gave a (non-obvious) definition of the weight of a multipartition,
and examined its properties. In this paper (which relies heavily on [4], and may be regarded as
a sequel), we consider generalising the notion of the core of a partition. Given a multipartition
λ, it seems that we cannot sensibly define another multipartition which we regard as the core
of λ; rather, we define a combinatorial block which we call the core block of λ.

Core blocks can be quite complicated (in fact, they can have arbitrarily large weight), but we
show that they are well-behaved in certain ways. After giving several equivalent definitions of
a core block, we show that we may describe the set of multipartitions in a core block in a simple
way. We then show that every core block ‘occurs at e = ∞’, by which we mean that for any
core block B there is another Ariki–Koike algebra Ȟn defined using parameters q̌, Q̌1, . . . , Q̌r

with q̌ not a root of unity in F and a combinatorial block B̌ of Ȟn which closely resembles B.
This resemblance should reflect underlying algebraic structure, but we content ourselves with
examining combinatorics, proving that B and B̌ contain the same multipartitions and the same
Kleshchev multipartitions.

Finally, we examine combinatorial blocks which are ‘decomposable’ in a certain combina-
torial sense. The idea is that the representation theory of such blocks should reduce to studying
blocks of Ariki–Koike algebras defined for smaller values of r. We show that a decomposable
combinatorial block is a core block, and we show that the set of multipartitions and the set
of Kleshchev multipartitions in a decomposable combinatorial block may be determined from
those of the ‘factor’ blocks.

For the remainder of this introduction, we describe the background theory and notation we
shall need. In Section 2, we prove some purely combinatorial theorems which will be useful in
what follows. In Section 3, we look at core blocks.

Acknowledgement. The author wishes to thank the referee for many helpful comments, and
Anton Cox for pointing out the invalidity of a reference cited in an earlier version of this paper.

1.1 Basic definitions

The Ariki–Koike algebra

Let F be a field, and let q,Q1, . . . ,Qr be non-zero elements of F. We also assume that q , 1;
there is a corresponding theory for the case q = 1, but it requires a ‘degenerate’ Ariki–Koike
algebra, which we shall not describe here.

For a non-negative integer n, we define the Ariki–Koike algebraHn to be the unital associative
F-algebra with generators T0, . . . ,Tn−1 and relations

(Ti + q)(Ti − 1) = 0 (1 6 i 6 n − 1)
(T0 −Q1) . . . (T0 −Qr) = 0

TiT j = T jTi (0 6 i, j 6 n − 1, |i − j| > 1)
TiTi+1Ti = Ti+1TiTi+1 (1 6 i 6 n − 2)

T0T1T0T1 = T1T0T1T0.
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We define e to be the multiplicative order of q in F; the assumption that q , 1 means that
e ∈ {2, 3, . . . } ∪ {∞}. We shall often consider whether two integers are congruent modulo e, and
we allow the case e = ∞, where ‘congruent modulo e’ will mean ‘equal’, and where the set Z/eZ
should be read as Z. Q1, . . . ,Qr are referred to as the cyclotomic parameters ofHn.

Multipartitions and Specht modules

A partition of n is defined to be a decreasing sequence λ = (λ1, λ2, . . . ) of non-negative
integers whose sum is n. We write |λ| = n, and we use ∅ to denote the unique partition
of 0. A partition is often written with equal terms grouped and zeroes omitted, so that
(2, 2, 2, 1, 1, 0, 0, . . . ) becomes (23, 12). The Young diagram [λ] of a partition λ is defined as

{(i, j) ∈ N × N | j 6 λi},

and the elements of [λ] are called nodes.
A multipartition of n with r components is a sequence λ = (λ(1), . . . , λ(r)) of partitions such that

|λ(1)
|+ · · ·+ |λ(r)

| = n. Again, we write |λ| = n, and we write the unique multipartition of 0 as ∅,
if r is understood. The Young diagram [λ] of a multipartition λ is the set

{(i, j, k) ∈ N × N × {1, . . . , r} | j 6 λ(k)
i },

whose elements are also called nodes. We say that the node (i, j, k) is higher than the node
(i′, j′, k′) if either k < k′ or (k = k′ and i < i′). A node n of [λ] is called removable if [λ] \ {n} is the
Young diagram of some multipartition, while a triple n = (i, j, k) not in [λ] is called an addable
node of [λ] if [λ] ∪ {n} is the Young diagram of some multipartition with r components. We
emphasise the potentially confusing point that an addable node of [λ] is not a node of [λ].

To each multipartition λ of n, one associates a Specht module Sλ. These modules arise from
a cellular basis of Hn; each Specht module lies in one block of Hn, and we abuse notation by
saying that a multipartition λ lies in a block B if Sλ lies in B. On the other hand, each block
contains at least one Specht module, so in order to classify the blocks of Hn, it suffices to
describe the corresponding partition of the set of multipartitions.

Rim e-hooks and e-cores

If λ is a partition, then the rim of [λ] is defined to be the set of nodes (i, j) in [λ] for which
(i + 1, j + 1) does not lie in [λ]. If e is finite, then a rim e-hook is defined to be a connected
subset R of the rim containing exactly e nodes, such that [λ] \ R is the Young diagram of a
multipartition. If [λ] does not have any rim e-hooks, or if e = ∞, then we say that λ is an e-core.
If λ = (λ(1), . . . , λ(r)) is a multipartition and each λ( j) is an e-core, then we say that λ is a multicore.

Residues, blocks and combinatorial blocks

If λ is a multipartition and (i, j, k) is a node or an addable node of [λ], then we define the
residue of (i, j, k) to be the element q j−iQk of F. For each f ∈ F, we write c f (λ) for the number of
nodes of [λ] of residue f ; now we say that two multipartitionsλ andµ lie in the same combinatorial
block (ofHn) if c f (λ) = c f (µ) for all f ∈ F. Then we have the following.
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Theorem 1.1. [5, Proposition 5.9(ii)] If λ and µ are multipartitions of n, then λ and µ lie in the same
block ofHn only if they lie in the same combinatorial block.

Graham and Lehrer have conjectured a converse to this theorem, namely that if two mul-
tipartitions lie in the same combinatorial block, then they lie in the same block. This has now
been proved by Lyle and Mathas [6, Theorem 2.11], but since their result uses the results of the
present paper, we cannot assume it here. Accordingly, this paper is entirely concerned with
combinatorial blocks. Of course, when re-reading this paper in the light of the work of Lyle
and Mathas, the word ‘combinatorial’ can be ignored. According to our abuse of terminol-
ogy, we view a (combinatorial) block as a set of multipartitions, and under this interpretation
Theorem 1.1 shows that a combinatorial block B is a disjoint union of blocks B1, . . . ,Bs. Of
course, B1, . . . ,Bs are more correctly viewed as algebras (in particular, indecomposable direct
summands ofHn); occasionally, we shall interpret B as an algebra too, namely the direct sum
of the algebras B1, . . . ,Bs. We switch between these two interpretations without notice; there
should be no risk of confusion.

The author’s earlier paper [4] is extensively referenced here, and unfortunately refers to a
now discredited preprint containing a purported proof of the converse of Theorem 1.1. This
result is not used in a fundamental way in [4], but some of the results need to be re-stated when
the classification of blocks is not being assumed. Essentially, this means reading ‘combinatorial
block’ instead of ‘block’ throughout [4]. A new version of [4] with the appropriate changes
appears on the author’s web site:
http://www.maths.qmul.ac.uk/˜mf/papers/weight.pdf.

Kleshchev multipartitions

Residues of nodes are also useful in classifying the simple Hn-modules. Suppose λ is a
multipartition, and given f ∈ F define the f -signature of λ by examining all the addable and
removable nodes of λ in turn from higher to lower, and writing a + for each addable node of
residue f and a − for each removable node of residue f . Now construct the reduced f -signature
by successively deleting all adjacent pairs−+. If there are any− signs in the reduced f -signature
of λ, the corresponding removable nodes are called normal nodes of [λ]. The highest normal
node is called a good node of [λ].

We say that λ is Kleshchev if and only if there is a sequence

λ = λ(n),λ(n − 1), . . . ,λ(0) = ∅

of multipartitions such that for each i, [λ(i − 1)] is obtained from [λ(i)] by removing a good
node. The importance of Kleshchev multipartitions lies in the fact (proved by Ariki [1,
Theorem 4.2]) that if λ is Kleshchev, then Sλ has an irreducible cosocle Dλ, and the set
{Dλ | λ a Kleshchev multipartition} is a complete set of non-isomorphic simpleHn-modules.

We shall need a slightly stronger statement about which multipartitions are Kleshchev.

Lemma 1.2. Suppose λ is a multipartition and f ∈ F, and suppose λ is a multipartition whose Young
diagram is obtained by removing all the normal nodes of residue f from [λ]. Then λ is Kleshchev if and
only if λ is.
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Proof. Suppose the normal nodes are n1, . . . , nt in descending order. We define λ(0), . . . ,λ(t)
by putting λ(0) = λ, and then removing ni from [λ(i − 1)] to obtain [λ(i)], for i = 1, . . . , t. Then
obviously λ(t) = λ, and it is easy to check that ni is a good node of [λ(i − 1)]. Now the result
follows from [4, Proposition 1.1]. �

q-connected cyclotomic parameters

We say that the parameters Q1, . . . ,Qr are q-connected if there exist integers ai j such that Q j =
qai jQi for each i, j. Dipper and Mathas [3] showed that if Q1, . . . ,Qr are not q-connected, then
Hn is Morita equivalent to a direct sum of tensor products of ‘smaller’ Ariki–Koike algebras.
So one typically assumes that Q1, . . . ,Qr are q-connected. We make this assumption in this
paper, too; the relationship between q-connectedness and the combinatorics of multipartitions
is discussed to some extent in [4, §3.1], and the reader should be able to extend this discussion
to cover the content of the current paper.

In fact, since the cyclotomic parameters of Hn may be simultaneously re-scaled without
affecting the isomorphism type ofHn, we assume that each Q j is a power of q. So we assume
that we can find an r-tuple of integers a = (a1, . . . , ar) such that Q j = qa j for each j; following
Yvonne [9], we call such an a a multi-charge. If e is finite then we may change any of the a j by
adding a multiple of e, and we shall still have Q j = qa j . If e = ∞, then we have only one possible
choice of multi-charge a.

The abacus

Given the assumption that the cyclotomic parameters of Hn are all powers of q, we may
conveniently represent multipartitions on an abacus display. Given a multipartition λ, choose a
multi-charge a = (a1, . . . , ar), and then for each i > 1 and each j ∈ {1, . . . , r} define the beta-number

β
j
i = λ

( j)
i + a j − i.

It is easy to see that the set B j = {β
j
1, β

j
2, . . . } is a set containing exactly a j + N integers greater

than or equal to −N, for sufficiently large N. On the other hand, any such set is the set of
beta-numbers (defined using the integer a j) of some partition.

Now we take an abacus with e vertical runners, which we label 0, . . . , e − 1 from left to
right if e < ∞, or . . . ,−1, 0,+1, . . . from left to right if e = ∞. On runner l, we mark positions
corresponding to the integers congruent to l modulo e; if e is finite, then we mark these in
increasing order down the runner. Now we place a bead at position β j

i , for each i. The resulting
configuration is called an abacus display for λ( j); the abacus displays for λ(1), . . . , λ(r) together
form an abacus display for λ.

Example. Suppose that r = 3, a = (−1, 0, 1) and λ = ((1),∅, (12)). Then we have

B1 = {. . . ,−5,−4,−3,−1},

B2 = {. . . ,−3,−2,−1},

B3 = {. . . ,−4,−3,−2, 0, 1}.
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So an abacus display for λwhen e = 4 is

0 1 2 3
...
...
...
...u u u uu u u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u uu u

...
...
...
...

.

An abacus display for a partition is useful for visualising the removal of rim e-hooks. If
e is finite and we are given an abacus display for λ( j), then [λ( j)] has a rim e-hook if and only
if there is a beta-number β j

i ∈ B j such that β j
i − e < B j. Furthermore, removing a rim e-hook

corresponds to reducing such a beta-number by e. On the abacus, this corresponds to sliding
a bead up one position on its runner. So if e is finite, then λ( j) is an e-core if and only if every
bead in the abacus display has a bead immediately above it.

We now introduce some notation which does not appear in [4]. Suppose e is finite, λ is a
multicore, and we have chosen a multi-charge a = (a1, . . . , ar). We construct the corresponding
abacus display for λ as above, and then for each i ∈ Z/eZ and 1 6 j 6 r we define ba

i j(λ) to be

the position of the lowest bead on runner i of the abacus for λ( j); that is, the largest element of
B j congruent to i modulo e. It is clear that if we choose a different multi-charge a′ = a + ex for
x ∈ Zr, then we have ba′

i j (λ) = ba
i j(λ) + ex j.

We need an alternative notation if e = ∞; in this case, we examine the unique abacus display
for λ, and we set Bi j(λ) = 1 if i ∈ B j, and 0 otherwise.

Now for i ∈ Z/eZ and j, k ∈ {1, . . . , r}, we define

γ
jk
i (λ) =

1
e (ba

i j(λ) − ba
ik(λ)) (e < ∞)

Bi j(λ) −Bik(λ) (e = ∞).

γ
jk
i (λ) may then be regarded as the difference in height between the lowest bead on runner i of

the abacus display for λ( j) and the lowest bead on runner i of the abacus display for λ(k). If e is
finite, then the integers γ jk

i (λ) depend on the choice of a, but the differences

γ
jk
il (λ) = γ

jk
i (λ) − γ jk

l (λ)

do not; these integers will be very helpful in weight calculations.

The weight and hub of a multipartition

Now we can give the main definition from [4]. Given a multipartition λ, we define c f (λ) for
f ∈ F as above, and put

w(λ) =

r∑
j=1

cQ j(λ) −
1
2

∑
f∈F

(
c f (λ) − cq f (λ)

)2
.

w(λ) is a non-negative integer, called the weight of λ.
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It is also useful to define the hub of a multipartition. For each i ∈ Z/eZ and j ∈ {1, . . . , r},
define

δ
j
i (λ) =(the number of removable nodes of [λ( j)] of residue qi)

− (the number of addable nodes of [λ( j)] of residue qi),

and put δi(λ) =
∑r

j=1 δ
j
i (λ). The collection (δi(λ) | i ∈ Z/eZ) of integers is called the hub of λ.

Notation

Many of the combinatorial notions we have defined, such as the residue of a node, Kleshchev
multipartitions and weight, depend upon the parameters q,Q1, . . . ,Qr. Occasionally, we shall
be considering Ariki–Koike algebras with different parameters, and we shall use terms such
as (q; Q1, . . . ,Qr)-residue, (q; Q1, . . . ,Qr)-Kleshchev and (q; Q1, . . . ,Qr)-weight when there is a
danger of ambiguity.

1.2 Background results from [4]

Here we summarise some results from [4], mostly concerning weight calculations. In the
published version of [4], two of the results we cite (namely, Propositions 3.2 and 4.6) refer to
blocks rather than combinatorial blocks, and as such their proofs are incorrect. However, the
statements and proofs given there are correct if blocks are instead interpreted as combinatorial
blocks (and if the last sentence of the proof of Proposition 3.2 is ignored). (The proof of Lemma
3.3 also uses arguments from the proof of Proposition 3.2, but is nonetheless valid.)

The weight and hub of a multipartition determine the combinatorial block in which it lies

An important feature of the weight and hub of a multipartition is that they are invariants
of the combinatorial block containing λ, and in fact determine this combinatorial block.

Proposition 1.3. [4, Proposition 3.2 & Lemma 3.3] Suppose λ is a multipartition of n and µ is a
multipartition of m. Then:

1. if λ and µ have the same hub, then m ≡ n (mod e), and

w(λ) − w(µ) = r
n −m

e
;

2. if n = m, then λ and µ lie in the same combinatorial block ofHn if and only if they have the same
hub.

In view of this result, we may define the hub of a combinatorial block B to be the hub of
any multipartition λ in B, and we write δi(B) = δi(λ).



8 Matthew Fayers

Calculating weight from the abacus

In [4], it is shown how to compute the weight of a multipartition efficiently from an abacus
display. We summarise the relevant results here.

Proposition 1.4. [4, Corollary 3.4] Suppose e is finite, that λ and µ are multipartitions, and that [µ]
is obtained from [λ] by removing a rim e-hook. Then w(µ) = w(λ) − r.

Proposition 1.5. [4, Proposition 3.5] Suppose λ is a multicore, and for each 1 6 j < k 6 r let w jk(λ)
denote the (q; Q j,Qk)-weight of (λ( j), λ(k)). Then

w(λ) =
∑

16 j<k6r

w jk(λ).

Now suppose that λ is a multicore, that i, l ∈ Z/eZ and that j, k ∈ {1, . . . , r}. If e = ∞, suppose
additionally that γ jk

il (λ) = 2. Define s jk
il (λ) to be the multicore whose abacus display is obtained

by moving a bead from runner i to runner l on the abacus for λ( j), and moving a bead from
runner l to runner i on the abacus for λ(k).

Proposition 1.6. s jk
il (λ) has the same hub as λ, and

w(s jk
il (λ)) = w(λ) − r(γ jk

il (λ) − 2).

Proof. Write µ = s jk
il (λ). Restricting attention to the jth and kth components and calculating

using the parameters q,Q j,Qk, we see that γ12
il ((λ( j), λ(k))) = γ

jk
il (λ) and (µ( j), µ(k)) = s12

il ((λ( j), λ(k))).
So by [4, Lemma 3.7] (which is simply the case r = 2 of the present proposition), we have

w((µ( j), µ(k))) = w((λ( j), λ(k)) − 2(γ jk
il (λ) − 2).

Using Proposition 1.3(1) and noting that (µ( j), µ(k)) and (λ( j), λ(k)) have the same hub, we obtain

|(µ( j), µ(k))| = |(λ( j), λ(k))| − e(γ jk
il (λ) − 2).

λ and µ are identical in all components other than the jth and kth, and so

|µ| = |λ| − e(γ jk
il (λ) − 2),

and since λ and µ have the same hub, we may apply Proposition 1.3(1) again to get the result.
�

Proposition 1.7. Suppose that r = 2, and that λ is a multicore.

1. If γ12
il (λ) 6 2 for all i, l, then w(λ) is the smaller of the two integers∣∣∣∣{i ∣∣∣ γ12

il (λ) = 2 for some l
}∣∣∣∣

and ∣∣∣∣{l ∣∣∣ γ12
il (λ) = 2 for some i

}∣∣∣∣ .
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2. w(λ) = 0 if and only if γ12
il (λ) 6 1 for all i, l.

Proof. (1) is simply [4, Proposition 3.8]. For (2), the result follows from (1) if we have γ12
il 6 2

for all i, l. On the other hand, if we have γ12
il > 3 for some i, l, then the multipartition s12

il (λ) has
strictly smaller weight than λ, by Proposition 1.6. �

Scopes isometries

Here we introduce maps between combinatorial blocks of Ariki–Koike algebras analogous
to those defined by Scopes [8] between blocks of symmetric groups. Suppose k ∈ Z/eZ, and let
φk : Z→ Z be the map given by

φk(x) =


x + 1 (x ≡ k − 1 (mod e))
x − 1 (x ≡ k (mod e))
x (otherwise).

If e is finite, then φk descends to give a map from Z/eZ to Z/eZ; we abuse notation by referring
to this map as φk also.

Now suppose λ is a multipartition, and that we have chosen an abacus display for λ. For
each j, we define a partition Φk(λ( j)) by replacing each beta-number βwith φk(β). Equivalently,
we simultaneously remove all removable nodes of residue qk from [λ( j)] and add all addable
nodes of residue qk. We define Φk(λ) to be the multipartition (Φk(λ(1)), . . . ,Φk(λ(r))).

Proposition 1.8. [4, Proposition 4.6] If B is a combinatorial block ofHn, then there is a combinatorial
block C ofHn−δk(B) such that Φk gives a self-inverse bijection from the set of multipartitions in B to the
set of multipartitions in C.

We write Φk(B) for the combinatorial block C described in Proposition 1.8. Now we note
that in a special case, Φk preserves the Kleshchev property.

Lemma 1.9. Suppose λ is a multipartition, that k ∈ Z/eZ, and that [λ] has no addable nodes of residue
qk. Then λ is Kleshchev if and only if Φk(λ) is.

Proof. Since [λ] has no addable nodes of residue qk, every removable node of residue qk is
normal, and [Φk(λ)] is obtained by removing all these nodes. Now the result follows from
Lemma 1.2. �

2 Some combinatorial results

In this section, we prove three combinatorial results which we shall need later. It is possible
that these may be of independent interest.
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2.1 A combinatorial lemma concerning the weight lattice of type Ar−1

First we prove a result which will be essential for the proof of the main result of Section 3,
but we phrase it here in terms of the weight lattice for a root system of type Ar−1, where r > 1.
(If r = 1, then this lattice consists of a single point, but the results all hold without modification.)

We consider the weight lattice Lr of type Ar−1: let Zr denote the free Z-module with basis
{e1, . . . , er}, and define

Lr =
Zr

Z(e1 + · · · + er)
.

We write elements of Lr simply by writing representative elements in Zr.
We adopt the following conventions concerning multisets. If T is a set and X a multiset, we

say that X is a multisubset of T if every element of X is an element of T. If X contains several
copies of some t ∈ T, we write X \ {t} to mean X with one of these copies removed. Similarly,
we write X∪{t} to mean X with a copy of t added (so ∪ really means ‘disjoint union’). We want
to consider finite multisubsets of Lr. First we introduce an equivalence relation on the set of
such multisets.

Suppose X is a multisubset of Lr, and that there are x, y ∈ X and k, l ∈ {1, . . . , r} such that

(xk − xl) − (yk − yl) = 2.

Define the multiset Y by

Y = X \ {x, y} ∪ {x − ek + el, y + ek − el},

and say that X ≡ Y whenever X and Y are related in this way. Clearly ≡ is a symmetric relation;
we extend it transitively and reflexively to obtain an equivalence relation.

Now say that a multisubset X of Lr is tight if

(xk − xl) − (yk − yl) 6 2

for all x, y ∈ X and all 1 6 k, l 6 r, and that X is ultra-tight if every multiset in the same ≡-class
as X is tight.

Example. Let r = 3. Then the set

X = {(0, 0, 0), (2, 0, 0), (0,−2, 0)}

is tight, but it is not ultra-tight, since

X ≡ Y = {(0, 0, 0), (2,−1, 1), (0,−1,−1)}.

Our aim is to classify ultra-tight multisets.

Lemma 2.1. Given s ∈ Lr, define

N(s) = {x ∈ Lr | xk − xl 6 sk − sl + 1 ∀ k, l ∈ {1, . . . , r}}.

Then any multisubset of N(s) is ultra-tight.
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Proof. Clearly any multisubset of N(s) is tight, so it will suffice to prove that if X is a multisubset
of N(s) and X ≡ Y, then Y is also a multisubset of N(s). To see this, it is enough to observe the
following: if x, y ∈ N(s) such that (xk−xl)− (yk− yl) = 2 for some k, l, then x− ek + el and y+ ek− el
also lie in N(s). �

What we want to do is prove a converse to the above lemma, i.e. that every ultra-tight
multisubset of Lr is a multisubset of N(s) for some s. In fact, we write the result slightly
differently. Given a1, . . . , ar−1 ∈ Z and k, l ∈ {1, . . . , r}, we write

akl = (ak + ak+1 + · · · + ar−1) − (al + al+1 + · · · + ar−1),

where we regard ak + · · · + ar−1 as 0 if k = r.

Proposition 2.2. If X is an ultra-tight multisubset of Lr, then there are a1, . . . , ar−1 ∈ Z such that

xk − xl 6 akl + 1

for all x ∈ X and k, l ∈ {1, . . . , r}.

It is clear that this result shows that an ultra-tight multiset X is a multisubset of N(s), where
sk = (ak + ak+1 + · · · + ar−1) for each k. The inductive step used to prove Proposition 2.2 is the
following.

Proposition 2.3. Suppose X is an ultra-tight multisubset of Lr and 1 6 t 6 r − 1, and that there exist
a1, . . . , ar−1 ∈ Z such that for any x ∈ X we have

xk − xl 6 akl + 1

whenever k, l ∈ {1, . . . , r − 1} or k, l ∈ {t + 1, . . . , r}. Then there exist â1, . . . , âr−1 ∈ Z such that for any
x ∈ X we have

xk − xl 6 âkl + 1

whenever k, l ∈ {1, . . . , r − 1} or k, l ∈ {t, . . . , r}.

Proof. The case where t = r − 1 is easy: since X is tight, we can choose âr−1 such that
âr−1 − 1 6 xr−1 − xr 6 âr−1 + 1 for all x, while for 1 6 i 6 r − 2 we set âi = ai. So we suppose
t < r − 1.

If a1, . . . , ar−1 will not serve as â1, . . . , âr−1, then there is some x ∈ X such that either

xt − xr > atr + 2

or
xt − xr 6 atr − 2.

We assume the first of these inequalities; the proof in the other case is similar.
Given the inequalities we already have, we find that for any u ∈ {t + 1, . . . , r − 1}we have

xt − xr = (xt − xu) + (xu − xr)
6 atu + 1 + aur + 1
= atr + 2.
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So we must have xt − xu = atu + 1 and xu − xr = aur + 1, and this implies that

xt − xt+1 = at + 1,
xt+1 − xt+2 = at+1,

xt+2 − xt+3 = at+2,

...

xr−2 − xr−1 = ar−2,

xr−1 − xr = ar−1 + 1.

Note also that for any y ∈ X we have

atr 6 yt − yr 6 atr + 2; (†)

the first inequality follows because xt − xr = atr + 2 and X is tight, and the second inequality
follows because by assumption yt − yr−1 6 at(r−1) + 1 and yr−1 − yr 6 a(r−1)r + 1.

Now we draw a directed graph G on the set {1, . . . , r}, with an arrow from k to l if and only
if there is some y ∈ X with

yk − yl = akl − 1.

We consider two cases.

Case 1: G does not contain a directed path from t to r
Under this assumption, the set {1, . . . , r} can be partitioned into two sets T and R such that
t ∈ T, r ∈ R, and there is no arrow k→ l for any k ∈ T, l ∈ R. (For example, we could let T
be the set of all k such that there is a directed path from t to k.) We define

âk =


ak + 1 (k ∈ T, k + 1 ∈ R)
ak − 1 (k ∈ R, k + 1 ∈ T)
ak (otherwise).

Then we have

âkl =


akl + 1 (k ∈ T, l ∈ R)
akl − 1 (k ∈ R, l ∈ T)
akl (otherwise),

and we claim that yk − yl 6 âkl for any y ∈ X whenever k, l ∈ {1, . . . , r− 1} or k, l ∈ {t, . . . , r}.
Since t ∈ T and r ∈ R we have âtr = atr + 1, and so by (†) we have

âtr − 1 6 yt − yr 6 âtr + 1,

which deals with cases where {k, l} = {t, r}. For the other cases, the result is immediate if
âkl > akl. If âkl = akl − 1, then k ∈ R and l ∈ T. The fact that there are no arrows from T to R
implies that yl − yk > alk, so that

yk − yl 6 akl = âkl + 1.
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Case 2: G does contain a directed path from t to r
Under this assumption, we’ll show that X is not ultra-tight, which gives a contradiction.
First we note the following.

Claim. For any k < r, we have xk − xr > akr + 1.
Proof. This comes directly from above if k > t (and in fact we have xt − xr = atr + 2).
For k < t, we have

xk − xr = (xk − xt) + (xt − xr)
> akt − 1 + atr + 2
= akr + 1.

Now suppose
t = k1 → k2 → · · · → ks = r

is a path from t to r of minimal length in G, and choose y1, . . . , ys−1
∈ X such that

ym
km
− ym

km+1
= akmkm+1 − 1

for all m. We also define xm = x − ekm+1 + er for m = 1, . . . , s − 1. We want to prove the
following statements by (downwards) induction, for m = s − 1, . . . , 1:

Am : there is a multiset Ym containing y1, . . . , ym and xm such that Ym ≡ X;

Bm : (xm
km
− xm

km+1
) − (ym

km
− ym

km+1
) = 2;

Cm : xkm − xr = akmr + 1.

If we can prove statement C1, we shall have a contradiction.

As−1 is immediate – we can take Ys−1 = X. Now we prove Bs−1 and Cs−1; by the claim, we
have

(xks−1 − xr) − (ys−1
ks−1
− ys−1

r ) > (aks−1r + 1) − (aks−1r − 1) = 2;

we must have equality since X is tight, which gives Bs−1. Since ys−1
ks−1
− ys−1

r = aks−1r − 1, we
have Cs−1 too.

Now we perform our inductive steps: first, we show that for m 6 s − 2 the statements
Am+1 and Bm+1 imply Am: we construct the set Ym by taking the multiset Ym+1, removing
xm+1 and ym+1, and adding xm and ym+1 + ekm+1 − ekm+2 . By Bm+1, we have Ym ≡ Ym+1 ≡ X.

Next we show that for m 6 s−2 statements Am and Cm+1 imply Bm and Cm. Since the chosen
path has minimal length, k1, . . . , ks are pairwise distinct; in particular, (er)km = (er)km+1 = 0.
Hence

xm
km
− xm

km+1
= (x − ekm+1 + er)km − (x − ekm+1 + er)km+1

= (xkm − xr) − (xkm+1 − xr) + 1
> (akmr + 1) − (akm+1r + 1) + 1

(by the claim and statement Cm+1)

= akmkm+1 + 1
= ym

km
− ym

km+1
+ 2;
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since Ym is tight, we must have equality, which implies Bm and Cm.

So by induction statement C1 is true, which is a contradiction.

�

Proof.[Proof of Proposition 2.2] We proceed by induction on r, with the case r = 1 being trivial.
For r > 1, let X be an ultra-tight multisubset of Lr. The natural projection Zr

→ Zr−1 induces
a map Lr → Lr−1, and we write X for the image of X under this map. It is clear that X is
ultra-tight, so by induction we can find integers a1, . . . , ar−2 such that

xk − xl 6 akl + 1

for all x ∈ X and k, l ∈ {1, . . . , r − 1}.
We let ar−1 be an arbitrary integer, and then we apply Proposition 2.3 for t = r − 1, . . . , 1 in

turn. �

2.2 Results concerning integer matrices

Now we prove two simple results concerning manipulation of integer matrices. Suppose A
and B are both e × r matrices with integer entries; for consistency with later sections, we index
the rows with the integers 0, . . . , e − 1 and the columns with the integers 1, . . . , r.

First we suppose that all the entries of A and B are 0 or 1. We write A ↔ B if there are
indices k, l,m,n with k , l and m , n such that

ai j − bi j = δikδ jm + δilδ jn − δikδ jn − δilδ jm

for all i, j, where we employ the Kronecker delta. That is, A and B differ by the addition of a
2 × 2 submatrix of the form

(
+1 −1
−1 +1

)
or

(
−1 +1
+1 −1

)
.

Clearly if A ↔ B, then A and B have the same row sums and column sums. We prove a
converse to this statement; this is due originally to Ryser [7, Theorem 3.1].

Proposition 2.4. Suppose A and B are e × r matrices with all entries equal to 0 or 1 and with the same
row and column sums, that is,

ai1 + · · · + air = bi1 + · · · + bir

for all i ∈ {0, . . . , e − 1} and
a0 j + · · · + a(e−1) j = b0 j + · · · + b(e−1) j

for all j ∈ {1, . . . , r}. Then there is a sequence A = A0, . . . ,As = B of matrices with all entries equal to 0
or 1 such that A0 ↔ A1 ↔ · · · ↔ As.

Proof. It suffices to assume that A , B and to find a matrix A′ such that either

1. A↔ A′ and there are fewer positions where A′ and B differ than positions where A and
B differ, or

2. A′ ↔ B and there are fewer positions where A and A′ differ than positions where A and
B differ.
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Put C = A − B. Then the entries of C are all equal to −1, 0 or +1, and the row and column
sums of C are all zero. For t > 0, we define a chain of length t to be a sequence (i0, j0), . . . , (it−1, jt−1)
such that

cik jk = +1, cik jk+1 = −1

for all k = 0, . . . , t − 1, where we interpret it as i0. We can certainly find a chain of some length,
by the following procedure:

• since C is non-zero, we can find g0, h0 such that cg0h0 = +1;

• suppose we have gk, hk with cgkhk = +1; since the gkth row sum of C is zero, we can find
hk+1 such that cgkhk+1 = −1;

• suppose we have gk, hk+1 with cgkhk+1 = −1; since the hk+1th column sum of C is zero, we
can find gk+1 such that cgk+1hk+1 = +1.

This enables us to construct a sequence g0, h0, g1, h1, . . . such that cgkhk = +1 and cgkhk+1 = −1
for each k; since there are only finitely many entries in C, the sequence (g0, h0), (g1, h1), . . . must
repeat at some point, say (gv, hv) = (gu, hu) with v > u. Defining t = v−u and ik = gu+k, jk = hu+k
for k = 0, . . . , t − 1 gives a chain.

Take a chain (i0, j0), . . . , (it−1, jt−1) of length t with t > 0 minimal, and consider the position
(i0, jt−1).

• If ai0, jt−1 = 0, then we define

a′i j = ai j + δii0δ j jt−1 + δiit−1δ j j0 − δii0δ j j0 − δiit−1δ j jt−1 .

Certainly i0 , it−1 and j0 , jt−1, so the matrix A′ = (a′i j) satisfies the conditions of (1)
above.

• If bi0, jt−1 = 1, then we define

a′i j = bi j − δii0δ j jt−1 − δiit−1δ j j0 + δii0δ j j0 + δiit−1δ j jt−1 .

Now A′ = (a′i j) satisfies the conditions of (2) above.

• Otherwise, we have ci0, jt−1 = +1; but this implies that t > 3 and that

((i0, jt−1), (i1, j1), (i2, j2), . . . , (it−2, jt−2))

is a chain of length t − 1; contradiction.

�

Now we prove our second result concerning integer matrices.

Proposition 2.5. Suppose A and B are e × r matrices satisfying the following conditions:

• there exist integers α0, . . . , αe−1 and β0, . . . , βe−1 with

αi ≡ βi ≡ i (mod e)

for each i and with
ai j ∈ {αi, αi + e}, bi j ∈ {βi, βi + e}

for all i, j;
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• there is a constant K such that

bi1 + · · · + bir = ai1 + · · · + air + K

for all i;

• for any j,
b0 j + · · · + b(e−1) j ≡ a0 j + · · · + a(e−1) j (mod e2).

Then there is an e × r integer matrix C with entries constant down each column and such that:

•

bi j + ci j ∈ {αi, αi + e}

for each i, j;

•

(bi1 + ci1) + · · · + (bir + cir) = ai1 + · · · + air

for i = 0, . . . , e − 1;

•

(b0 j + c0 j) + · · · + (b(e−1) j + c(e−1) j) = a0 j + · · · + a(e−1) j

for j = 1, . . . , r.

Proof. By reducing βi by e if necessary, we assume that for each i there is at least one j with
bi j = βi + e. Then we have

rβi + e 6 bi1+ · · · + bir 6 rβi + re

as well as

rαi 6 ai1+ · · · + air 6 rαi + re

so that
K − re

r
6 βi − αi 6

K + (r − 1)e
r

for each i. Since βi − αi is divisible by e, this means that the integers βi − αi can only take two
different values (which differ by e) as i varies. By adding a constant multiple of e to all entries
of B and to each βi, we may assume that βi − αi = 0 or e for all i, and equals 0 for at least one
value of i.

Now we examine the column sums of A and B. We write a∗ j for the sum a0 j + · · · + a(e−1) j
and similarly b∗ j. We have

b∗ j − a∗ j ≡ 0 (mod e2)

and
e−1∑
i=0

(βi − αi) − e2 6 b∗ j − a∗ j 6
e−1∑
i=0

(βi − αi) + e2
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and by the above assumptions we have 0 6
∑e−1

i=0 (βi − αi) 6 e(e − 1), so that b∗ j − a∗ j can only
equal 0 or ±e2. But if b∗ j − a∗ j = −e2, then we must have bi j = βi for all i, and we may increase
each bi j by e without affecting earlier hypotheses to get b∗ j − a∗ j = 0. So we assume that b∗ j − a∗ j
equals 0 or e2 for each j. By re-ordering rows and columns, we may assume that βi − αi = e for
i = 0, . . . , l − 1 only, and that b∗ j − a∗ j = e2 for j = 1, . . . , k only. Note that we then have K = ek.
We would like to define

ci j =

−e ( j 6 k)
0 ( j > k);

this would give the correct row and column sums for B + C, and would give bi j + ci j = αi or
αi + e, except possibly when i > l and j 6 k. So it suffices to show that we have bi j = βi + e when
i > l and j 6 k. For any 1 6 j 6 k, we have

(b0 j + · · · + b(l−1) j) − (a0 j + · · · + a(l−1) j) = e2 + (al j + · · · + a(e−1) j) − (bl j + · · · + b(e−1) j)

> e2 + (αl + · · · + αe−1) − ((βl + e) + · · · + (βe−1 + e))
= el. (∗)

with equality only if bi j = βi + e for i = l, . . . , e − 1. On the other hand, for any 0 6 i 6 l − 1 we
have

(bi1 + · · · + bik) − (ai1 + · · · + aik) = ek + (ai(k+1) + · · · + air) − (bi(k+1) + · · · + bir)
6 ek + (r − k)(αi + e) − (r − k)βi

= ek. (∗∗)

And so (summing (∗) over j and (∗∗) over i) we get

ekl 6
l−1∑
i=0

k∑
j=1

(bi j − ai j) 6 ekl.

So equality holds in (∗) and (∗∗), and in particular we have bi j = βi + e for i > l and j 6 k, as
required. �

3 Core blocks

In this section, we introduce core blocks of Ariki–Koike algebras, giving several equivalent
definitions. For the rest of this paper q,Q1, . . . ,Qr are fixed, and we assume that there are
integers a1, . . . , ar such that Qi = qai for each i. Let Hn be the Ariki–Koike algebra with these
parameters.

3.1 The definition of a core block

In order to introduce core blocks, we need to consider separately the case e = ∞; in this
case, every combinatorial block of Hn will be a core block. For the case where e is finite, the
definition is given by the equivalent statements in the following theorem. It is straightforward
to check that these statements, appropriately re-phrased, all hold for every combinatorial block
ofHn when e = ∞, with property (4) following from Proposition 1.3.
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Theorem 3.1. Suppose that e is finite, and that λ is a multipartition lying in a combinatorial block B of
Hn. The following are equivalent.

1. λ is a multicore, and there exist a multi-charge a = (a1, . . . , ar) and integers α0, . . . , αe−1 such that
for each i, j, ba

i j(λ) equals either αi or αi + e.

2. λ is a multicore, and there exist a multi-charge a = (a1, . . . , ar) and integers s1, . . . , sr such that

ba
i j(λ) − ba

ik(λ)

e
6 s j − sk + 1

for all i ∈ {0, . . . , e − 1}, j, k ∈ {1, . . . , r}.

3. λ is a multicore, and for any multi-charge a = (a1, . . . , ar) there exist integers s1, . . . , sr such that

ba
i j(λ) − ba

ik(λ)

e
6 s j − sk + 1

for all i ∈ {0, . . . , e − 1}, j, k ∈ {1, . . . , r}.

4. There is no combinatorial block of anyHm with the same hub as B and smaller weight.

5. Every multipartition in B is a multicore.

Now we can make the main definition of this paper.

Definition. Suppose B is a combinatorial block ofHn. Then we say that B is a core block if and
only if either

• e is finite and the equivalent conditions of Theorem 3.1 are satisfied for any multipartition
λ in B, or

• e = ∞.

Example. Suppose r = 2, e = 4, Q1 = q3,Q2 = 1, and consider the combinatorial block B of
H8 containing the bipartition ((4, 12), (2)). Choosing the multi-charge (3, 4), we get an abacus
display

0 1 2 3
...
...
...
...u u u uu u u uu uu

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu u uu

...
...
...
...

for this bipartition. So we may take (α0, α1, α2, α3) = (−4, 1, 2,−1), and we find that B is a core
block. The other bipartitions in B are ((3, 12), (3)) and (∅, (32, 12)), with abacus displays

0 1 2 3
...
...
...
...u u u uu u u uu uu

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu u uu

...
...
...
...

,

0 1 2 3
...
...
...
...u u u uu u u uu u u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu uu u

...
...
...
...

.
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In order to prove Theorem 3.1, we need some preliminary results. First we observe that
from the integers ba

i j(λ) we may recover the multi-charge a and the hub of λ. The proof of the
following lemma is straightforward – for (1), recall that for sufficiently large N, the number of
beta-numbers for λ( j) which are greater than or equal to −N is a j + N.

Lemma 3.2. Suppose e is finite, that λ is a multicore and that a = (a1, . . . , ar) is a multi-charge. Then

1.

a j =

∑e−1
i=0 b

a
i j(λ)

e
+

e + 1
2

for j = 1, . . . , r;

2.

δi(λ) =

∑r
j=1 b

a
i j(λ) −

∑r
j=1 b

a
(i−1) j(λ) − r

e
for i = 0, . . . , e − 1 (reading the subscript i − 1 modulo e).

Proposition 3.3. Suppose e is finite, and λ and µ are multicores with the same hub. Suppose that:

• there exist a multi-charge a = (a1, . . . , ar) and integers α0, . . . , αe−1 such that ba
i j(λ) ∈ {αi, αi + e},

for each i, j;

• there exist a multi-charge b = (b1, . . . , br) and integers β0, . . . , βe−1 such that bb
i j(µ) ∈ {βi, βi + e},

for each i, j.

Then ba
i j(µ) ∈ {αi, αi + e}, for each i, j.

Proof. Let A be the matrix with entries ai j = ba
i j(λ), and let B be the matrix with entries

bi j = bb
i j(µ). We wish to use Proposition 2.5, so we need to verify the hypotheses of that

proposition concerning the row and column sums of A and B.
Take j ∈ {1, . . . , r}. The fact that a j and b j are congruent modulo e means that∑e−1

i=0 ai j

e
+

e + 1
2
≡

∑e−1
i=0 bi j

e
+

e + 1
2

(mod e)

by Lemma 3.2(1), so that
e−1∑
i=0

ai j ≡

e−1∑
i=0

bi j (mod e2).

Now we look at row sums. Using Lemma 3.2(2), the fact that λ and µ have the same hub
implies that

r∑
j=1

ai j −

r∑
j=1

a(i−1) j =

r∑
j=1

bi j −

r∑
j=1

b(i−1) j

for all i, so that there is a constant K such that
r∑

j=1

bi j =

r∑
j=1

ai j + K
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for all i.
By Proposition 2.5 there is a matrix C with entries constant down each column such that

any entry in row i of B+C is equal to αi or αi + e, and such that B+C has the same row sums and
the same column sums as A. Clearly the entries of C are all divisible by e, i.e. there is a vector
c = (c1, . . . , cr) ∈ Zr such that the entries of any row of C are (ec1, . . . , ecr). So (by the comment
following the definition of the integers ba

i j(λ)) the (i, j) entry of B + C is bb+ec
i j (µ), for each i, j.

But the fact that the column sums of B + C equal the column sums of A means that we have
b j + ec j = a j for each j, by Lemma 3.2(1). Hence ba

i j(µ) = (B + C)i j = αi or αi + e, for any i, j. �

Proposition 3.4. Suppose e is finite, and λ and µ are multipartitions satisfying the hypotheses of
Proposition 3.3. Then w(λ) = w(µ).

Proof. Let a = (a1, . . . , ar) and α0, . . . , αe−1 be as in Proposition 3.3, and write ai j = ba
i j(λ) and

bi j = ba
i j(µ). Then ai j and bi j each equal either αi or αi + e, for each i, j. Furthermore, the row and

column sums of A = (ai j) equal the corresponding row and column sums of B = (bi j). Define

âi j =
ai j − αi

e
, b̂i j =

bi j − αi

e
.

Then the matrices Â = (âi j) and B̂ = (b̂i j) are 0–1 matrices with corresponding row and column
sums equal. So by Proposition 2.4 there is a sequence Â = A0

↔ A1
↔ · · · ↔ At = B̂. If we let âk

i j

be the i, j entry of Ak and define ak
i j = eâk

i j +αi, then we have ak
i j = ba

i j(λk) for some multipartition

λk (with λ0 = λ, λt = µ). Moreover, the relation Ak−1
↔ Ak means that λk = s jm

il (λk−1) for some

i, l, j,m with γ jm
il (λk−1) = 2. By Proposition 1.6, this means that w(λk) = w(λk−1). �

Proof.[Proof of Theorem 3.1] Trivially (3)⇒(2), and it is easy to see that (2)⇒(3): suppose the
sequence (s1, . . . , sr) satisfies the given condition for the multi-charge a = (a1, . . . , ar). Then for
any other multi-charge a′ = (a1 + ex1, . . . , ar + exr), the sequence (s1 + x1, . . . , sr + xr) will work.

The preceding paragraph also shows that we may choose the multi-charge a and the integers
s1, . . . , sr in (2) in such a way that s1 = · · · = sr. If we do this, and then set αi = min{ba

i j | j ∈
{1, . . . , r}} for each i, then the inequalities for (1) will follow. So (2)⇒(1). To show that (1)⇒(2),
we use the chosen multi-charge and put s1 = · · · = sr = 0.

It is also straightforward to show that (4) and (5) are equivalent. Suppose first that (4) is
false, so there is a multipartition µ in a combinatorial block C with the same hub as B but
smaller weight. By Proposition 1.3, we have w(C) = w(B) − ar for some positive integer a. If
we add a rim ae-hook to the Young diagram of µ, then we shall have a multipartition in B, by
Proposition 1.4. This is not a multicore, and so (5) is false. So (5)⇒(4). To show that (4)⇒(5) is
even easier: if there is a multipartition µ in B which is not a multicore, then we may remove a
rim e-hook from the Young diagram of µ to get a multipartition with the same hub and smaller
weight.

The hard part, then, is to show that (1), (2) and (3) are equivalent to (4) and (5). First
we show that (4)⇒(2), for which we use Proposition 2.2. Certainly (4) implies that λ is a
multicore, because otherwise we could remove a rim e-hook from [λ] to get a multipartition
of lower weight. Choose a multi-charge a = (a1, . . . , ar), and then for i = 0, . . . , e − 1 define
x(i) = (ba

i1(λ), . . . , ba
ir(λ)). Let X(λ) be the multiset {x(0), . . . , x(e−1)

}, regarded as a multisubset of
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the weight lattice Lr. It is straightforward to see that the condition that X(λ) is tight is exactly
the condition γ jk

il (λ) 6 2 for all i, l, j, k. Moreover, if Y is a multiset such that Y ≡ X(λ), then
Y = X(µ) for some multipartition µ ∈ B: for the condition

(xk − xl) − (yk − yl) = 2

for some x, y ∈ X is exactly the condition γkl
i j(λ) = 2 for some i, j; and replacing x and y with

x− ek + el and y + ek − el corresponds to replacing λwith skl
i j(λ), which has the same weight as λ

and so lies in the same combinatorial block. Now it easy to see that condition (4) implies that
X(λ) is ultra-tight: for if there is Y ≡ X(λ) which is not tight, then we have Y = X(µ) for some
µ in B, and γkl

i j(µ) > 3 for some i, j, k, l. But then the multipartition skl
i j(µ) has the same hub as

µ but smaller weight, contradicting (4). So if we assume (4), then X(λ) is ultra-tight, and so
by Proposition 2.2 and the comment following it, we find that X(λ) is a multisubset of N(s) for
some s, and this gives condition (2).

Finally, we show that (1)⇒(4). Suppose (1) holds for λ, with ba
i j(λ) = αi or αi + e for each

i, j. Suppose also that (4) is false, and take a multipartition µ in a combinatorial block C of
minimal weight having the same hub as λ. Then condition (4) holds for µ and C, and so (since
(4)⇒(2)⇒(1)) we can find b = (b1, . . . , br) and integers β0, . . . , βe−1 such that bb

i j(µ) = βi or βi + e
for each i, j. By Proposition 3.4 we have w(µ) = w(λ), which is a contradiction. �

3.2 The multipartitions in a core block

Theorem 3.1 gives us several equivalent conditions for a multipartition to lie in a core block.
As a corollary, we can give a simple description of all the multipartitions lying in a given core
block; this will be useful later. We give separate statements for the cases e < ∞ and e = ∞; this
is an artefact of our notation, and the results are really the same in substance.

Proposition 3.5. Suppose that e is finite, that λ is a multipartition lying in a core block B, and that a
and α0, . . . , αe−1 are chosen so that ba

i j(λ) ∈ {αi, αi + e} for each i, j. Then the multipartitions lying in B
are precisely those multicores µ for which:

• ba
i j(µ) ∈ {αi, αi + e} for each i, j;

• for each i,
r∑

j=1

ba
i j(µ) =

r∑
j=1

ba
i j(λ),

i.e. the number of ba
i j(µ) equal to αi + e equals the number of ba

i j(λ) equal to αi + e.

Proof. First suppose that µ does satisfy the given conditions. The second condition implies
that λ and µ have the same hub, by Lemma 3.2(2). Now Proposition 3.4 shows that they have
the same weight, and so they lie in the same combinatorial block.

Conversely, suppose µ lies in B. Then µ lies in a core block and has the same hub as λ, so
the hypotheses of Proposition 3.3 are satisfied. So we have ba

i j(µ) = αi or αi + e for each i, j;
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furthermore, the fact that λ and µ have the same hub means that there is a constant K such that

r∑
j=1

ba
i j(µ) =

r∑
j=1

ba
i j(λ) + K

for each i. By Lemma 3.2(1) we have

r∑
j=1

e−1∑
i=0

ba
i j(µ) =

r∑
j=1

e−1∑
i=0

ba
i j(λ),

which gives K = 0. �

Proposition 3.6. Suppose e = ∞, and that λ is a multipartition lying in a combinatorial block B ofHn.
Then the multipartitions in B are precisely those multipartitions µ for which

r∑
j=1

Bi j(µ) =

r∑
j=1

Bi j(λ)

for all i ∈ Z.

Proof. Note that the sums Bi∗(λ) = Bi1(λ) + · · · +Bir(λ) determine the hub of λ: we have

δi(λ) = Bi∗(λ) −B(i−1)∗(λ).

Also, the hub of λ determines the Bi∗(λ): from the above equation, the δi(λ) determine these
sums up to addition of a constant, and we have Bi∗(λ) = 0 for sufficiently large i.

So µ satisfies the condition given in the proposition if and only if µ has the same hub as
λ; but this happens if and only ifµ lies in the same combinatorial block asλ, by Proposition 1.3. �

3.3 Elementary moves

In this section, we study the relationship between two multipartitions lying in the same
combinatorial block of Hn. In the case of Iwahori–Hecke algebras of type A, we know that,
given two partitions λ and µ lying in the same combinatorial block, we may get from one to the
other by a sequence of simple ‘moves’, i.e. addition and removal of rim e-hooks in the Young
diagram. Furthermore, by first removing and then adding rim hooks, we may guarantee that
the intermediate partitions have weight equal to or less than the common weight of λ and µ.
We want to prove a similar result for multipartitions: that one may get from a multipartition to
any other multipartition in the same combinatorial block by a sequence of ‘elementary moves’,
without going via any multipartition of higher weight. Given that there are combinatorial
blocks containing more than one partition when e = ∞, it is clear that addition and removal of
rim e-hooks will not suffice; we must use the functions skl

i j as well.
Recall that the hub and weight of a combinatorial block B of Hn determine B. Moreover,

condition (4) of Theorem 3.1 implies that, of the combinatorial blocks with a given hub, only
the one with the smallest weight is a core block. So if λ is a partition with this hub, then we
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may speak of this core block as the core block of λ. It seems that this is as close as we can get to
a generalisation of the core of a partition.

Given multipartitions λ and µ, we write λ! µ (and say that µ is obtained from λ by an
elementary move) if one of the following holds:

• [µ] is obtained from [λ] by adding or removing a rim e-hook;

• λ and µ are both multicores, and µ = skl
i j(λ) for some i, j, k, l.

Proposition 3.7. Suppose λ and µ are multipartitions lying in the same combinatorial block of Hn.
Then there is a sequence λ = λ0, . . . ,λt = µ of multipartitions such that λi−1 ! λi for each i, and
w(λi) 6 w(λ) for each i.

Proof. We prove two statements:

1. ifλ is a multipartition not lying in a core block ofHn, then there is a sequenceλ = λ0, . . . ,λt
of multipartitions such that λi−1! λi for each i, w(λi) 6 w(λ) for each i and w(λt) < w(λ);

2. if λ and µ are multipartitions lying in a core block B, then there is a sequence λ =
λ0, . . . ,λt = µ of multipartitions in B such that λi−1! λi for each i.

It is clear that these two statements will imply the theorem: using (1) repeatedly, we can get from
λ and µ to two multipartitions in the core block of λ and µ using elementary moves, without
passing multipartitions of higher weight. We can then pass between these two multipartitions
using (2).

First we prove (1); the assertion that λ does not lie in a core block means that e < ∞. If λ
is not a multicore, then we may take t = 1, removing a rim e-hook from the Young diagram
of λ to get λ1. So we suppose that λ is a multicore, and we use Proposition 2.2. As in the
proof that (4)⇒(2) in Theorem 3.1, we choose a multi-charge a, and for each i = 0, . . . , e − 1
we set x(i) = (ba

i1, . . . , b
a
ir). We regard the multiset X(λ) = {x(0), . . . , x(e−1)

} as a multisubset of the
weight lattice Lr, and we assert that X(λ) is not ultra-tight. Indeed, if X(λ) is ultra-tight, then
Proposition 2.2 implies that X(λ) is a multisubset of N(s) for some s; but then condition (2) of
Theorem 3.1 holds, contradicting the fact that λ does not lie in a core block. So there is some
Y ≡ X(λ) which is not tight. We have Y = X(µ) for some µ in the same combinatorial block
as λ, and the definition of the relation ≡ means that we can get from λ to µ via a sequence
λ = λ0! · · ·! λt−1 = µ of elementary moves, with all the λi in the same combinatorial block
as λ. The fact that X(µ) is not tight means that γkl

i j(µ) > 3 for some i, j, k, l. Now we define

λt = skl
i j(µ), and we have w(λt) < w(λ).

Now we prove (2), supposing first that e is finite. Obviously λ and µ are both multicores,
and by Proposition 3.5 we may choose a and integers α0, . . . , αe−1 so that ba

i j(λ) equals αi or αi + e
and ba

i j(µ) equals αi or αi + e for each i, j. Now we let λ0, . . . ,λt be as in the proof of Proposition
3.4.

If e = ∞, then (2) follows by a very similar application of Proposition 2.4, using the integers
Bi j(λ). �

Example. Suppose r = 2, e = 4, Q1 = q3, Q2 = 1, λ = ((3, 13), (3, 13)) and µ = ((4, 23), (2)).
Then it is easily checked that λ and µ lie in the same combinatorial block of H12. The core
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block of λ and of µ is the combinatorial block B ofH8 described in the last example. We have
λ! λ1! λ2! µ, where

λ =((3, 13), (3, 13)) =

0 1 2 3
...
...
...
...u u u uu u uu u uu

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu u uu

...
...
...
...

,

λ1 =(∅, (32, 12)) =

0 1 2 3
...
...
...
...u u u uu u u uu u u

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu uu u

...
...
...
...

,

λ2 =((4, 12), (2)) =

0 1 2 3
...
...
...
...u u u uu u u uu uu

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu u uu

...
...
...
...

,

µ =((4, 23), (2)) =

0 1 2 3
...
...
...
...u u u uu u uu u uu

...
...
...
...

0 1 2 3
...
...
...
...u u u uu u u uu u uu

...
...
...
...

.

3.4 Every core block occurs for e = ∞

Suppose B is a core block of Hn, with e < ∞, and suppose that F contains elements of
infinite multiplicative order. The aim of this section is to show that there is an Ariki–Koike
algebra Ȟn over the same field, with parameters q̌, Q̌1, . . . , Q̌r, with q̌ being of infinite order,
such that B is also a combinatorial block of Ȟn. By this we mean that there is a combinatorial
block B̌ of Ȟn containing exactly the same multipartitions as B, that the (q̌; Q̌1, . . . , Q̌r)-weight
of B̌ equals the (q; Q1, . . . ,Qr)-weight of B and that a multipartition λ in B is (q; Q1, . . . ,Qr)-
Kleshchev if and only if it is (q̌; Q̌1, . . . , Q̌r)-Kleshchev. It is tempting to speculate that B and B̌
have similar structure – perhaps even that they are isomorphic, with compatible isomorphisms
between corresponding Specht modules – but we leave such issues for a future paper, and
restrict attention to combinatorics here.

Suppose, then, that e is finite and that B is a core block of Hn. We choose and fix a multi-
charge a = (a1, . . . , ar) and integers α0, . . . , αe−1 such that ba

i j(λ) equals αi or αi + e for each
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multipartition λ in B and each i, j. Let q̌ be any element of F of infinite order, and let Q̌ j = q̌a j

for j = 1, . . . , r. Now let Ȟn be the Ariki–Koike algebra over F with parameters q̌, Q̌1, . . . , Q̌r.

Proposition 3.8. There is a combinatorial block B̌ of Ȟn such that a multipartition λ lies in B̌ if and
only if it lies in B.

Proof. It is clear from the definition of residues that if two multipartitions lie in the same
combinatorial block of Ȟn, then they lie in the same combinatorial block ofHn. So we need to
show that all the multipartitions in B lie in the same combinatorial block of Ȟn. Given λ in B,
define

bk =

∑r
j=1 b

a
kj(λ) − rαk

e
;

that is, bk is the number of j for which ba
kj(λ) equals αk + e. Now construct the abacus display for

λwith e = ∞ using the multi-charge a, and for each integer l let dl be the number of j ∈ {1, . . . , r}
for which Bl j(λ) = 1. It is straightforward the express the dl in terms of the bk; for any integer
k, we write k for its image in Z/eZ. Since ba

kj(λ) equals αk or αk + e for each k, j, we have

dl =


r (l < αl + e)
bl (l = αl + e)
0 (l > αl + e).

Now the (q̌; Q̌1, . . . , Q̌r)-hub of λ is given by δi(λ) = di − di−1; by Proposition 3.5, the integers bk
do not depend on the choice of λ in B, and so the (q̌; Q̌1, . . . , Q̌r)-hub (δi(λ))i∈Z does not depend
on the choice of λ either. So by Proposition 1.3(2), all the multipartitions in B lie in the same
combinatorial block of Ȟn. �

Given combinatorial blocks B and B̌ as above, we say that B̌ is a lift of B. Clearly, choosing
a lift corresponds to choosing an appropriate multi-charge. It is a straightforward exercise,
using Propositions 1.5 and 1.7, to show that B and B̌ have the same weight. In fact, more is
true: if λ is any multipartition in B and if 1 6 j1 < · · · < js 6 r, then the (q; Q j1 , . . . ,Q js)-weight
of (λ( j1), . . . , λ( js)) equals its (q̌; Q̌ j1 , . . . , Q̌ js)-weight.

Now we turn our attention to Kleshchev multipartitions.

Proposition 3.9. Suppose B is a core block ofHn, that B̌ is a lift of B and that λ is a multipartition in
B. Then λ is (q; Q1, . . . ,Qr)-Kleshchev if and only if it is (q̌; Q̌1, . . . , Q̌r)-Kleshchev.

Before we can prove Proposition 3.9, we need to examine the relationship between lifts and
Scopes pairs. Suppose B is a core block ofHn, and that B̌ is a lift of B. Given k ∈ Z/eZ, define
C = Φk(B) as in §1.2, and define

Č =

 ∏
l∈Z | l=k

Φl

 (B̌).

We remark that this is a valid definition: any two of the values l ∈ Z for which l = k differ by at
least e, and so the corresponding operators Φl commute; moreover, only finitely many of these
operators have a non-trivial effect on B̌.
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Lemma 3.10. Suppose B, B̌,C, Č are as above. Then C is a core block ofHn−δk(B), and Č is a lift of C.

Proof. It is clear that the set of multipartitions in Č equals the set of multipartitions in C:
these are precisely the multipartitions which may be obtained from some multipartition in
B by simultaneously adding all addable nodes of (q; Q1, . . . ,Qr)-residue qk and removing all
removable nodes of (q; Q1, . . . ,Qr)-residue qk. So in order to prove that C is a core block with Č
as a lift, it suffices to show that there are integers β0, . . . , βe−1 such that for each multipartition
µ in C we have ba

i j(µ) ∈ {βi, βi + e} for each i, j.
Each µ is of the form Φk(λ) for some λ in B, and so we have

ba
i j(µ) = ba

i j(Φk(λ))

= φk(ba
φk(i) j(λ))

∈ {φk(αφk(i)), φk(αφk(i) + e)}

= {φk(αφk(i)), φk(αφk(i)) + e}.

�

Now we set up the inductive step of the proof of Proposition 3.9.

Lemma 3.11. Suppose B, B̌,C, Č are as above, and that the integers α0, . . . , αe−1 can be chosen in such
a way that αk > αk−1 + 1. If λ is a multipartition in B, then:

• λ is (q; Q1, . . . ,Qr)-Kleshchev if and only if Φk(λ) is (q; Q1, . . . ,Qr)-Kleshchev;

• λ is (q̌; Q̌1, . . . , Q̌r)-Kleshchev if and only if Φk(λ) is (q̌; Q̌1, . . . , Q̌r)-Kleshchev.

Proof. The fact that αk > αk−1 + 1 means that ba
kj(λ) > ba

(k−1) j(λ) + 1 for each j, which implies

that λ has no addable nodes of (q; Q1, . . . ,Qr)-residue qk, and therefore no addable nodes of
(q̌; Q̌1, . . . , Q̌r)-residue q̌l for any l with l = k. The result now follows by Lemma 1.9. �

The initial case of Proposition 3.9 deals with a particular type of core block, which we now
describe. If B and B̌ are as above, then we define Bi∗(B̌) to be the sum Bi1(λ) + · · · +Bir(λ) for
any λ in B̌; by Proposition 3.6, these integers do not depend on the choice of λ. Now we say
that B̌ is e-flat if, for every i, l with i − l > e we have either Bi∗(B̌) = 0 or Bl∗(B̌) = r.

Lemma 3.12. Suppose B̌ is e-flat, and that λ is a multipartition in B̌. Then there is some i ∈ Z such
that the (q̌; Q̌1, . . . , Q̌r)-residue of any node in [λ] lies in {q̌i+1, q̌i+2, . . . , q̌i+e−1

}, and the (q̌; Q̌1, . . . , Q̌r)-
residue of any addable node of [λ] lies in {q̌i, q̌i+1, . . . , q̌i+e

}.

Proof. The e-flat condition means that there is some i ∈ Z (independent of λ) such that

Bkj(λ) =

1 (if k < i)
0 (if k > i + e)

for any j, k. Furthermore, the definition of the abacus display guarantees that amongBi j,B(i+1) j, . . . ,B(i+e−1) j

there are exactly (a j − i) 1s and (e− a j + i) 0s. Hence [λ( j)] ⊆ [ν( j)], where ν( j) is the partition with
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abacus display

pp p i−
3

i−
2

i−
1

i i+
1 pp p e−
a j

+
2i
−

2
e−

a j
+

2i
−

1
e−

a j
+

2i
e−

a j
+

2i
+

1

pp p i+
e−

2
i+

e−
1

i+
e

i+
e+

1
i+

e+
2

pp p
pp p u u u pp p u u pp p u u pp p

,

i.e. the partition ((e−a j + i)a j−i). So every node of [λ( j)] is a node of [ν( j)], and every addable node
of [λ( j)] is a node or an addable node of [ν( j)], and it is straightforward to check the conditions
on the residues of the nodes and addable nodes of [ν( j)]. �

Corollary 3.13. Suppose B and B̌ are as above, with B̌ e-flat, and that λ is a multipartition in B̌.
Suppose that µ is a multipartition with [µ] ⊆ [λ], and that n is a removable node of [µ]. Then n is
(q; Q1, . . . ,Qr)-good if and only if it is (q̌; Q̌1, . . . , Q̌r)-good.

Proof. The (q̌; Q̌1, . . . , Q̌r)-residue of n is q̌i+d for some 1 6 d 6 e − 1, and so its (q; Q1, . . . ,Qr)-
residue is qi+d. The lemma implies that a node or an addable node of [µ] has (q̌; Q̌1, . . . , Q̌r)-
residue q̌i+d if and only if it has (q; Q1, . . . ,Qr)-residue qi+d. So the q̌i+d-signature of [µ] coincides
with the qi+d-signature. �

Proof.[Proof of Proposition 3.9] We proceed by induction on n. First we suppose that B̌ is e-flat.
Then the result follows easily using Corollary 3.13: if we are given

λ = λ(n),λ(n − 1), . . . ,λ(0) = ∅

where λ(i − 1) is obtained from λ(i) by removing a node n(i), then n(i) is a (q; Q1, . . . ,Qr)-good
node of λ(i) if and only if it is a (q̌; Q̌1, . . . , Q̌r)-good node. Hence λ is (q; Q1, . . . ,Qr)-Kleshchev
if and only if it is (q̌; Q̌1, . . . , Q̌r)-Kleshchev.

Next we suppose that B̌ is not e-flat. So there exist i, l with i − l > e such that Bl∗(B) < r and
Bi∗(B) > 0. Since B is a core block, i is less than or equal to αı + e, and l is at least αl + e. The first
consequence of this is that i and l cannot be congruent modulo e, so the interval {l+1, l+2, . . . , ı}
in Z/eZ contains fewer than e elements; the second consequence is that

αı − αl > (i − e) − (l − e) > e.

Hence (since αk − αk−1 ≡ 1 (mod e) for every k) there must be some k ∈ {l + 1, l + 2, . . . , ı} such
that αk exceeds αk−1 by at least e + 1. Now we define C = Φk(B) as above, and the result follows
by induction, using Lemma 3.10 and Lemma 3.11. �

3.5 Decomposable blocks

In this section, we examine a special type of combinatorial block of Hn which may be
‘decomposed’ into smaller combinatorial blocks. That is, for a combinatorial block B satisfying
certain conditions, we can decompose B as a ‘product’ of BJ and BK, where (J,K) is a partition
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of the set {1, . . . , r}, BJ is a combinatorial block of an Ariki–Koike algebra defined using the
parameters (Q j | j ∈ J), and BK is a combinatorial block of an Ariki–Koike algebra defined using
(Qk | k ∈ K). Our results are purely combinatorial, but it seems likely that there is algebraic
structure underlying them – a bold conjecture might be that B is Morita equivalent to the tensor
product BJ

⊗BK. This would in some sense be a generalisation of the main result of Dipper and
Mathas [3].

Suppose B is a combinatorial block ofHn, and λ is a multipartition in B. For any distinct j, k
in {1, . . . , r}, we examine the bipartition (λ( j), λ(k)), and calculate its weight using the parameters
q,Q j,Qk. If J is a non-empty proper subset of {1, . . . , r} and K = {1, . . . , r} \ J, then we say that λ
is (J,K)-decomposable if w((λ( j), λ(k))) = 0 for all j ∈ J, k ∈ K.

Proposition 3.14. Supposeλ is (J,K)-decomposable. Then every multipartition in B is (J,K)-decomposable,
and B is a core block ofHn.

This reduces to the following lemma.

Lemma 3.15. Suppose λ is (J,K)-decomposable, and µ is a multipartition in the same combinatorial
block which is obtained from λ by an elementary move. Then µ is (J,K)-decomposable.

Proof. First we note that λmust be a multicore; for if λ( j) is not an e-core, and (say) j ∈ J, then
w((λ( j), λ(k))) > 2 for any k ∈ K. µ is of the form shh′

gg′(λ) for some g, g′ ∈ Z/eZ and h, h′ ∈ {1, . . . , r}.
The fact that µ has the same weight as λ means that γhh′

gg′(λ) = 2. This implies that h, h′ both
lie in J or both lie in K; we assume without loss that they both lie in J. We must prove that
γ

jk
il (µ) 6 1 for all i, l ∈ Z/eZ, j ∈ J and k ∈ K. The definition of µ shows that

γ
jk
i (µ) =



γ
jk
i (λ) − 1 (i = g, j = h)

γ
jk
i (λ) + 1 (i = g, j = h′)
γ

jk
i (λ) + 1 (i = g′, j = h)

γ
jk
i (λ) − 1 (i = g′, j = h′)
γ

jk
i (λ) (otherwise).

So (since by assumption γ jk
il (λ) 6 1) we may assume that j = h or j = h′. In fact, we assume

j = h; the proof in the other case is similar. We may also assume that i = g′ or l = g, or both.
Now we have

2 = γhh′
gg′(λ) = γhk

gg′(λ) + γkh′
gg′(λ)

with γhk
gg′(λ), γkh′

gg′(λ) 6 1. So in fact γhk
gg′(λ) = γkh′

gg′(λ) = 1. Hence

γhk
g′g(µ) = γhk

g′g(λ) + 2 = 1.

Also, if l , g, g′, then

γhk
g′l(µ) = γhk

g′l(λ) + 1

= γhk
g′g(λ) + γhk

gl (λ) + 1

6 −1 + 1 + 1
= 1,
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and if i , g, g′ then

γhk
ig (µ) = γhk

ig (λ) + 1

= γhk
g′g(λ) + γhk

ig′(λ) + 1

6 −1 + 1 + 1
= 1.

�

Proof.[Proof of Proposition 3.14] Suppose µ is another multipartition in B. By Proposition 3.7,
we can get from λ to µ via a sequence λ = λ0 ! · · · ! λt = µ of elementary moves, with
w(λ1) 6 w(λ). We prove that µ is (J,K)-decomposable by induction on t, with the case t = 0
being vacuous.

As noted in the proof of Lemma 3.15, λmust be a multicore, so that λ1 is a multicore of the
form shh′

gg′(λ) for some g, g′ ∈ Z/eZ and h, h′ ∈ {1, . . . , r}. The fact that λ is (J,K)-decomposable

means that γ jk
gg′(λ) 6 1 whenever j ∈ J and k ∈ K, and this implies that γhh′

gg′(λ) 6 2 for any
h, h′ ∈ {1, . . . , r}. So by Proposition 1.6, we have w(λ1) > w(λ), and so w(λ1) = w(λ). λ and λ1
have the same hub, and hence λ1 lies in B. By Lemma 3.15 λ1 is (J,K)-decomposable, and so by
induction (replacing λwith λ1) µ is (J,K)-decomposable.

So every multipartition in B is (J,K)-decomposable. This implies in particular that every
multipartition in B is a multicore, and so B is a core block. �

In view of Proposition 3.14, we may say that a (core) block B is (J,K)-decomposable, meaning
that any multipartition in B is (J,K)-decomposable. By the comments concerning weight
following the proof of Proposition 3.8, if B is (J,K)-decomposable and e < ∞, then a lift of
B is also (J,K)-decomposable. The aim of the rest of this section is to describe the set of
multipartitions in a decomposable combinatorial block, and to describe which of them are
Kleshchev.

Suppose that λ is (J,K)-decomposable, and suppose that J = { j1 < · · · < js}, K = {k1 < · · · <

kt}. Let λJ be the multipartition (λ( j1), . . . , λ( js)) with s components. For any p, let H J
p be the

Ariki–Koike algebra with parameters q,Q j1 , . . . ,Q js . Define λK and HK
p similarly. We abuse

notation by regarding a node of [λ] as a node of [λJ] or [λK] in the obvious way, and when we
speak of the residue of a node of [λJ], we calculate this using the parameters q,Q j1 , . . . ,Q js (so
that the residue will be the same as that of the corresponding node of [λ]).

Proposition 3.16. If B is a (J,K)-decomposable combinatorial block, containing multipartitions λ and
µ, then:

• |λJ
| = |µJ

|;

• λJ and µJ lie in the same combinatorial block ofH J
|λJ
|
;

• λK and µK lie in the same combinatorial block ofHK
|λK
|
.

Proof. Using Proposition 3.7 and the fact that B is a core block, it suffices to consider the case
where we can get from λ to µ by an elementary move. So assume we have µ = s j j′

il (λ) for some
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j, j′ ∈ {1, . . . , r} and i, l ∈ Z/eZ with γ j j′

il (λ) = 2. This implies that j and k lie both in J or both in
K; we assume without loss that they both lie in J, say j = jc, j′ = jd. Then we have:

• µJ = scd
il (λJ), with γcd

il (λJ) = 2;

• µK = λK.

The result follows. �

We see from Proposition 3.16 that a (J,K)-decomposable combinatorial block B ofHn defines
an integer p ∈ {0, . . . ,n} and a pair (BJ,BK), where BJ is a combinatorial block ofH J

p and BK is a
combinatorial block ofHK

n−p; each multipartition λ in B corresponds to a pair of multipartitions
λJ in BJ and λK in BK. We say that B decomposes as the product of BJ and BK.

We now consider which multipartitions in B are Kleshchev.

Proposition 3.17. Suppose B is a (J,K)-decomposable combinatorial block of Hn, and that λ is a
multipartition in B. Then λ is Kleshchev if and only if both λJ and λK are Kleshchev.

Proof. Given i ∈ Z/eZ, define λ by removing all the normal nodes of residue qi from [λ], and

define λJ and λK similarly. Then it suffices to prove that

λ is (J,K)-decomposable, with λ
J

= λJ and λ
K

= λK. (‡)

For if λ is Kleshchev, then (assuming n > 0) there is some i such that [λ] has at least one

normal node of residue qi, and λ is Kleshchev by Lemma 1.2. By induction and (‡), λJ and λK

are Kleshchev, and so λJ and λK are Kleshchev. Conversely, if λJ and λK are Kleshchev, then
(assuming n > 0 and without loss of generality that |λJ

| > 0) there is some i such that [λJ] has

at least one normal node of residue qi, and λJ and λK are Kleshchev. By induction this gives λ
Kleshchev, so that λ is Kleshchev.

So we prove (‡). If λ has no removable nodes of residue qi, then (‡) is trivial, so we assume
that there is at least one removable node. The fact that γ jk

i(i−1)(λ) 6 1 for j ∈ J and k ∈ K means

that if [λJ] has removable nodes of residue qi, then [λK] has no addable nodes of this residue;
similarly, if [λK] has removable nodes of residue qi, then [λJ] has no addable nodes of this
residue. So we are (without loss of generality) in one of two situations:

1. [λ] has no addable nodes of residue qi;

2. [λK] has neither addable nor removable nodes of residue qi.

In case 1, λ is obtained simply by removing all removable nodes of residue qi from [λ], and

similarly for λJ and λK. So it is clear that λ
J

= λJ and λ
K

= λK, and we just need to show that λ

is (J,K)-decomposable. Since [λ] has no addable nodes of residue qi, we have λ
( j)

= Φi(λ( j)) for
each j ∈ {1, . . . , r}. And so for j ∈ J, k ∈ K, l,m ∈ Z/eZ we have

γ
jk
lm(λ) = γ

jk
φi(l)φi(m)(λ) 6 1,

as required.
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In case 2, the qi-signature of λ coincides with that of λJ; in particular, the normal nodes of
[λ] of residue qi are precisely the normal nodes of [λJ] of residue qi. So again it is clear that

λ
J

= λJ and λ
K

= λK, and we need to show that λ is (J,K)-decomposable. Assuming we are not
in case 1, [λJ] has at least one addable node of residue qi. The fact that γ j j′

i(i−1) 6 2 for all j, j′

implies that each [λ( j)] has at most one removable node of residue qi. Hence for each j ∈ J, we

have either λ
( j)

= λ( j) or λ
( j)

= Φi(λ( j)). The fact that [λK] has neither addable nor removable

nodes of residue qi means that λ
(k)

= λ(k) = Φi(λ(k)) for k ∈ K. Hence for j ∈ J, k ∈ K, l,m ∈ Z/eZ
we have either

γ
jk
lm(λ) = γ

jk
lm(λ)

or

γ
jk
lm(λ) = γ

jk
φi(l)φi(m)(λ);

in either case, γ jk
lm(λ) 6 1. �
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