
The n-bar-core of an m-bar-core

Matthew Fayers
Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.

m.fayers@qmul.ac.uk

2000 Mathematics subject classification: 05E10, 05E18

Abstract
This paper is an analogue of the author’s earlier paper [F] on core partitions; here we

prove corresponding results for bar-core partitions. The structure of [F] is largely retained,
and this paper is not intended for publication.

We consider the n-bar-core of an m-bar-core partition, when m and n are coprime odd
integers. Olsson has shown that the n-bar-core of an m-bar-core is again an m-bar-core,
and we examine certain actions of the affine Coxeter group of type C on m-bar-cores which
preserve the n-bar-core of an m-bar-core. Along the way, we give a new proof of Olsson’s
result.
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1 Introduction

In this paper, we define a bar partition to be a finite set of positive integers. If m is an odd
positive integer, then a bar partition is an m-bar-core if it is not possible to remove an m-bar from
it; this concept is defined below. Any bar partition has an m-bar-core, which is the m-bar-core
obtained by repeatedly removing m-bars.

m-bar-cores were introduced in the study of projective representations of the symmetric
group: when m is a prime, the spin m-blocks of a given defect of the double covers of the
symmetric groups of are indexed by the m-bar-cores, and the relationships between these
blocks are controlled by the combinatorics of m-bar-cores. This representation-theoretic work
uncovers a relationship between the set of m-bar-cores and the alcove geometry for the Coxeter
group of type C̃m′ (where we write m = 2m′ + 1). Specifically, m-bar-cores are in bijection with
alcoves in the dominant region of the weight space, which in turn are in bijection with cosets of
the finite Coxeter group (of type Cm′) in its affine counterpart. Furthermore, the action of these
groups of the set of alcoves can interpreted in terms of the relationships between m-bar-cores.

A recent trend in the study of cores has been to compare s-cores and t-cores, for different
integers s, t. Much of this work has been carried over to the study of bar-cores, comparing
m-bar-cores and n-bar-cores for different odd integers m,n. For m > 3 there are infinitely many
m-bar-cores, but if m and n are coprime, there are only finitely many bar partitions which are
simultaneously m-bar-cores and n-bar-cores. The exact number was found by Bessenrodt and
Olsson [BO], who go on to study these ‘(m,n)-bar-cores’ in more detail. In particular, they
show that there is an (m,n)-bar-core which ‘contains’ all the others, in the sense that its Young
diagram contains the Young diagram of any (m,n)-bar-core. Using the results in this paper, it
is possible to give a different proof of this result, following the proof of the analogous result for
cores in [F].

Another aspect of the comparison of m- and n-bar-cores is a result of Olsson [O], which
says that if m and n are odd and coprime and one takes the n-bar-core of an m-bar-core, then
the resulting partition is still an m-bar-core. The main focus of this paper is to ask which (m,n)-
bar-core one obtains by taking the n-bar-core of an m-bar-core. We explore how the symmetry
of the set of m-bar-cores is manifested when one replaces each m-bar-core with its n-bar-core.
One by-product of this is a new proof of Olsson’s result. We remark here that the hypothesis
that m and n are coprime in Olsson’s result is unnecessary, as observed by Gramain and Nath
[GN].

We now summarise the layout of this paper. In Section 2, we give a brief account of m-bar-
cores and abacus displays. In Section 3 we discuss alcove geometry and the affine Weyl group
in type B. We go into more detail here, since the conventions we use for alcoves are slightly
unusual. In Section 4 we connect m-bar-cores with alcove geometry and prove our main results
on the symmetry inherent in taking the n-bar-core of an m-bar-core. Finally in Section 5 we
comment briefly on the largest (m,n)-bar-core mentioned above.

2 Bar partitions

2.1 Partitions and m-bar-cores

In this paper, a bar partition is a finite set of positive integers. When writing a bar partition,
we usually write the integers in decreasing order. A bar partition λ is often represented by its
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Young diagram, which is the set

[λ] =
{
(i, j) ∈N2

∣∣∣ j 6 λi

}
,

where λ1, λ2, . . . , λr are the elements of λ written in decreasing order.
We draw the Young diagram as an array of boxes in the plane; for example, the array

represents the bar partition {6, 5, 2, 1}. (It is usual to use a symbol such as ∅ in place of the
Young diagram for the empty partition, but in this paper we shall just use an empty diagram.)

Now fix an odd integer m > 3. If λ is a bar partition, then removing an m-bar from λ means
one of two things:

removing a non-split m-bar: for some a > m such that a ∈ λ but a −m < λ, removing a from λ,
and adding a −m if a > m;

removing a split m-bar: for some a, b ∈ λ such that a + b = m, removing both a and b from λ.

λ is an m-bar-core if it is not possible to remove an m-bar from λ. Any bar partition has an
m-bar-core, which is obtained by repeatedly removing m-bars until it is not possible to remove
any more; it is easy to see that this is independent of the choice of m-bars removed at each
stage.

The definitions imply the following simple lemma, which will be useful later.

Lemma 2.1. Suppose λ and ν are bar partitions, and that ν is obtained from λ by

1. replacing an element a by a − km for some k ∈ Z,

2. removing two elements summing to km, for some k ∈ Z, or

3. removing a subset forming an arithmetic progression with average divisible by m.

Then λ and ν have the same m-bar-core.

The notion of an m-bar-core derives from the theory of representations of the double cover
of the symmetric group: for each bar partition whose sum is r, there is a corresponding spin
representation of a double cover of the symmetric group Sr. If m is an odd prime and λ, µ are
two bar partitions each of which has sum r, the corresponding spin representations lie in the
same m-block if and only if λ and µ have the same m-bar-core. So the results in this paper can be
interpreted as comparing projective representations of the symmetric group for two different
odd primes. But from a combinatorial point of view, there is no need to assume that m is prime.

2.2 The abacus

Now we define the abacus display for a bar partition; this is a slight variation on the version
introduced (as far as the author can tell) by Bessenrodt, Morris and Olsson [BMO]. Given an
odd positive integer m, the m-runner abacus is an abacus with m vertical runners, numbered
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1, . . . ,m from left to right; for each j, runner j has marked positions labelled by the positive
integers congruent to j modulo m increasing down the runner. For example, the 5-runner
abacus is as follows.

1 2 3 4 5

6 7 8 9 10ppp ppp ppp ppp ppp
The m-runner abacus display for a bar partition λ is obtained by placing a bead on the abacus at
position a for each a ∈ λ. From this display it is easy to see whether λ is an m-bar-core: this is
the case if and only if

• every bead below the first row has a bead immediately above it,

• there are no beads on runner m, and

• for each i = 1, . . . ,m − 1, either there are no beads on runner i, or there are no beads on
runner m − i.

Moreover, the procedure of removing m-bars is easy to see on the abacus: removing an m-bar
consists of

• moving a bead up into an empty space immediately above it,

• removing a bead from position m, or

• removing beads from positions i and m − i for some i ∈ {1, . . . ,m − 1}.

3 Alcoves and the affine Weyl group

In this section we introduce alcoves and the affine Coxeter group of type C. This material will
be very familiar to many readers, but we give a detailed account here because the conventions
we use are slightly unusual.

3.1 Alcoves and m′-points

As before, we assume m is an odd integer; in fact, we assume from now on that m > 3, and
we write m = 2m′ + 1. Our alcove geometry will take place inside Rm′ . Define the dominant
region to be the subset of Rm′ consisting of points p for which p1 > · · · > pm′ >

m
2 . (This rather

unusual convention will turn out to be useful later on.)
For each integer k, define the hyperplanes

Hk
i =
{
p ∈ Rm′

∣∣∣ pi =
1
2 km
}

for each 1 6 i 6 m′,

Hk+
i j =

{
p ∈ Rm′

∣∣∣ pi + p j = km
}

for each 1 6 i < j 6 m′, and

Hk−
i j =

{
p ∈ Rm′

∣∣∣ p j − pi = km
}

for each 1 6 i < j 6 m′.
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Let

H =
{

Hk
i

∣∣∣∣ 1 6 i 6 m′, k ∈ Z
}
∪

{
Hk+

i j

∣∣∣∣ 1 6 i < j 6 m′, k ∈ Z
}
∪

{
Hk−

i j

∣∣∣∣ 1 6 i < j 6 m′, k ∈ Z
}
.

The connected components of the complement inRm′ of the union of the hyperplanes inH are
called alcoves. We will use the symbol � to denote the point (m−1,m−2, . . . ,m′+1). The alcove
A containing this point is called the fundamental alcove, and is bounded by the hyperplanes
H0−

i(i+1) (for 1 6 i < m′), H2
1 and H1

m′ ; thus A is given by

A =
{

p
∣∣∣∣ m > p1 > · · · > pm′ >

m
2

}
.

Now define an m′-point to be a point p = (p1, . . . , pm′) ∈ Zm′ with the property that for each
1 6 i 6 j 6 m′, we have pi . ±p j (mod m). Obviously each m′-point is contained in some
alcove, and as we shall see below, each alcove contains a unique m′-point.

Example. In the case m = 5, we can draw a picture of part ofR2 with 2-points and hyperplanes
marked as follows.

�

• •• •

• • •

• •

• •

• •

• •

• •

• •

• •

• •

3, 4

4, 31, 3

−2, 1

−2, 4

−2, 6

−1, 2

−1, 3

−1, 7

1, 2

1, 7

2, 1

2, 4

2, 6

3, 1

3, 6

4, 7

4, 2 6, 2

6, 3

6, 7

7, 1

7, 4

7, 6

Let rk
i , r

k±
i j denote the orthogonal (with respect to the usual inner product onRm′) reflections

in the hyperplanes Hk
i ,H

k±
i j respectively; these reflections are given by

rk
i : p 7−→ p − (2pi − km)ei

rk±
i j : p 7−→ p − (p j ± pi − km)(e j ± ei),

where e1, . . . , em′ are the standard basis vectors. It is straightforward but tedious to check that
these reflections all preserve the set of hyperplanesH . Hence the group generated by all the rk

i
and rk±

i j preserves the set of alcoves. It also preserves the set of m′-points, and we can regard it
as acting on alcoves or m′-points, as appropriate.



6 Matthew Fayers

3.2 The Weyl group of type C̃m′

Now we introduce the Coxeter group which will act on alcoves and m-bar-cores. This is
the groupW′m with generators τ0, . . . , τm′ , and relations

τ2
i = 1 for 0 6 i 6 m′,

τiτ j = τ jτi when 0 6 i < j − 1 6 m′ − 1,
τiτi+1τi = τi+1τiτi+1 for 1 6 i 6 m′ − 2,
τ0τ1τ0τ1 = τ1τ0τ1τ0 if m′ > 1,

τm′−1τm′τm′−1τm′ = τm′τm′−1τm′τm′−1 if m′ > 1.

A level n action ofW′m

There is an action ofW′m onRm′ given by mapping the generators τ0, . . . , τm′ to the reflections
in the walls of the fundamental alcove. In fact, we give a more general version of this action.
For any positive integer n, define the level n action ψn ofW′m by

τ0 7−→ rn+1
1 ,

τi 7−→ r0−
i(i+1) for i = 1, . . . ,m′ − 1,

τm′ 7−→ r1
m′ .

Given τ ∈ W′m, we shall write τ̌ for the image of τ under ψn, if n is understood. We may view
ψn as an action on the set of alcoves, or on the set of m′-points, as appropriate. It is worth while
to write down explicitly the action of the generators τ0, . . . , τm′ :

τ̌0 : (p1, . . . , pm′) 7−→ ((n + 1)m − p1, p2, . . . , pm′);
τ̌i : (p1, . . . , pm′) 7−→ (p1, . . . , pi−1, pi+1, pi, pi+2, . . . , pm′) for i = 1, . . . ,m′ − 1;
τ̌m′ : (p1, . . . , pm′) 7−→ (p1, . . . , pm′−1,m − pm′).

From this, it is easy to check that ψn really is an action ofW′m. The next lemma concerns the
case n = 1.

Lemma 3.1. The image of the action ψ1 includes all the reflections rk
i and rk±

i j , and is transitive on the
set of alcoves.

Proof. This is very well known, so we give a brief sketch. Let G denote the image of ψ1. First
we note that r2

i ∈ G for each i by induction on i, using the relation r0−
(i−1)ir

2
i−1r0−

(i−1)i = r2
i . In a

similar way, starting from the fact that r1
m′ ∈ G, we get r1

i ∈ G for all i. By repeatedly composing
r1

i and r2
i , we get rk

i ∈ G for all i.
Next, we observe that r0−

i j = r0−
ji ∈ G for each i < j by induction on j − i, using the relation

r0−
i(i+1)r

0−
(i+1) jr

0−
i(i+1) = r0−

i j . Following this, we can show that rk+
i j ∈ G for all i, j via the relation

rk
i r0−

i j rk
i = rk+

i j , and finally we show that rk−
i j ∈ G for all i, j using the relation rk

jr
0+
i j rk

j = rk−
i j .

To see that this action is transitive on alcoves, we note that we can get from any alcove
B to any other alcove C by crossing some finite sequence of hyperplanes in H . Applying the
reflections in each of these hyperplanes in turn takes B to C. �

Since the fundamental alcove A clearly contains a unique m′-point (namely the point �),
we see that each alcove contains exactly one m′-point. Hence we may identify m′-points with
alcoves.
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A second level n action ofW′m

Now we assume that n is odd and m,n are coprime, and consider another level n action
of W′m on the set of m′-points. Suppose p is an m′-point, and i ∈ {0, . . . ,m′}. We consider the
different values of i separately.

i = 0 : Let j ∈ {1, . . . ,m′} be such that p j = am ± n for a ∈ Z. Define τ̃0(p) by replacing p j with
am ∓ n.

1 6 i 6 m′ − 1 : Let j be such that p j = am ± in, and replace p j with am ± (i + 1)n. At the same
time, let k be such that pk = bm ± (i + 1)n, and replace pk with bm ± in. Let τ̃i(p) be the
resulting m′-point.

i = m′ : Let j be such that p j = am ± m′n for a ∈ Z, and define τ̃m′(p) by replacing p j with
am ± (m′ + 1)n.

It is clear that τ̃i(p) is an m′-point in each case, and it is routine to verify that the map

χn : τi 7−→ τ̃i

extends to give an action ofW′m on the set of m′-points. Given any τ ∈ W′m, we write τ̃ for the
image of τ under χn, if n is understood.

Example. Suppose m = 7 and p = (3, −1, 2). Then p is a 3-point; for n = 1, we have

τ̃0(p) = (3, 1, 2), τ̃1(p) = (3, −2, 1), τ̃2(p) = (2, −1, 3), τ̃3(p) = (4, −1, 2),

while for n = 5 we have

τ̃0(p) = (3, −1, 12), τ̃1(p) = (−2, −1, −3), τ̃2(p) = (8, 4, 2), τ̃3(p) = (3, −6, 2).

Note that τ̃ is not an isometry, and there is no natural way to extend τ̃ to the whole of Rm′ .
However, given the correspondence between alcoves and m′-points, we may abuse notation
and regard χt as an action of W′m on the set of alcoves. Recalling that A denotes the alcove
containing the point � = (m− 1,m− 2, . . . ,m′ + 1), we have the following lemma, which is easy
to check.

Lemma 3.2.
1. If n is any odd integer coprime to m, then the actions ψn and χn on the set of alcoves commute.

2. If n = 1 and i ∈ {0, . . . ,m′}, then τ̌i(A) = τ̃i(A).

Now say that two alcoves are adjacent if there is only one hyperplane inH separating them.

Corollary 3.3. Suppose B is an alcove, and i ∈ {0, . . . ,m′}, and define τ̃i using the level 1 action χ1.
Then τ̃i(B) is adjacent to B.

Proof. Write τ̌ for the image of τ ∈W′m under the level 1 actionψ1. Since this action is transitive
on the set of alcoves, we can write B = τ̌(A) for some τ. Hence

τ̃i(B) = τ̃i(τ̌(A))
= τ̌(τ̃i(A)) by Lemma 3.2(1)
= τ̌(τ̌i(A)). by Lemma 3.2(2)

Clearly A and τ̌i(A) are adjacent, and since τ̌ is an affine transformation of Rm′ , it preserves
adjacency of alcoves. �
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Using a very similar argument, one can show that if p is an m′-point and B the alcove
containing it, then each alcove adjacent to B contains the point τ̃i(p) for some i.

3.3 m′-sets

Define an m′-set to be a set {p1, . . . , pm′} of m′ integers such that pi >
m
2 for each i, and for any

i, j we have pi . ±p j (mod m). There is a 2m′m′!-to-1 map from m′-points to m′-sets, given by

(p1, . . . , pm′) 7−→
{
max{p1,m − p1}, . . . ,max{pm′ ,m − pm′}

}
.

If we restrict attention to m′-points in the dominant region, this map becomes a bijection. Given
the correspondence between m′-points and alcoves, we have an 2m′m′!-to-1 map from the set
of alcoves to the set of alcoves in the dominant region; this is given by ‘folding’ Rm′ along the
hyperplanes H1

i and H0−
i j for all i, j. This folding will be useful in understanding symmetry

later.
Note that our second action χn of W′m on the set of m′-points descends to an action on

m′-sets (although the action ψn does not). We use the same notation χn (and τ̃) for this action
on m′-sets without fear of confusion.

4 The n-bar-core of an m-bar-core

Now we come to the main part of the paper. We suppose m,n are coprime odd integers with
m > 3, and we compare the n-bar-cores of different m-bar-cores. By representing m-bar-cores as
m′-points, we use the geometric symmetry of the last section to see the symmetry of n-bar-cores
of m-bar-cores.

4.1 m-bar-cores and m′-sets

Suppose λ is an m-bar-core, and consider the m-runner abacus display for λ. For each
i = 1, . . . ,m′, let bi be the number of the first unoccupied position on runner i, and ci the first
unoccupied position on runner m − i. Let ai = max{bi, ci}. Then ai is an integer greater than m

2 .
Moreover, for any i, j we have ai . ±a j (mod m); hence the set {a1, . . . , am′} is an m′-set. We let
Q(λ) denote this m′-set, and we let pλ be the corresponding dominant m′-point, i.e. the point
whose coordinates are obtained by arranging the elements of Q(λ) is descending order.

For example, take m = 7. The bar partition λ = {19, 12, 8, 5, 1} has abacus display

v vv vv
ppp ppp ppp ppp ppp ppp ppp

and so is a 7-bar-core. We have Q(λ) = {15, 26, 4}, and so pλ = (26, 15, 4).
It is easy to check that any m′-set is obtained from a unique m-bar-core in this way: given an

m′-setQ, construct an abacus display in which there is a bead at position b if and only if there is
an element of Q below b on the same runner. From the conditions in §2.2 which describe when
an abacus display is the display of an m-bar-core, we see that this display gives the unique
m-bar-core λ for which Q(λ) = Q. Hence we have a natural bijection between m-bar-cores and
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m′-sets, and therefore between m-bar-cores and alcoves in the dominant region. Using this
bijection, we may regard the action χn of the group W′m on m′-sets as an action on the set of
m-bar-cores.

Example. In Figure 1 we illustrate the bijection between 5-bar-cores and alcoves in the dominant
region of R2, by drawing the Young diagram of a 5-bar-core inside the corresponding alcove.

Figure 1: the correspondence between 5-bar-cores and dominant alcoves in R2

The aim of this paper is to compare the n-bar-cores of different m-bar-cores, when m and
n are coprime odd integers. If we take n = 3, and expand and redraw Figure 1 with each
5-bar-core replaced by its 3-bar-core, we get the diagram on the first page of this paper.

4.2 m-bar-cores having the same n-bar-core

In comparing the n-bar-cores of different m-bar-cores, the following proposition will be
crucial.

Proposition 4.1. Suppose m,n are coprime odd positive integers. Suppose λ, µ are m-bar-cores, and
that there is a bijection φ : Q(λ)→ Q(µ) such that

2φ(a) −m ≡ ±(2a −m) (mod n)

for every a. Then λ and µ have the same n-bar-core.

In order to prove this proposition, we introduce the extended m′-set of an m-bar-core: if λ is
an m-bar-core, then we define

X(λ) = Q(λ) ∪ {m − a | a ∈ Q(λ) } .
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Note that X(λ) is a set of m − 1 integers, such that for every i = 1, . . . ,m − 1 there is exactly one
element ofX(λ) congruent to i modulo m. If n is prime to m, then the hypothesis of Proposition
4.1 is the same as saying that there is a bijection ψ : X(λ)→ X(µ) such that ψ(a) ≡ a (mod n) for
every a. If we write the elements of X(λ) as q1, . . . , qm−1 in such a way that qi ≡ in (mod m) for
each i, then we have the following simple statements, which follow easily from the definitions:

• for each i ∈ {1, . . . ,m − 1}we have qi = m − qm−i;

• if a ∈ λ and a ≡ in (mod m) for i ∈ {1, . . . ,m − 1}, then qi > a +m;

• if 0 < a < λ and a ≡ in (mod m) for i ∈ {1, . . . ,m − 1}, then qi 6 a.

The proof of Proposition 4.1 uses the following lemma.

Lemma 4.2. Suppose m,n are coprime odd positive integers. Suppose λ is an m-bar-core, and write the
elements of X(λ) as q1, . . . , qm−1 with qi ≡ in (mod m) for each i. Then λ is an n-bar-core if and only
if q1 6 n and qi+1 6 qi + n for each i = 1, . . . ,m − 2.

Proof.
(⇒) If q1 > n, then n ∈ λ, so λ is not an n-bar-core. Now suppose qi+1 > qi + n for some

1 6 i 6 m−2. Then in fact qi+1 > qi+n+m. Note that this also implies qm−i > qm−i−1+n+m.

If qi+1 > m + n, then qi+1 −m ∈ λ, while 0 < qi+1 −m − n < λ, so λ fails to be an n-bar-core.
So we can assume qi+1 < m + n. Similarly, we assume qm−i < m + n. Now we have
qi, qm−i−1 < 0, and so qi+1, qm−i > m. So qi+1 −m and qm−i −m are positive, so are elements
of λ. Now we can find a, b ∈ λ such that a+b = n as follows. To start with, set a = qi+1−m,
b = qm−i −m. Then we have a + b ≡ n (mod m), and from the inequalities we have so far
we can calculate n 6 a+ b < 2n. If a+ b > n, then either replace a with a−m (which lies in
λ if a > m) or replace b with b −m. We repeat this until we have a + b = n. The only way
this might fail is if we had a and b both less than m while a + b > n. But then we would
have a+ b > m+ n, a+ b < 2m and a+ b < 2n, which gives a contradiction. So we can find
a, b ∈ λ such that a + b = n, so λ is not an n-bar-core.

(⇐) Now suppose λ is not an n-bar-core. There are two cases to consider.

• Suppose a ∈ λ and 0 6 a−n < λ. Let i ∈ {0, . . . ,m−2} be such that a ≡ (i+1)n (mod m).
If i = 0, then we have q1 > a > n, as required. So suppose i > 0. Then we have
qi+1 > a, while qi 6 a − n, and so qi+1 > qi + n.

• Suppose for some 0 < a < n we have a,n−a ∈ λ. Let i be such that a ≡ (i+1)n (mod m);
since neither a nor n − a is divisible by m, we have 1 6 i 6 m − 2. Now n − a ≡
(m − i)n (mod m), so qm−i > n − a. Hence qi < a − n + m; on the other hand,
qi+1 > a +m, and so qi+1 > qi + n. �

Proof of Proposition 4.1. Write λ ↔ µ to denote the hypothesis of the proposition, i.e. the
existence of the bijection φ. We proceed by induction on the size (by which we mean the sum
of the elements) of λ. For the inductive step, we suppose λ is not an n-bar-core, and show that
there is a smaller m-bar-core ν with the same n-bar-core as λ, such that λ ↔ ν. (Since ↔ is
obviously an equivalence relation, we then have ν ↔ µ, so that ν, µ have the same n-bar-core
by induction.)

As above, write the elements of X(λ) as q1, . . . , qm−1 with qi ≡ in (mod m) for each i. By
Lemma 4.2, the assumption that λ is not an n-bar-core means that either q1 > n or qi+1 > qi + n
for some i. We consider three cases.
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• Suppose q1 > n. Let j be the residue of n modulo m; then runner j of the abacus for λ
contains beads in positions j, j+m, . . . , q1−m, while runner m− j is empty. Now consider
two cases.

– Suppose q1 − m > 2n. Construct ν by replacing q1 − m, q1 − 2m, . . . ,m − j + 2n with
q1 − m − 2n, q1 − 2m − 2n, . . . ,m − j, and then removing all of j, j + m, . . . , 2n − j. By
repeated applications of Lemma 2.1, ν has the same n-bar-core as λ.
In terms of the abacus, ν is obtained from λ by removing all the beads from runner
j, and adding beads on runner m − j at positions m − j, 2m − j, . . . , a − 2n. So ν is an
m-bar-core, and we have

X(ν) = X(λ) \ {q1,m − q1} ∪ {q1 − 2n,m − q1 + 2n}; (1)

so λ↔ ν.

– Now suppose q1 − m < 2n. In this case, we construct ν simply by removing q1 −

m, q1 − 2m, . . . , 2n − q1 + m. Again by Lemma 2.1, ν has the same n-bar-core as λ. It
is also clear that ν is an m-bar-core, and in fact (1) still holds. So again λ↔ ν.

• Next suppose qm′+1 > qm′ + n (where we write m = 2m′ + 1 as before). Then qm′+1 >
qm′ + m + n; since qm′ + qm′+1 = m, this means that qm′+1 − m > 0. Let j be the residue
of (m′ + 1)n modulo m. Then in the abacus display for λ, there are beads at positions
j, j +m, . . . , qm′+1 −m, and no beads on runner m − j. Again, we consider two cases.

– Suppose qm′+1 −m > n. Construct ν by replacing qm′+1 −m, qm′+1 − 2m, . . . ,m − j + n
with qm′+1 −m− n, qm′+1 − 2m− n, . . . ,m− j, and removing j, j+m, . . . ,n− j. (In other
words, each element of λ congruent to j modulo m is reduced by n if it is greater
than n, and deleted otherwise.) It is clear that ν is an m-bar-core, and by Lemma 2.1
ν has the same n-bar-core as λ. Moreover, we find

X(ν) = X(λ) \ {qm′+1,m − qm′+1} ∪ {qm′+1 − n,m − qm′+1 + n}; (2)

so λ↔ ν.

– Now suppose qm′+1−m < n. We construct ν by removing qm′+1−m, qm′+1−2m, . . . ,n−
qm′+1+m. Then ν is an m-bar-core with the same n-bar-core as λ, and in fact (2) holds
in this case too.

• Now suppose qi+1 > qi + n for some i , 0,m′. Then we also have qm−i > qm−i−1 + n. We
assume that qi+1 > m; if not, then we have qm−i = m − qi > m − (qi+1 −m − n) > m, and we
can replace i with m− i−1. Let j, k be the residues of (i+1)n and in modulo m, respectively.
We consider five cases.

– Suppose qi > 0. Then there are no beads on runners m− j or m−k of the abacus for λ,
and the lowest bead on runner j lies at position qi+1 −m > n. We construct ν in this
case by replacing qi+1 −m, qi+1 − 2m, . . . , qi + n with qi+1 −m − n, qi+1 − 2m − n, . . . , qi.
Then ν is an m-bar-core (since runners m − j and m − k of the abacus are still empty)
and has the same n-bar-core as λ. Moreover, we have

X(ν) = X(λ) \ {qi+1,m − qi+1, qi,m − qi} ∪ {qi + n,m − qi − n, qi+1 − n,m − qi+1 + n}, (3)

so λ↔ ν.
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– Now suppose qi+1 − m, qm−i − m > n. In this case runners k and m − j of the abacus
are empty, while runner j has beads down to qi+1 − m and runner m − k has beads
down to qm−i − m. We construct ν by replacing qi+1 − m, qi+1 − 2m, . . . , k + n with
qi+1 − m − n, qi+1 − 2m − n, . . . , k, replacing qm−i − m, qm−i − 2m, . . . ,m − j + n with
qm−i − m − n, qm−i − 2m − n, . . . ,m − j, and removing k + n − m, k + n − 2m, . . . , j and
n − j,n − j − m, . . . ,m − k. (In other words, every element of λ congruent to j or −k
modulo m is reduced by n if it is greater than n, and is deleted otherwise.)
ν is an m-bar-core because in its abacus display runners j and m− k are empty while
runners k and m − j have beads in the topmost positions; furthermore, (3) holds, so
λ↔ ν.

– Next suppose qi+1 − m > n, while 0 < qm−i − m < n. In this case, we construct ν
by replacing qi+1 − m, qi+1 − 2m, . . . , k + n with qi+1 − m − n, qi+1 − 2m − n, . . . , k and
removing k + n −m, k + n − 2m, . . . ,n − qm−i +m and qm−i −m, qm−i − 2m, . . . ,m − k. ν
is again an m-bar-core, and (3) holds, so λ↔ ν.

– Next, suppose 0 < qi+1 −m < n, while qm−i −m > n. In this case, we can replace i + 1
with m − i and appeal to the previous case.

– Finally, suppose 0 < qi+1 −m < n and 0 < qm−i −m < n. In this case we construct ν by
removing qi+1 −m, qi+1 − 2m, . . . ,n− qm−i +m and qm−i −m, qm−i − 2m, . . .n− qi+1 −m.
Again ν is an m-bar-core and (3) holds, so λ↔ ν.

We have seen that whenever λ is not an n-bar-core, we can replace it with a smaller m-bar-core
ν such that λ↔ ν and use induction. So we assume λ is an n-bar-core. Symmetrically, we can
assume µ is an n-bar-core, and we must show that λ = µ. In other words, we must show that a
bar partition λ which is both an m- and an n-bar-core is uniquely determined by the integers

gi =
∣∣∣∣{a ∈ X(λ)

∣∣∣ a ≡ i (mod n)
}∣∣∣∣ .

With q1, . . . , qm−1 as above, consider the following sequence S of m + n − 1 integers:

n, n −m, n − 2m, . . . , q1,

q1 + n, q1 + n −m, q1 + n − 2m, . . . , q2,

q2 + n, q2 + n −m, q2 + n − 2m, . . . , q3,

...

qm−2 + n, qm−2 + n −m, qm−2 + n − 2m, . . . , qm−1,

qm−1 + n, qm−1 + n −m, qm−1 + n − 2m, . . . , m.

Note that the definition of S makes sense, because the fact that λ is an n-bar-core means that
q1 6 n (and hence qm−1+n > m) and qi+1 6 qi+n for each i. The differences between consecutive
terms of S are either −m (n− 1 times) or +n (m− 1 times). Hence modulo n, the steps are either
0 or −m. Since m and n are coprime and there are only n − 1 steps equal to −m, all the terms of
S in a given congruence class modulo n must be consecutive in S; so the set of terms of S in a
given congruence class modulo n must take one of the following forms:

• {qi, qi+1, . . . , q j, q j + n} for some 1 6 i < j 6 m − 1, where either j = m − 1 or q j+1 < q j + n;
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• {qi+n− km} for some 0 6 i 6 m−1 and some 1 6 k 6
qi − qi+1 + n −m

m
(where we read q0 = m

and qm = 0).

In each case, exactly one element fails to lie in X(λ); hence in S the number of terms congruent
to i modulo n is gi + 1 for each i.

So S is determined by the integers gi: it begins with g0 + 1 terms divisible by n, starting
from n; then there is a jump of −m followed by g−m + 1 terms congruent to −m modulo n, then
another jump of −m, and so on. The integers q1, . . . , qm−1 are easily recovered from S, and so λ
is too. �

Using Proposition 4.1, we see that the action χn ofW′m on the set of m-bar-cores preserves
the n-bar-core of an m-bar-core. Recall that we write τ̃i for the image of τi under the action χn.

Proposition 4.3. Suppose m and n are coprime odd positive integers with m > 3. Suppose λ is an
m-bar-core and i ∈ {0, . . . ,m′}, and define τ̃i(λ) as above. Then λ and τi(λ) have the same n-bar-core.

Proof. This is immediate from Proposition 4.1 and the definition of τ̃i. �

We shall refer to an orbit in the set of m-bar-cores under the action χn as a level n orbit. From
Proposition 4.3, we see that two m-bar-cores have the same n-bar-core if they lie in the same
level n orbit. We shall prove the converse of this statement; the way we do this is to show that
each level n orbit contains a n-bar-core. Before we do this, it will be helpful for later to introduce
some more notation: for m,n coprime odd integers, define Rm

n to be the level n parallelepiped

R
m
n =
{

p ∈ Rm′
∣∣∣∣ 1 6 pi − pi+1 6 n for i = 1, . . . ,m′ − 1, and m + 1

2
6 pm′ 6 max

{
n, m + n

2

}}
.

For example, consider the case m = 5. If n = 1, then R5
n just consists of the point (4, 3). For

n > 1, R5
n is the parallelogram with vertices(4, 3), (6, 3), (5, 4), (7, 4) (n = 3)

(4, 3), (n + 3, 3), (n + 1,n), (2n,n) (n > 5).

Proposition 4.4. Suppose m and n are coprime odd integers with m > 3, and that O is a level n orbit.
Let ν be an element of O for which the sum

∑
k∈Q(ν)(k −

m
2 )2 is minimised. Then ν is an n-bar-core, and

pν lies in Rm
n .

For this proposition, we again use the extended beta-set of an m-bar-core. It is quite easy to
write down the effect of the level n action χn on m-bar-cores in terms of their extended beta-sets:
write the elements ofX(ν) as q1, . . . , qm−1 with qi ≡ in (mod m) for each i. Then for i ∈ {0, . . . ,m′}
the set X(τ̃i(ν)) is obtained from X(ν) as follows.

i = 0 : Replace q1, qm−1 with q1 − 2n, qm−1 + 2n.

1 6 i 6 m′ − 1 : Replace qi, qi+1, qm−i−1, qm−i with qi + n, qi+1 − n, qm−i−1 + n, qm−i − n.

i = m′ : Replace qm′ , qm′+1 with qm′ + n, qm′+1 − n.
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Proof of Proposition 4.4. Note that we have∑
k∈X(ν)

(
k − m

2

)2
= 2
∑

k∈Q(ν)

(
k − m

2

)2
;

so ν also minimises
∑

k∈X(ν)(k−
m
2 )2 across O. As above, write the elements ofX(ν) as q1, . . . , qm−1

such that qi ≡ in (mod m) for each i.

Claim 1. q1 6 n.

Proof. We have q1 = am + n for some a ∈ Z. When we apply τ̃0, we replace am + n and
(1 − a)m − n with am − n and (1 − a)m + n. This changes

∑
k∈X(ν)(k −

m
2 )2 by 4(1 − 2a)mn,

which is negative if a > 0, contradicting the choice of ν. So a 6 0.

Claim 2. For i = 1, . . . ,m − 2 we have qi+1 − qi 6 n.

Proof. Suppose not. Since qi+1 − qi = qm−i − qm−i−1, we can assume i 6 m′. Now applying
τ̃i yields a contradiction to the choice of ν, as in Claim 1.

These two claims imply immediately that ν is an n-bar-core, by Lemma 4.2. Now suppose
pν < Rm

n . This means that either p j − p j+1 > n for some j ∈ {1, . . . ,m′ − 1}, or pm′ > max
{
n, m + n

2

}
.

Suppose p j − p j+1 > n. Since by assumption p1 > · · · > pm′ , this means that there no pk
between p j and p j+1 (and so there is no qk between p j and p j+1). Since p j > n, we must therefore
have q1 6 p j+1, by Claim 1. But now there must be some i such that qi 6 p j+1 and qi+1 > p j, and
this contradicts Claim 2.

On the other hand, suppose pm′ > max
{
n, m + n

2

}
. Then we have pm′ − (m − pm′) > n. The

assumption that p1 > · · · > pm′ means that there is no qk between m− pm′ and pm′ . Furthermore,
by Claim 1 we have q1 < pm′ , so q1 6 (m − pm′). But now as in the previous case there must be
some i such that qi 6 m − pm′ and qi+1 > pm′ , and again this contradicts Claim 2. �

As a consequence, we see that the element ν ∈ O is uniquely defined, since by Proposition
4.3 O cannot contain more than one n-bar-core. Another consequence is a new proof of the
following result of Olsson [O, Theorem 4].

Theorem 4.5. Suppose m and n are coprime odd positive integers, and λ is an m-bar-core. Then the
n-bar-core of λ is also an m-bar-core.

Proof. The case m = 1 is trivial, so we may assume m > 1. Then by Proposition 4.4, the level
n orbit O containing λ also contains a n-bar-core ν. By Proposition 4.3 λ and ν have the same
n-bar-core, i.e. ν is the n-bar-core of λ. Since ν ∈ O, ν is an m-bar-core. �

Another consequence of Proposition 4.4 is that two m-bar-cores have the same n-bar-core
only if they lie in the same level n orbit.

Corollary 4.6. Suppose m and n are coprime odd positive integers, and that λ and µ are m-bar-cores
which have the same n-bar-core. Then λ and µ lie in the same level n orbit.

Proof. Let ν be the n-bar-core of λ and µ. Then ν lies in both the level n orbit containing λ and
the level n orbit containing µ; so these orbits coincide. �
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4.3 Symmetry

Now we consider the symmetry in the diagram on the first page. We have seen that under
the action χn on m-bar-cores, the n-bar-core of an m-bar-core is preserved. However, this
symmetry is obscured in the diagram on the first page because of the replacement of m′-points
by m′-sets, or equivalently alcoves by dominant alcoves.

To show the symmetry corresponding to χn, we consider the whole of the space Rm′ . In
our examples, we continue to take m = 5 and n = 3. Figure 2 shows part of the R2, with
hyperplanes drawn. The marked 2-points are those in the level 3 orbit containing �.
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•
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•

�

Figure 2: the level 3 orbit of � in R2

To see the corresponding orbit on 2-sets, we fold the diagram in Figure 2 along the bold
lines (which represent the hyperplanes H0−

12 , H1+
12 , H1

1, H1
2). We obtain the diagram in Figure 3,

which shows just the alcoves in the dominant region. Comparing this with the diagram on the
first page, we see that this orbit corresponds to the set of 5-bar-cores whose 3-bar-core is empty.

Now we consider the additional symmetry in the diagram on the first page: the reader will
observe that the cores in the diagram are invariant under reflection in the bold lines. These
reflections (extended to the whole plane) are the reflections contained in the image of the action
ψ3. The next proposition shows that this symmetry holds in general.

Proposition 4.7. Suppose m,n are coprime odd positive integers, and p, q are m′-points which lie in
the same orbit under the level n action ψn. Then the m-bar-cores corresponding to p, q have the same
n-bar-core.

Proof. This is immediate from Proposition 4.1 and the formulæ for τ̌0, . . . , τ̌m′ in §3.2. �

Note that, unlike the orbits for the action χn, different orbits under ψn can yield the same
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Figure 3: the level 3 orbit of � in the dominant region of R2

n-bar-core; this can be seen in the diagram on the first page, where there are four different
orbits yielding the empty partition.

5 The largest (m,n)-bar-core

In this section we briefly comment on bar partitions which are both m- and n-bar-cores,
when m and n are coprime odd positive integers; we call such partitions (m,n)-bar-cores. It can
be inferred from the results of previous sections that there are only finitely many (m,n)-bar-
cores. In fact, Bessenrodt and Olsson have shown [BO, Theorem 3.2] that the exact number
(writing m = 2m′ + 1, n = 2n′ + 1) is

(m′+n′
m′
)
. Moreover, one of these (m,n)-bar-cores (the Yin

partition) is maximal in the sense that its Young diagram contains the Young diagram of any
other (m,n)-bar-core [BO, Theorem 3.6]. We can describe the Yin partition in terms of our set-up;
as before, we assume m > 3 and write m = 2m′+ 1. It follows from Propositions 4.3 and 4.4 that
if ν is an (m,n)-bar-core, then the corresponding m′-point lies in the level n parallelpiped Rm

n .
The Yin partition is the (m,n)-bar-core corresponding to the vertex of Rm

n opposite the origin;
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this is the point (m′n, (m′ − 1)n, . . . , 2n,n) (n > m)(
m + (m − 2)n

2
,

m + (m − 4)n
2

, . . . ,
m + 3n

2
,

m + n
2

)
(m > n).

It is possible to use this set-up to give a new proof that the Yin partition is maximal; this is
entirely analogous to the proof in [F, §5] that there is a maximal (m,n)-bar-core when s, t are
coprime positive integers. Since this result is relatively easy to prove by other means, we omit
the details.
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