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Abstract
Let p be an odd prime, and An the alternating group of degree n. We determine which ordinary

irreducible representations of An remain irreducible in characteristic p, verifying the author’s
conjecture from [F3]. Given the preparatory work done in [op. cit.], our task is to determine which
self-conjugate partitions label Specht modules for the symmetric group in characteristic p having
exactly two composition factors. This is accomplished through the use of the Robinson–Brundan–
Kleshchev ‘i-restriction’ functors, together with known results on decomposition numbers for the
symmetric group and additional results on the Mullineux map and homomorphisms between
Specht modules.
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1 Introduction

An interesting question for any finite group is to ask which ordinary irreducible representations
of that group remain irreducible in characteristic p. For the symmetric group Sn this amounts to
classifying the irreducible Specht modules, and this problem was solved several years ago, through
the combined efforts of James, Mathas, Lyle and the author [JM2, JM3, L1, F1, F2]; when p is odd, the
irreducible Specht modules are precisely those labelled by JM-partitions. In this paper we address the
case of the alternating group An. The author considered this problem in [F3], solving it completely in
the case p = 2 and presenting a conjectured solution for odd p, which we prove here.

As with many problems concerning the representation theory of the alternating group, our tech-
nique is to translate the problem to one about the symmetric group, using elementary Clifford theory
to transfer results between the two settings. For the problem at hand, this translation was done
in [F3], where the main problem for the alternating groups was reduced to the question of which
Specht modules labelled by self-conjugate partitions have exactly two composition factors (with mul-
tiplicity). So the present paper is concerned entirely with the representation theory of the symmetric
group.

Our main result when p > 5 is that the self-conjugate partitions labelling Specht modules with
composition length 2 are the partitions which we called R-partitions in [F3]; these have a simple
description in terms of hook lengths in the Young diagram. The fact that the corresponding Specht
modules have composition length 2 was shown in [F3], so the task undertaken in this paper is to prove
the converse. The same applies in the case p = 3, where the classification takes a slightly different
form.

Our basic strategy involves applying the results of Brundan and Kleshchev concerning Robinson’s
i-restriction functors ei. We suppose λ is a self-conjugate partition which is not an R-partition or a
JM-partition; then we must show that the Specht module Sλ has at least three composition factors.
By removing all the removable nodes of residue 0 from the Young diagram of λ, one obtains a
self-conjugate partition λO0, and the Brundan–Kleshchev results imply that the composition length
of Sλ is at least that of Sλ

O0
; so by induction, we may assume that either λO0 is an R-partition or a

JM-partition, or λO0 = λ. Similarly, for any i , 0 we can define a self-conjugate partition λO±i by
repeatedly removing removable nodes of residues i and p− i from λ, and we can make the same
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inductive assumption about λO±i. This restricts the possibilities for λ considerably. In fact, we can
strengthen this inductive argument using James’s Regularisation Theorem, which gives an explicit
composition factor Dλrest of the Specht module Sλ, for any λ. It is very helpful for our purposes to be
able to tell, for a given partition λ, when there is an r such that er

i Sλ , 0 but er
i Dλrest = 0. An important

new result in this paper (Proposition 4.9) is an explicit combinatorial criterion for this; it is surprising
to the author that this does not seem to have been discovered before.

This inductive argument deals with most cases. Several of the remaining cases are eliminated with
using the theory of Rouquier blocks, whose decomposition numbers are very well understood. By de-
veloping the associated abacus combinatorics we exploit these results, together with the classification
of irreducible Weyl modules, to show that our main theorem holds for the so-called p-quotient-separated
partitions.

These arguments leave just one family of Specht modules to deal with, which we approach using
the theory of homomorphisms between Specht modules. Establishing the existence of a non-zero
homomorphism Sλ → Sν shows that Sλ and soc(Sν) share a composition factor, and we use this in a
certain special case to show that Sλ has at least three composition factors. The Specht homomorphism
that we use is constructed as the composition of two well-known homomorphisms, namely the one-
node Carter–Payne homomorphism and the regularisation homomorphism. However, we have considerable
work to do in showing that the composition is non-zero in our particular situation. To do this, we give
a result describing the least dominant tableau occurring when the regularisation homomorphism is
expressed in terms of semistandard homomorphisms; as a by-product, this gives a new proof of the
(non-trivial) fact that the regularisation homomorphism is non-zero.

This homomorphism result, together with a small lemma concerning the Mullineux map (which
describes the effect of the functor −⊗ sgn on simple modules), is enough to complete the proof. We
conclude the paper with a simple corollary which shows that the only irreducible representations of
An remaining irreducible modulo every prime are the one-dimensional representations.

Acknowledgements. The author was inspired to re-visit this problem at an Oberwolfach mini-
workshop on the representation theory of the symmetric groups in 2011; he is very grateful to
Susanne Danz and David Hemmer for the invitation to this workshop, and to David Hemmer for
subsequent discussions on this problem.

The author is also indebted to the referee for a very careful reading of the paper.

2 Representation theory of the symmetric group

In this section, we recall some essential background on the representation theory of the symmetric
group. Throughout this paper n is a non-negative integer and F is a field of characteristic p; we use the
convention that the characteristic of a field is the order of its prime subfield, so p ∈ {2, 3, 5, . . . } ∪ {∞}.

2.1 Partitions and Specht modules

A composition of n is a sequence λ = (λ1, λ2, . . . ) of non-negative integers summing to n. If n is not
specified, we write |λ| for the sum of the terms of λ. When writing compositions, we usually omit
trailing zeroes and group together consecutive equal parts with a superscript; the unique composition
of 0 is denoted ∅. A composition which is weakly decreasing is called a partition. We often identify a
composition λ with its Young diagram, which is the set

{(r, c) ∈ N2
| c 6 λr } .
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Elements of the Young diagram of λ are called nodes of λ; more generally, a node is any element of N2.
We adopt the English convention for drawing Young diagrams, in which λ is drawn with left-justified
rows of boxes of lengths λ1, λ2, . . . successively down the page.

If λ is a partition, the conjugate partition λ′ is defined by

λ′i =
∣∣∣∣{ j ∈ N

∣∣∣ i 6 λ j

}∣∣∣∣ ,
or, in terms of Young diagrams, by reflecting along the main diagonal. λ is self-conjugate if λ′ = λ. λ
is p-restricted if λi −λi+1 < p for all i > 1, and p-regular if λ′ is p-restricted.

A node (r, c) of a partition λ is removable if it can be removed from λ to leave a smaller partition
(i.e. if c = λr > λr+1), while a node (r, c) not in λ is an addable node of λ if it can be added to λ to give a
larger partition.

The p-residue of a node (r, c) is the residue of c− r modulo p (or simply the integer c− r, when
p = ∞). If a node has residue i, we call it an i-node.

If λ is a composition of n, let Mλ denote the Young permutation module for FSn corresponding to λ,
as defined in [J2, §4]. If λ is a partition, let Sλ denote the Specht module corresponding to λ. If λ is p-
restricted, then Sλ has a simple socle Dλ, and the modules Dλ afford all the irreducible representations
of FSn as λ ranges over the set of p-restricted partitions of n. When p = ∞, we have Dλ = Sλ, so the
characters χλ of the Specht modules give all the ordinary irreducible characters of Sn.

Remark. It is slightly more traditional to label the simple FSn-modules by p-regular partitions: if
λ is p-regular, then Sλ has a simple cosocle Dλ, and these modules also afford all the irreducible
representations of FSn. It is well known how to convert from one convention to the other; we have
chosen the p-restricted convention in this paper because it aligns better with some of the references
that we cite.

We shall also briefly need to consider Weyl modules for the Schur algebra S(n,n), for which we
refer to the book by Green [G]. We let ∆λ denote the Weyl module (also called the standard module)
labelled by the partition λ of n, and Lλ its unique irreducible quotient.

2.2 James’s Regularisation Theorem

The main aim in this paper is to consider Specht modules with very few composition factors. A
very helpful fact in this endeavour when p < ∞ is that we know an explicit composition factor of
every Specht module. This result is James’s Regularisation Theorem, which we phrase here in terms
of p-restricted partitions.

Suppose l > 0. Define the lth ramp inN2 to be the set of nodes (r, c) for which c−1+ (p−1)(r−1) = l.
If l < m, we say that ramp m is later than ramp l. If λ is a partition, the p-restrictisation of λ is the
p-restricted partition λrest obtained by moving all the nodes in each ramp as far to the left within
that ramp as possible. (λrest is simply called the p-restriction of λ in [FLM], but we introduce the
slightly absurd term restrictisation here to avoid confusion with restriction in the sense of restricting to
subgroups, which we shall consider a great deal. The linguistically sensitive reader may rest assured
that we shall use this term as little as possible.)

Example. Take λ = (8, 6, 2, 12) and p = 3. Then λrest = (6, 5, 4, 2, 1), as we can see from the following
Young diagrams, in which we label each node with the number of the ramp in which it lies.

0 1 2 3 4 5 6 7
2 3 4 5 6 7
4 5
6
8

, 0 1 2 3 4 5
2 3 4 5 6
4 5 6 7
6 7
8

.
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Now we can state part of James’s Regularisation Theorem, translated to the p-restricted conven-
tion.

Theorem 2.1 [J1, Theorem A]. Suppose λ is a partition. Then [Sλ : Dλrest] = 1.

2.3 The p-core and p-weight of a partition

If λ is a partition, the rim of λ is defined to be the set of all nodes (r, c) of λ such that (r + 1, c + 1)
is not a node of λ. Given any node (r, c) of λ, the (r, c)-rim hook of λ is the connected portion of the
rim running from the node (r, λr) down to the node (λ′c, c). The (r, c)-hook length of λ is the number of
nodes in the (r, c)-rim hook, i.e. λr − r +λ′c − c + 1. If p < ∞, then we say that λ is a p-core if none of the
hook lengths of λ is divisible by p, or equivalently if none of the hook lengths equals p.

If λ is an arbitrary partition, the p-core of λ is obtained as follows. Choose a node (r, c) of λ such that
the (r, c)-hook length equals p, and delete the (r, c)-rim hook from λ; repeat until a p-core is obtained.
This p-core is independent of the choice of rim hook deleted at each stage, and hence so is the number
of rim hooks deleted; this number is called the p-weight of λ.

2.4 The sign representation

Let sgn denote the one-dimensional sign representation of Sn. This gives rise to a functor
−⊗ sgn : FSn-mod → FSn-mod, which takes simple modules to simple modules. The effect of this
functor on Specht modules is well-known; let M∗ denote the dual of a module M.

Theorem 2.2 [J2, Theorem 8.15]. If λ is a partition, then Sλ ⊗ sgn � (Sλ
′

)∗.

Since every simple FSn-module is self-dual [J2, Theorem 11.5] and every Specht module is inde-
composable when p > 3 [J2, Corollary 13.18], Theorems 2.1 and 2.2 imply the following.

Lemma 2.3 [F3, Proof of Theorem 4.1]. Suppose p > 3, and λ is a self-conjugate partition such that Sλ has
exactly two composition factors S,T. Then S⊗ sgn � T � S.

Now we consider simple modules. Since S⊗ sgn is simple whenever S is, there is an involution mp
on the set of p-restricted partitions of n, defined by Dλ ⊗ sgn � Dmp(λ). This involution is known as the
Mullineux map, since Mullineux [M] gave (albeit without proof) the first of several known recursive
combinatorial descriptions of the map. We do not give this algorithm here, since for this paper we
just need the following simple result concerning mp.

Lemma 2.4. Suppose λ is a p-restricted partition. Then λ′1 + mp(λ)′1 . 1 (mod p).

Proof. We use the work of Ariki et al. [AKT] which addresses the relationship between the labellings
of simple modules by p-restricted partitions and by Littelmann paths. Following Kreiman et al.
[KLMW], they define for each p-restricted partition λ a p-core roof(λ), which has the following two
properties:

[AKT, Lemma 2.4(3)] roof(λ)′1 = λ′1;

[AKT, Proposition 5.21] roof(mp(λ)) = roof(λ)′.

From these properties we have λ′1 + mp(λ)′1 = roof(λ)′1 + roof(λ)1. This cannot be congruent to 1
modulo p, since then the (1, 1)-hook length of roof(λ) would be divisible by p, contradicting the fact
that roof(λ) is a p-core. �

It would be very interesting to see a more direct proof of Lemma 2.4 using Mullineux’s algorithm,
for example.
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2.5 JM-partitions

Now we describe the partitions which label irreducible Specht and Weyl modules when p > 3.
Define the p-power diagram of a partition λ to be the diagram obtained by filling the (r, c)-box in the
Young diagram of λ with the p-adic valuation of the (r, c)-hook length, for each node (r, c) of λ. Say
that λ is a p-JM-partition (or simply a JM-partition) if the following property holds: every non-zero
entry in the p-power diagram is either equal to all the other entries in the same row or equal to all the
other entries in the same column.

Example. The partition (19, 11, 23, 12) is a 3-JM-partition, as we see from its 3-power diagram:

0 0 2 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 2 0 0 1 0 0 1 0 0
1 1
0 0
0 0
0
0

.

Theorem 2.5 [JM2, L1, F1, F2]. If p > 3, then the Specht module Sλ is irreducible if and only if λ is a p-JM
partition.

A similar result applies for irreducible Weyl modules (without the restriction p > 3). Observe that
a JM-partition is p-restricted if and only if every non-zero entry in its p-power diagram is equal to
every entry in the same row. A similar statement applies to p-regular JM-partitions (which are also
known as Carter partitions).

Theorem 2.6 [JM2, Theorem 4.5]. The Weyl module ∆λ is irreducible if and only if λ is a p-restricted
JM-partition.

2.6 R-partitions

We now describe a family of self-conjugate partitions introduced in [F3] which label irreducible
representations of the alternating group that remain irreducible in characteristic p.

Given a partition λ, construct the p-power diagram of λ as above. Say that λ is an R-partition if λ
is self-conjugate and there is a distinguished node (r, r) of λ such that:

• the (r, r)-entry in the p-power diagram is non-zero, and

• any non-zero entry in the p-power diagram other than the (r, r)-entry is either equal to all the
entries in its row or equal to all the entries in its column.

R-partitions were studied in detail in [F3]; later, we shall cite some results describing abacus
displays for R-partitions. For now, we recall the two distinct types of R-partitions described in [F3,
§4.2]. Suppose λ is an R-partition, with distinguished node (r, r).

1. λ is an R-partition of type I if r = 1. In this case, removing the (1, 1)-rim hook from λ leaves a
self-conjugate p-core ξ with ξ1 6 1

2 (p− 1).

2. λ is a R-partition of type II if the (r, r)-hook length of λ equals p. In this case, removing the
(r, r)-rim hook from λ leaves a self-conjugate JM-partition.
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Note that the R-partitions of type II include all self-conjugate partitions of p-weight 1. It was shown
in [F3] that every R-partition is either of type I or type II; however, the two types are not mutually
exclusive.

Example. Take p = 5. Then the partitions (13, 32, 110) and (14, 10, 5, 4, 3, 25, 14) are R-partitions of types
I and II respectively, with distinguished nodes (1, 1) and (3, 3), as we see from their 5-power diagrams.

2 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0
0 0 0
1
0
0
0
0
1
0
0
0
0

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 1 0 0
0 0 0 0
0 0 0
1 1
0 0
0 0
0 0
0 0
0
0
0
0

3 The alternating group and the main result

In this section we introduce the alternating group and give our main result, which we then re-cast
in the symmetric group setting.

Suppose throughout this section that F is a splitting field for An, and that p , 2. We also assume
that n > 2 (so that An has index 2 in Sn), the case n = 1 being trivial. If M is an FSn-module and
H 6 Sn, let resH M denote the restriction of M to H. If M is irreducible, then by basic Clifford theory
resAn M is irreducible if M⊗ sgn � M, and otherwise resAn M splits as the direct sum M+

⊕M− of two
irreducible modules. Furthermore, all irreducible FAn-modules arise in this way.

If p = ∞ then, by Theorem 2.2 and the fact that simple FSn-modules are self-dual, we have
Sλ ⊗ sgn � Sλ

′

, so the character χλ of Sλ restricts to an irreducible character ψλ of An if λ , λ′ (and
in this case χλ

′

also restricts to ψλ), while if λ = λ′ then χλ restricts to the sum of two irreducible
characters ψλ+, ψλ−. With this notation, we can give our main result.

Theorem 3.1. Suppose F is a splitting field for An of characteristic p, and ψ = ψλ or ψλ± is an ordinary
irreducible character of An.

1. If p = 3, then ψ is irreducible over F if and only if one of the following holds:

(a) λ is a 3-JM-partition;

(b) λ has 3-weight 1;

(c) λ is an R-partition of type I;

(d) λ = (33).

2. If p > 5, then ψ is irreducible over F if and only if λ is a p-JM-partition or an R-partition.

Most of Theorem 3.1 has already been proved in [F3], beginning with the following reduction of
the problem to the representation theory of Sn.
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Theorem 3.2 [F3, Theorem 4.1]. Suppose F is a splitting field for An of odd characteristic p, and ψ = ψλ or
ψλ± is an irreducible character of the alternating group An. Then ψ is irreducible over F if and only if one of
the following holds.

1. λ is a p-JM partition.

2. λ = λ′ and the Specht module Sλ has exactly two composition factors.

So from now on we can restrict attention entirely to the symmetric group, and prove the following.

Theorem 3.3. Suppose F has characteristic p, and λ is a self-conjugate partition. Then Sλ has exactly
two composition factors if and only if one of the following holds.

• λ has p-weight 1.

• λ is an R-partition of type I.

• p > 5 and λ is an R-partition of type II.

• p = 3 and λ = (33).

We have already proved the ‘if’ part of Theorem 3.3 in [F3, §5.1]. So the remainder of this paper
is dedicated to proving the ‘only if’ part. We do this in Section 7, after we have recalled some more
background and developed further tools.

4 Restriction functors

In this section, we describe some results on restriction functors, which will be our main tool. The
definition of these functors goes back to Robinson [Ro1], though our main reference here is the survey
of Brundan and Kleshchev [BK]. We translate the partition combinatorics from [BK] to the p-restricted
convention.

4.1 The restriction functors ei

Assume throughout this section that p < ∞. We shall feel free to identify Z/pZ with the set
{0, . . . , p−1}. In [BK, §2.2], Brundan and Kleshchev introduce the i-restriction operators ei : FSn-mod→
FSn−1-mod, for i ∈ Z/pZ. These are exact functors, and have the property that

resSn−1 M �
⊕

i∈Z/pZ
eiM

for any FSn-module M. In fact, if M lies in a single block of FSn then the non-zero eiM are precisely
the block components of resSn−1 M. In addition, ei and e j commute unless j = i± 1.

The functors ei are defined for all n > 0, so it makes sense to define powers er
i for r > 0. In fact, it

is possible to define divided powers e(r)
i , with the property [BK, Lemma 2.6] that

er
i M �

r!⊕
k=1

e(r)
i M
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for any M. If M is non-zero, we define εiM = max
{
r > 0

∣∣∣∣ e(r)
i M , 0

}
, and e(max)

i M = e(εiM)
i M.

Now we recall some results describing the effect of these operators on Specht modules and simple
modules. Given a partition λ and i ∈ Z/pZ, let remi(λ) denote the number of removable i-nodes of λ
and λOi the partition obtained by removing all the removable i-nodes from λ. Then the following is
just a refinement of the classical Branching Rule for Specht modules.

Lemma 4.1. Suppose λ is a partition, and i ∈ Z/pZ. Then εi Sλ = remi(λ), and e(max)
i Sλ � Sλ

Oi
.

Example. Suppose p = 3 and λ = (4, 3, 12). The residues of the removable nodes of λ are as follows:

0
1

0

.

Hence we have

ε0 Sλ = 2, e(max)
0 Sλ � S(32,1),

ε1 Sλ = 1, e(max)
1 Sλ � S(4,2,12),

ε2 Sλ = 0, e(max)
2 Sλ = Sλ .

The corresponding result for the simple modules Dλ is more complicated, and requires some
terminology. Define a sign sequence to be a finite string of + and − signs, and define the reduction
of a sign sequence to be the sequence obtained by successively deleting adjacent pairs −+. If λ is a
p-restricted partition, define the i-signature of λ to be the sign sequence obtained by examining the
addable and removable i-nodes of λ from top to bottom, writing a + for each addable i-node and a −
for each removable i-node, and define the reduced i-signature of λ to be the reduction of the i-signature.
The removable i-nodes corresponding to the − signs in the reduced i-signature are the normal i-nodes
ofλ. Let nori(λ) denote the number of normal i-nodes ofλ, andλHi the partition obtained by removing
all the normal i-nodes. Then λHi is a p-restricted partition, and we have the following.

Lemma 4.2. Suppose λ is a p-restricted partition and i ∈ Z/pZ. Then εi Dλ = nori(λ), and e(max)
i Dλ �

DλHi .

Example. Suppose p = 3 and λ = (6, 5, 3, 2, 13). The Young diagram of λ, with the residues of addable
and removable nodes marked, is as follows.

02
10

10
21

0

0
2

We see that the 0-signature of λ is +−−+−. So the reduced 0-signature is +−−, and the normal
0-nodes are (2, 5) and (7, 1). Hence ε0 Dλ = 2, and e(2)

0 Dλ � D(6,4,3,2,12).

These results will be very helpful in finding lower bounds for the number of composition factors
of a Specht module Sλ: since e(r)

i is an exact functor, we have εiT 6 εi Sλ for any composition factor T
of Sλ; furthermore, the number of composition factors T (with multiplicity) for which equality holds
must equal the composition length of Sλ

Oi
. Hence we have the following result.



10 Matthew Fayers

Lemma 4.3. Suppose λ is a partition and i ∈ Z/pZ. Then the composition length of Sλ is at least the
composition length of Sλ

Oi
, with equality if and only if eremi(λ)

i S , 0 for every composition factor S of
Sλ.

Analogously to the restriction functors ei, one can define induction functors fi : FSn-mod →
FSn+1-mod and obtain similar combinatorial results. In particular, we have the following analogue
of Lemma 4.3, which will occasionally be helpful.

Lemma 4.4. Suppose λ is a partition and i ∈ Z/pZ, and let λ4i denote the partition obtained from λ by
adding all the addable i-nodes. Then the composition length of Sλ is at least the composition length
of Sλ

4i
.

We now generalise our notation slightly: given i1, . . . , ir ∈ Z/pZ, we write λOi1...ir to mean
(. . . (λOi1)Oi2 . . . )Oir . Clearly, Lemma 4.3 holds with λOi1...ir in place of λOi. If λ is p-restricted, we
write λHi1...ir to mean (. . . (λHi1)Hi2 . . . )Hir .

4.2 Restriction and the Mullineux map

It follows fairly easily from the definition of the ei that they behave well with respect to the
functor −⊗ sgn. In fact, the following lemma is the basis for Kleshchev’s combinatorial algorithm for
computing the Mullineux map.

Lemma 4.5. Suppose i ∈ Z/pZ and M ∈ FSn-mod. Then

ei(M⊗ sgn) � (e−iM)⊗ sgn .

As a consequence of this lemma and Lemma 4.2, we have nori(λ) = nor−i(mp(λ)) for any p-
restricted λ.

4.3 Restriction and restrictisation

In this section we show how to extract more information from the preceding discussion on
restriction functors using Theorem 2.1. Given i ∈ Z/pZ, we write  i(λ) if eremi(λ)

i Dλrest = 0; that is,
if there is a power of ei which kills Dλrest but not Sλ. By Lemma 4.2, this is just the combinatorial
condition nori(λrest) < remi(λ). More generally, given residues i1, . . . , ir, we write  i1...ir(λ) if

eremir (λOi1 ...ir−1 )
ir

. . . e
remi2 (λOi1 )
i2

e
remi1 (λ)
i1

Dλrest = 0,

which is the same as saying that for some 1 6 l 6 r

noril((λ
rest)Hi1...il−1) < remil(λ

Oi1...il−1).

The following is an immediate consequence of Theorem 2.1 and Lemma 4.3.

Lemma 4.6. Suppose λ is a partition and that  i(λ) for some i ∈ Z/pZ. Then Sλ is reducible.

We now prove a more complicated version of this lemma for self-conjugate partitions. We assume
for the moment that p is odd, and write p = 2h + 1. Given 0 6 i 6 h and a self-conjugate partition λ,
we define λO±i to be the partition obtained by repeatedly removing all removable nodes of residue i
and −i; then λO±i is self-conjugate, and

λO±i =


λOi (i = 0)
λOi(−i) = λO(−i)i (0 < i < h)
λOi(−i)i = λO(−i)i(−i) (i = h).

Now we have the following, which will be our main inductive tool for proving Theorem 3.3.
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Proposition 4.7. Suppose p = 2h + 1 is an odd prime and λ is a self-conjugate partition, and that one
of the following occurs.

1. There is some 0 6 i 6 h such that Sλ
O±i

has at least three composition factors.

2. There is some 0 6 i < h such that Sλ
O±i

is irreducible.

3. There is some 0 6 i 6 h such that Sλ
O±i

is reducible and either  i(λ) or  −i(λ).

4.  h(−h)h(λ) and  (−h)h(−h)(λ).

Then the composition length of Sλ is not 2.

Proof.
1. This follows by applying Lemma 4.3 one, two or three times.

2. Assume i > 0; a similar but simpler argument applies in the case i = 0. Since i < h, there is no
i-node adjacent to a (−i)-node, and so remi(λO−i) = remi(λ). So

Sλ
O±i

= e(remi(λ))
i e(rem−i(λ))

−i Sλ .

If Sλ has exactly two composition factors, then by Lemma 2.3 these are of the form S and S⊗ sgn.
Since Sλ

O±i
is irreducible and the restriction functors are exact, exactly one of eremi(λ)

i erem−i(λ)
−i S

and eremi(λ)
i erem−i(λ)

−i (S⊗ sgn) must be non-zero. But by Lemma 4.5 and the fact that (since i < h)
ei and e−i commute, we have

eremi(λ)
i erem−i(λ)

−i (S⊗ sgn) � (erem−i(λ)
−i eremi(λ)

i S)⊗ sgn = (eremi(λ)
i erem−i(λ)

−i S)⊗ sgn,

a contradiction.

3. Suppose  i(λ). Then eremi(λ)
i Dλrest = 0, so that by Lemma 4.3 Sλ

Oi
has strictly fewer composition

factors than Sλ. Hence Sλ
O±i

has strictly fewer composition factors than Sλ. Since Sλ
O±i

is
reducible, this means that Sλ has at least three composition factors.

The case where  −i(λ) is proved in the same way.

4. If Sλ has exactly two composition factors, then by Lemma 2.3 and Theorem 2.1 these are Dλrest

and Dλrest ⊗ sgn. If  h(−h)h(λ) and  (−h)h(−h)(λ), then

eremh(λOh(−h))
h erem−h(λOh)

−h eremh(λ)
h Dλrest = 0 = erem−h(λO(−h)h)

−h eremh(λO−h)
h erem−h(λ)

−h Dλrest ,

and the second equality together with Lemma 4.5 and the fact that λ is self-conjugate gives

eremh(λOh(−h))
h erem−h(λOh)

−h eremh(λ)
h (Dλrest ⊗ sgn) = 0,

so that by exactness

Sλ
O±h

= e(remh(λOh(−h)))
h e(rem−h(λOh))

−h e(remh(λ))
h Sλ = 0,

a contradiction. �
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In order to use Proposition 4.7, it will be very helpful to be able to test the condition nori(λrest) <
remi(λ) for a given partition λ without having to construct λrest. We now prove a new result which
will enable us to do this.

Recall the definition of the ramps used in the definition of λrest, and write

rmpl(λ) for the number of nodes of λ in ramp l,

rmp+
l (λ) for the number of addable nodes of λ in ramp l, and

rmp−l (λ) for the number of removable nodes of λ in ramp l,

setting all of these numbers to be zero when l < 0.

Lemma 4.8. For any λ and any l, we have

rmp+
l (λ)− rmp−l−p(λ) = δl0 − rmpl(λ) + rmpl−1(λ) + rmpl−p+1(λ)− rmpl−p(λ).

Hence if λ and µ are partitions with λrest = µrest, then rmp+
l (λ)− rmp−l−p(λ) = rmp+

l (µ)− rmp−l−p(µ) for
every l.

Proof. We assume p > 2; a modification to the argument is required when p = 2, and since this case
is not relevant to the main results in this paper, we feel content to leave this case to the reader. We
also assume l > 0, with the case l = 0 being trivial.

Suppose (r, c) is a node in ramp l. Assuming first that r, c > 1, we have nodes (r, c− 1), (r− 1, c) and
(r− 1, c− 1) in ramps l− 1, l− p + 1 and l− p respectively. By checking the possible cases for which of
these four nodes are nodes of λ, we easily find that the formula holds when restricted just to these
four nodes. If r = 1, then the same argument applies looking at just the two nodes (1, c) and (1, c− 1),
and a similar statement applies when c = 1. Summing over all (r, c) in ramp l gives the result.

The second sentence of the lemma follows immediately, since if λrest = µrest, then rmpm(λ) =

rmpm(µ) for all m. �

Proposition 4.9. Suppose λ is a partition, and i ∈ {0, . . . , p − 1}. Then nori(λrest) 6 remi(λ), with
equality if and only if λ does not have a removable i-node and an addable i-node in a later ramp.

Furthermore, if equality occurs then

(λrest)Hi = (λOi)rest.

Remarks.
1. Of course, the inequality nori(λrest) 6 remi(λ) follows from Theorem 2.1 and Lemmas 4.1

and 4.2. But it naturally comes out of the argument below, and it is interesting to have a purely
combinatorial proof.

2. The final statement of the proposition (together with Lemma 4.2) shows that given a partition
λ and residues i1, . . . , ir, we have  i1...ir(λ) if and only if for some 1 6 l 6 r

noril((λ
Oi1...il−1)rest) < remil(λ

Oi1...il−1).

This will be very useful in the proof of our main theorem.

Proof of Proposition 4.9. For this proof, we introduce some notation. Given a non-negative integer
m, we let +[m] denote a string of m + signs, and −[m] a string of m − signs. Given any integer m, we
set

±[m] =

+[m] (m > 0)

−[−m] (m 6 0).
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Note that when constructing the reduction of any sign sequence, we may at any point replace an
interval −[a] +[b] with ±[b− a].

Now let µ = λrest. Since µ is p-restricted, addable and removable i-nodes of µ lie above addable
and removable i-nodes in later ramps, and within a given ramp the addable nodes lie above the
removable nodes. Hence the i-signature of µ has the form

+[rmp+
i (µ)]−[rmp−i (µ)] +[rmp+

i+p(µ)]−[rmp−i+p(µ)] +[rmp+
i+2p(µ)]−[rmp−i+2p(µ)] · · · .

So the reduced i-signature of µ is the reduction of the sequence

S = +[rmp+
i (µ)]±[rmp+

i+p(µ)− rmp−i (µ)]±[rmp+
i+2p(µ)− rmp−i+p(µ)] · · · .

Now consider the sign sequence

L = +[rmp+
i (λ)]−[rmp−i (λ)] +[rmp+

i+p(λ)]−[rmp−i+p(λ)] +[rmp+
i+2p(λ)]−[rmp−i+2p(λ)] · · · .

The reduction of L is the reduction of the sequence

+[rmp+
i (λ)]±[rmp+

i+p(λ)− rmp−i (λ)]±[rmp+
i+2p(λ)− rmp−i+p(λ)] · · · ,

but by Lemma 4.8 the latter sequence coincides with S . So the reduced i-signature of µ is just the
reduction of L , and hence the number of − signs in the reduced i-signature is at most the number
of − signs in L , which is remi(λ). So nori(µ) 6 remi(λ). Equality occurs if and only if L is already
reduced, i.e. every + in L occurs before every −; this is the same as saying that λ does not have a
removable i-node and an addable i-node in a later ramp.

For the case where equality occurs, the condition on λ means that we can find L ≡ i (mod p) such
that rmp−L−ap(λ) = rmp+

L+ap(λ) = 0 for all a > 0. This implies in particular that

rmp+
L+(a+1)p(λ)− rmp−L+ap(λ) > 0 for all a < 0,

rmp+
L+(a+1)p(λ)− rmp−L+ap(λ) 6 0 for all a > 0.

By Lemma 4.8 these inequalities also hold with µ in place of λ. So the reduced i-signature of µ has
the form
+[rmp+

i (µ)] +[rmp+
i+p(µ)− rmp−i (µ)] · · · +[rmp+

L (µ)− rmp−L−p(µ)]
−[rmp−L (µ)− rmp+

L+p(µ)] −[rmp−L+p(µ)− rmp+
L+2p(µ)] · · · .

We see that the − signs in the reduced i-signature correspond to removable nodes in ladders L,L +

p,L + 2p, . . . ; more precisely, µ has rmp−L+ap(µ)− rmp+
L+(a+1)p(µ) = rmp−L+ap(λ) normal nodes in ramp

L + ap for each a > 0. So µHi is obtained by removing rmp−L+ap(λ) nodes from ramp L + ap for each a;

hence µHi = (λOi)rest. �

Example. Take p = 3 and λ = (14, 5, 23, 15), so that µ = λrest = (6, 5, 42, 32, 2, 13). The Young diagrams
of these partitions, with the residues of nodes and addable nodes marked, are as follows.

20 1 2 0 1 2 0 1 2 0 1 2 0 1
12 0 1 2 0

01 2
0 1
2 0

21
0
2
1
0
2

00 1 2 0 1 2
12 0 1 2 0

21 2 0 1
0 1 2 0

22 0 1
1 2 0

20 1
02

1
0
2
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Taking i = 0, we get the following values.

l rmpl(λ) rmp+
l (λ) rmp−l (λ) rmpl(µ) rmp+

l (µ) rmp−l (µ)
0 1 0 0 1 0 0
3 2 0 0 2 0 0
6 3 1 1 3 1 1
9 2 0 1 2 0 1
12 2 0 0 2 0 1
15 0 0 0 0 1 0
18 1 0 1 1 0 1

So λ satisfies the hypothesis in Proposition 4.9. We have

rmp+
3a+3(λ)− rmp−3a(λ) = rmp+

3a+3(µ)− rmp−3a(µ)

for all a, and this is non-negative for a 6 1 and non-positive for a > 2. The 0-signature of µ, with the
signs labelled according to the ramps containing the corresponding nodes, is

+6 −6 −9 −12 +15 −18 .

So µ has three normal nodes, in ramps 6, 9 and 18. Since the removable 0-nodes of λ lie in ramps 6, 9
and 18, we have (λrest)H0 = (λO0)rest.

5 The abacus

In this section we describe the abacus notation for partitions, which we shall use in the proof of
our main theorem. We also discuss p-quotient-separated partitions, which label Specht modules whose
composition factors are well understood.

5.1 The abacus display for a partition

We assume throughout this section that p < ∞, and fix an abacus with p infinite vertical runners,
which we number 0, . . . , p−1 from left to right. We mark positions . . . ,−2,−1, 0, 1, 2, . . . on the runners,
reading from left to right along successive rows, with runner i containing the positions congruent to
i modulo p. We say that position m is later than position l (or position l is earlier than position m) if
m > l. For example, if p = 5 then the positions are marked as follows.

−5 −4 −3 −2 −1

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

Now given a partition λ, we place a bead on the abacus in position λi − i for each i ∈ N. The resulting
configuration is called the abacus display for λ. We call a position occupied if there is a bead at that
position, and vacant otherwise; we may also say that there is a space in position l if that position is
vacant.
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Example. Take λ = (12, 10, 9, 7, 5, 4, 32, 2, 17) and p = 5. Then the abacus display for λ is as follows
(when drawing abacus displays, we will always suppress the numbering of positions).

Abacus combinatorics are well-established, so we quote some facts without further explanation.
Taking an abacus display for λ and sliding all the beads up their runners as far as possible, we obtain
an abacus display for the p-core of λ. The p-weight of λ is the number of pairs l < m such that
l ≡ m (mod p), position l is vacant and position m is occupied.

Now we consider p-quotients. Given an abacus display for a partition λ, we define a partition λ(i)

by examining runner i in isolation as a 1-runner abacus display and reading off the corresponding
partition. In other words, λ(i)

j equals the number of vacant positions above the jth lowest bead on

runner i. The p-tuple
(
λ(0), . . . , λ(p−1)

)
is called the p-quotient of λ, and from the last paragraph the sum

|λ(0)
|+ · · ·+ |λ(p−1)

| equals the p-weight of λ.

Example. Taking the abacus display from the last example and sliding beads up their runners, we
obtain an abacus display for the 5-core of λ, namely (9, 8, 6, 52, 4, 32, 2, 12).

From the abacus display for λ, we see that the 5-quotient of λ is
(
∅, (12),∅,∅, (1)

)
, so the 5-weight of

λ is 3.

Since we shall be dealing with self-conjugate partitions, we record the following fact: if λ is a self-
conjugate partition, then for any l there is a bead in position l in the abacus display for λ if and only
if there is a space in position −l− 1. Moreover, the p-quotient

(
λ(0), . . . , λ(p−1)

)
satisfies λ(i) = λ(p−1−i)′

for each i.

5.2 Addable and removable nodes and ramps

Suppose λ is a partition and i ∈ Z/pZ. The removable i-nodes of λ correspond to the occupied
positions l on runner i in the abacus display for λ for which position l− 1 is vacant. Removing such
a node corresponds to moving the bead from position l to position l− 1. Similarly, addable i-nodes
correspond to occupied positions l− 1 on the abacus display with position l vacant, and adding such
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a node corresponds to moving the bead from position l− 1 to position l. The order of the addable
and removable i-nodes from top to bottom of the Young diagram for λ is the same as the order of the
corresponding positions on runner i from bottom to top.

We record a minor lemma that we shall use later.

Lemma 5.1. Suppose λ is a partition, and that for some i ∈ Z/pZ λ has at least one addable i-node and
at least one removable i-node. Then λ(i−1) , ∅ or λ(i) , ∅.

Proof. If λ(i−1) = λ(i) = ∅, then there are integers a, b such that in the abacus display for λ:

• position kp + i− 1 is occupied if and only if k 6 a;

• position lp + i is occupied if and only if l 6 b.

If a > b, then λ has no removable i-nodes, while if a 6 b, then λ has no addable i-nodes; contradiction.
�

Now we use the description of addable and removable nodes on the abacus to enable us to apply
Proposition 4.9 using the abacus.

Lemma 5.2. Suppose λ is a partition, i ∈ Z/pZ and k, l are integers with k < l. Suppose that positions
kp + i− 1 and lp + i are occupied in the abacus display for λ, while positions kp + i and lp + i− 1 are
vacant. Suppose furthermore that the number of beads in positions kp + i + 1, . . . , lp + i− 2 is at least
l− k. Then  i(λ).

Proof. From the above discussion, the occupied position lp + i with a space in position lp + i − 1
corresponds to a removable i-node (c, λc), while the vacant position kp + i with a bead in position
kp + i− 1 corresponds to an addable i-node (d, λd + 1), with c < d. In fact, the definition of the abacus
display means that d = c + b + 1, where b is the number of beads in positions kp + i + 1, . . . , lp + i−2. The
definition of the abacus display gives λc − c = lp + i and λd − d = kp + i− 1, and hence the removable
node (c, λc) lies in ramp (c + l− 1)p + i, and the addable node (d, λd + 1) lies in ramp (d + k− 1)p + i. The
difference between these ramp numbers is

(d + k)p− (c + l)p = (b + 1− l + k)p

which is strictly positive by assumption. Hence λ has a removable i-node and an addable i-node in a
later ladder, and so  i(λ) by Proposition 4.9. �

5.3 Rouquier partitions

We now describe a class of partitions for which the corresponding decomposition numbers are
very well understood. In order to do this, it will be helpful to impose a new ordering on the runners
of the abacus; this approach was first taken by Richards [Ri].

Given a partition λ, construct the abacus display for the p-core of λ. Let qi(λ) be the first vacant
position on runner i, for each i. We may write qi(λ) just as qi if λ is understood, and we make the
observation that q0 + · · ·+ qp−1 =

(p
2
)
.

Let π = πλ be the unique permutation of {0, . . . , p− 1} such that qπ(0) < · · · < qπ(p−1). We say that
runner π(0) is the smallest runner in the abacus display, and runner π(p− 1) the largest. We define
λ[i] = λ(π(i)) for each i, and we define the ordered p-quotient of λ to be

[
λ[0], . . . , λ[p−1]

]
.

Example. Continuing from the last example with λ = (12, 10, 9, 7, 5, 4, 32, 2, 17) and p = 5, we find that
(q0, q1, q2, q3, q4) = (5, 11,−8, 13,−11), so that π is the 5-cycle (0, 4, 3, 1, 2), and the ordered p-quotient of
λ is

[
(1),∅,∅, (12),∅

]
.
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Now say that λ is a Rouquier partition if qπ(i) − qπ(i−1) > (w − 1)p for all 1 6 i < p, where w is
the p-weight of λ. The composition factors of Specht modules labelled by Rouquier partitions are
relatively well understood, thanks to the work of Chuang and Tan [CT] and Turner [T]. In order
to state this result, we introduce some notation. Suppose λ, µ and ν are Rouquier partitions with
the same p-core and p-weight, and with ordered p-quotients

[
λ[0], . . . , λ[p−1]

]
,
[
µ[0], . . . , µ[p−1]

]
and[

ν[0], . . . , ν[p−1]
]

respectively, and that µ[p−1] = ν[p−1] = ∅. Define dλµ to be the sum, over all choices of
partitions σ(0), . . . , σ(p−2) and τ(1), . . . , τ(p−1), of

p−1∏
i=0

cλ
[i]

τ(i)′σ(i)

p−2∏
i=0

cµ
[i]

σ(i)τ(i+1) .

Here, cαβγ denotes the Littlewood–Richardson coefficient (which is to be regarded as zero if |α| , |β|+ |γ|)
and the partitions τ(0) and σ(p− 1) should be read as ∅. Also define

aµν =


∏p−2

i=0 [∆µ
[i]

: Lν
[i]

] (if |µ[i]
| = |ν[i]

| for all i)
0 (otherwise).

Now we have the following statement.

Theorem 5.3 [CT, Theorem 1.1], [T, Theorem 29]. Suppose λ and ν are Rouquier partitions with the same
p-core and p-weight, and with ordered p-quotients

[
λ[0], . . . , λ[p−1]

]
and

[
ν[0], . . . , ν[p−1]

]
respectively. Then:

1. ν is p-restricted if and only if ν[p−1] = ∅;

2. if ν is p-restricted, then
[Sλ : Dν] =

∑
µ

dλµaµν,

summing over all p-restricted partitions µ with the same p-core and p-weight as λ.

5.4 p-quotient-separated partitions

In this section we generalise the notion of a Rouquier partition, to define a class of Specht modules
whose composition length can be deduced from Lemmas 4.3 and 4.4 and Theorem 5.3. This material
will be familiar to many experts, although it does not seem to have appeared in this form before.

Suppose λ is a partition and construct the abacus display for λ. Say that λ is p-quotient-separated
if the following property holds: there do not exist runners i , j such that the first space on runner i
is earlier than the last bead on runner j and the first space on runner j is earlier than the last bead on
runner i. This terminology was first used by James and Mathas [JM1] in the case p = 2.

We assemble some facts about p-quotient-separated partitions. Given a partition λ, let qi = qi(λ)
for i ∈ Z/pZ, and π = πλ.

Proposition 5.4. Suppose λ is a partition, and i, j ∈ Z/pZ.

1. If λ is p-quotient-separated and qi < q j, then the first space on runner j is later than the last bead
on runner i.

2. If λ is p-quotient-separated and has at least two addable i-nodes, then qi−1 > qi.

3. If λ is p-quotient-separated, then so is λ4i.

4. λ is Rouquier if and only if every partition with the same p-core and p-weight as λ is p-quotient-
separated.
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Proof.
1. By construction, the first space on runner i is in position qi − pλ(i)′

1, and the last bead on runner
j is in position q j − p + pλ( j)

1 . So either the first space on runner i is earlier than the last bead on
runner j (in which case the first space on runner j is later than the last bead on runner i by the
p-quotient-separated property), or q j − qi < p and λ(i) = λ( j) = ∅. But in this case the first space
on runner j is in position q j and the last bead on runner i is in position qi − p, so the required
result still holds.

2. Since λ has at least two addable nodes, there are integers k < l such that positions kp + i− 1 and
lp + i−1 are occupied while positions kp + i and lp + i are vacant. This implies that the first space
on runner i is earlier than the last bead on runner i− 1, so qi−1 > qi by part (1).

3. We assume λ4i is not p-quotient-separated, and show that λ is not either. Since λ4i is not p-
quotient-separated, there are k , l such that in the abacus display for λ4i the first space on
runner k occurs before the last bead on runner l, and vice versa. Clearly if {k, l} ∩ {i− 1, i} = ∅,
then λ is not p-quotient-separated, so assume otherwise.

Suppose k = i− 1 and l = i, and that in the abacus display for λ4i the first space on runner i is in
position ap + i, and the last bead on runner i− 1 in position bp + i− 1; then by assumption a < b.
But now the definition of λ4i means that in the abacus display for λ positions ap + i−1 and ap + i
are both vacant, and positions bp + i−1 and bp + i are both occupied. So the first space on runner
i− 1 is earlier than the last bead on runner i and vice versa, so λ is not p-quotient-separated.

Next consider the case where k = i− 1 and l , i. In the abacus display for λ4i the first space on
runner l is earlier than the last bead on runner i− 1, which is in position bp + i− 1, say. In the
abacus display for λ, positions bp + i−1 and bp + i are both occupied, so the first space on runner
l is earlier than the last bead on runner i− 1 and the last bead on runner i. Now suppose that in
the abacus display for λ4i the first space on runner i− 1 is in position ap + i− 1; by assumption
this is earlier than the last bead on runner l. In the abacus display for λ at least one of the
positions ap + i− 1 and ap + i is vacant, so the last bead on runner l is later than either the first
space on runner i−1 or the first space on runner i. Either way, λ fails to be p-quotient-separated.

The case where k = i and l , i− 1 works in a very similar way.

4. First we show that if λ is Rouquier, then λ is p-quotient-separated. Take i, j ∈ Z/pZ, and suppose
without loss that qi < q j. As in the proof of (1), the first space on runner j is in position q j−pλ( j)′

1,
and the last bead on runner i is in position qi − p + pλ(i)

1 . Now

λ( j)′
1 +λ(i)

1 6 |λ(i)
|+ |λ( j)

| 6 w,

where w is the p-weight of λ. Since q j − qi > (w − 1)p, the last bead on runner i is earlier
than the first space on runner j. So λ is p-quotient-separated. Since every partition with the
same p-core and p-weight as λ is also Rouquier, it follows that every such partition is also
p-quotient-separated.

If λ is not Rouquier, take i, j such that qi < q j and q j− qi < (w−1)p. Then from the last paragraph
is it clear how to construct a partition with the same p-core and p-weight as λ which is not
p-quotient-separated. �

Our aim is to show that the composition length of a Specht module labelled by a p-quotient-
separated partition is the same as that of a Specht module labelled by a Rouquier partition with the
same ordered p-quotient. The following proposition gives us the inductive step.
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Proposition 5.5. Suppose λ is a p-quotient-separated partition and i ∈ Z/pZ, with qi−1 > qi. Then:

1. λ has at least one addable i-node and has no removable i-nodes;

2. λ4i is p-quotient-separated and has the same ordered p-quotient as λ;

3. Sλ and Sλ
4i

have the same composition length.

Proof.
1. λ cannot have a removable i-node, since then in the abacus display for λ there would be a space

on runner i− 1 with a bead in a later position on runner i, contradicting Proposition 5.4(1). If λ
does not have an addable i-node either, then for every integer k, position kp + i− 1 is occupied
if and only if position kp + i is occupied. Clearly then the same is true in the abacus display for
the p-core of λ, which gives qi−1 = qi − 1, a contradiction.

2. The fact that λ4i is p-quotient-separated has already been proved in Proposition 5.4(3), so we
just check that λ and λ4i have the same ordered p-quotient. Since λ has no removable i-nodes,
the abacus display for λ4i is obtained from that for λ by ‘swapping runners i− 1 and i’; that
is, position kp + i is occupied in the abacus display for λ4i if and only if position kp + i− 1 is
occupied in the abacus display for λ, and vice versa. Hence we have

(λ4i)( j) =


λ(i−1) ( j = i)
λ(i) ( j = i− 1)

λ( j) (otherwise),

q j(λ4i) =


qi−1(λ) + 1 ( j = i)
qi(λ)− 1 ( j = i− 1)

q j(λ) (otherwise),

and the latter statement gives πλ4i = (i− 1, i) ◦πλ. Hence λ4i has the same ordered p-quotient as
λ.

3. Since λ has no removable i-nodes, this follows from Lemmas 4.3 and 4.4. �

Now we can prove the main result of this section.

Proposition 5.6. Suppose λ is a p-quotient-separated partition. Then there is a Rouquier partition µ
with the same ordered p-quotient as λ, and Sλ and Sµ have the same composition length.

Proof. Define

d j =

⌊
qπ( j) − qπ( j−1)

p

⌋
for 1 6 j < p, so that λ is Rouquier if di > w− 1 for all i. We shall proceed by induction on

M :=
p−1∑
j=1

max{0,w− 1− d j},

and for fixed d1, . . . , dp−1 we use downwards induction on N :=
∑

i q2
i . Since

∑
i qi is constant, N is

bounded for fixed (d1, . . . , dp−1); so it suffices to show that we can replace λ with a partition which
yields a smaller value of M, or the same values of d1, . . . , dp−1 and a larger value of N.

Suppose that for some i, k ∈ Z/pZ we have qi−1 > qk > qi, and consider the partition λ4i. By
Proposition 5.5, λ4i has the same ordered p-quotient as λ, and the Specht modules Sλ and Sλ

4i
have

the same composition length. So we can replace λ with λ4i. From the proof of Proposition 5.5 we see
that making this replacement does not change any of the integers d j and strictly increases N.
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Alternatively, assume there are no such i, k. The only way this can happen is if there is some
l ∈ Z/pZ such that ql > ql+1 > · · · > ql−1. But now if λ is not Rouquier, take a j > 1 such that d j < w− 1,
and let i = π( j− 1). Then π( j) = i− 1, and again we consider the partition λ4i. Again, we can replace
λ with λ4i by Proposition 5.5, and now the replacement increases d j by 1 while fixing all the other dk,
and in particular decreases M. �

Example. Continuing from the last example, we see that λ = (12, 10, 9, 7, 5, 4, 32, 2, 17) is 5-quotient-
separated, but not Rouquier, since λ has 5-weight 3, and (d1, d2, d3, d4) = (0, 2, 1, 0). Following
the proof of Proposition 5.6, we have q1 > q0 > q2, so we can replace λ with the partition λ42 =

(13, 102, 7, 5, 42, 3, 22, 16), which has the following abacus display.

We now have q3 > q0 > q4, so we can replace λ with λ44. We can continue in this way until we reach
the partition λ = (142, 112, 7, 53, 33, 18), which has abacus display

and q2 > q3 > q4 > q0 > q1 (and still (d1, d2, d3, d4) = (0, 2, 1, 0)). Now we replace λ with λ4i for i = 1, 3
or 4, and continue.

5.5 JM-partitions and R-partitions on the abacus

Since we shall be using the abacus extensively in the proof of our main theorem, it will be useful
to have characterisations of JM-partitions and R-partitions in terms of their abacus displays. We take
these from [F2, F3].

Proposition 5.7 [F2, Proposition 2.1]. Suppose λ is a partition with ordered p-quotient
[
λ[0], . . . , λ[p−1]

]
.

Then λ is a JM-partition if and only if all the following hold.

• λ is p-quotient-separated.

• λ[0] is a p-restricted JM-partition.

• λ[p−1] is a p-regular JM-partition.



Representations of the alternating group which remain irreducible in characteristic p 21

• λ[i] = ∅ for i , 0, p− 1.

Proposition 5.8 [F3, Proposition 4.11]. Suppose p = 2h + 1 is an odd prime and λ is a self-conjugate
partition. Then λ is an R-partition of type I if and only if there is some j > 0 such that the abacus display for
λ satisfies the following (equivalent) conditions.

• Position jp + h is occupied, while all other positions later than position h− 1 are vacant.

• Position −1− jp− h is vacant, while all other positions earlier than position −h are occupied.

Proposition 5.9 [F3, Proposition 4.12]. Suppose p = 2h + 1 is an odd prime and λ is a self-conjugate
partition with ordered p-quotient

[
λ[0], . . . , λ[p−1]

]
. Then λ is an R-partition of type II if and only if all of the

following hold.

• λ is p-quotient-separated.

• λ[0] is a p-restricted JM-partition.

• λ[p−1] is a p-regular JM-partition.

• λ[h] = (1).

• λ[i] = ∅ for i , 0, h, p− 1.

We observe an important consequence of Proposition 5.8 for the proof of our main theorem.

Proposition 5.10. Suppose p = 2h + 1 is an odd prime and 0 6 i < h, and that λ is a self-conjugate
partition such that λO±i is an R-partition of type I. Then λ is an R-partition of type I.

Proof. In general, the abacus display for λ is obtained from the abacus display for λO±i by moving
beads from runner i− 1 to the adjacent positions on runner i, and moving beads from runner −i− 1
to the adjacent positions on runner −i. Since λO±i is an R-partition of type I, Proposition 5.8 shows
that the only possible beads that can be moved are in positions i− 1 and −i− 1. But even if beads are
moved from these positions to positions i and −i, then the resulting abacus display still satisfies the
conditions in Proposition 5.8, so λ is an R-partition of type I. �

5.6 Proof of Theorem 3.3 for p-quotient-separated partitions

We are now ready to prove Theorem 3.3 in the case where λ is p-quotient-separated. Throughout
this section we assume that p is an odd prime, and write p = 2h + 1. We begin with some very simple
facts about Littlewood–Richardson coefficients.

Lemma 5.11.
1. Suppose α and β are non-empty partitions. Then there are at least two partitions γ for which

cγαβ > 0.

2. Suppose γ is a partition with |γ| > 1. Then there are at least three ordered pairs (α, β) of partitions
such that cγαβ > 0.

Proof. There are various ‘Littlewood–Richardson rules’ for computing the coefficients cγαβ, for ex-
ample, the version given (in [S, Theorem A1.3.3] and elsewhere) in terms of Littlewood–Richardson
tableaux of shape γ \α. The results in this proof are easy to see using this rule.
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1. Set γ = (α1 + β1, α2 + β2, . . . ) and let δ be the partition obtained by putting the sequence
(α1, β1, α2, β2, . . . ) in decreasing order. Then cγαβ and cδαβ are both non-zero; the fact that α
and β are both non-empty ensures that γ , δ; indeed, γ1 = α1 + β1 > max{α1, β1} = δ1.

2. (γ,∅) and (∅, γ) are obviously two such pairs. For a third, choose a removable node of γ, and
let α be the partition obtained by removing this node. Then α , ∅ (since |λ| > 1) and we may
take (α, (1)) as our third pair. �

Now we make an observation about the ordered p-quotient of a self-conjugate partition. Suppose
λ is self-conjugate; then the p-core of λ is also self-conjugate, and together with the last paragraph
of Section 5.1 this implies that qi + qp−1−i = p− 1 for every i. Hence the permutation π = πλ satisfies
π(p− 1− i) = p− 1− π(i) for every i. As a consequence, the ordered p-quotient exhibits the same
symmetry as the p-quotient, namely that λ[p−1−i] = λ[i]′ for every i.

Proposition 5.12. Suppose λ is a self-conjugate p-quotient-separated partition and that Sλ has exactly
two composition factors. Then λ is an R-partition of type II, and if p = 3 then λ has 3-weight 1.

Proof. To begin with, we assume λ is a Rouquier partition, and use Theorem 5.3. Let
[
λ[0], . . . , λ[p−1]

]
be the ordered p-quotient of λ.

For each pair of partitions α, β, we fix an arbitrary choice of a partition α◦β such that cα◦βαβ > 0, and
if α , ∅ , β, then (appealing to Lemma 5.11(1)) we fix an arbitrary choice of a partition α ∗ β , α ◦ β
such that cα∗βαβ > 0.

Suppose first that there is some 1 6 i 6 h− 1 such that λ[i] , ∅. Consider the three partitions
µ1, µ2, µ3 with the same p-core as λ, and with ordered p-quotients[

λ[0], . . . , λ[i−2], λ[i−1]
◦λ[i]′, λ[i+1]′, . . . , λ[p−1]′,∅

]
,[

λ[0], . . . , λ[i−1], λ[i]
◦λ[i+1]′, λ[i+1]′, . . . , λ[p−1]′,∅

]
,[

λ[0], . . . , λ[p−2−i], λ[p−1−i]
◦λ[p−i]′, λ[p+1−i]′, . . . , λ[p−1]′,∅

]
.

Since these ordered p-quotients are distinct, the partitions µ1, µ2, µ3 are distinct. By Theorem 5.3(1),
µ1, µ2, µ3 are p-restricted, with dλµk > 0, and hence (since aµµ = 1 for any µ) [Sλ : Dµk] > 0 for k = 1, 2, 3.
So Sλ has at least three composition factors; contradiction.

So we have λ[i] = ∅ for 1 6 i 6 h− 1, and hence also for h + 1 6 i 6 p− 2. Now suppose that
λ[h] = ∅. Then the only p-restricted partition µ for which dλµ > 0 is the partition with the same p-core
as λ and with ordered p-quotient [

λ[0],∅, . . . ,∅, λ[p−1]′,∅
]
,

for which we have dλµ = 1. Since λ[0] = λ[p−1]′, the sum
∑
ν aµν is a perfect square (namely, the square

of the composition length of the Weyl module ∆λ
[0]

). So the composition length of Sλ is a perfect
square; contradiction.

So we have λ[h] , ∅. Now we look at the case p = 3, and observe that in this case λ[0] = λ[2] = ∅;
for if not, then the partitions µ with the same p-core as λ and with ordered p-quotients[

λ[0]
◦λ[1]′, λ[2]′,∅

]
,[

λ[0]
∗λ[1]′, λ[2]′,∅

]
,[

λ[0], λ[1]
◦λ[2]′,∅

]
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all give dλµ > 0 and hence [Sλ : Dµ] > 0.
Next we suppose (with p arbitrary again) that |λ[h]

| > 1. Then by Lemma 5.11(2) we can find three
pairs of partitions α, β such that cλ

[h]

αβ > 0. For each such pair, we construct the partition µ with the
same p-core as λ and with ordered p-quotient[

λ[0],∅, . . . ,∅, α′, β,∅, . . . ,∅, λ[p−1]′,∅
]

(where the α′, β occur in positions h− 1, h), and we have dλµ > 0 and hence [Sλ : Dµ] > 0. So again Sλ

has at least three composition factors, a contradiction.
So we have λ[h] = (1). This completes the analysis in the case p = 3. In the case p > 5, the only

p-restricted µ for which dλµ > 0 are those with ordered p-quotient[
λ[0],∅, . . . ,∅, (1),∅, . . . ,∅, λ[p−1]′,∅

]
,

where the (1) occurs either in position h− 1 or in position h. For each of these two partitions we have
dλµ = 1, while

∑
ν aµν is again equal to the square of the composition length of ∆λ

[0]
. So ∆λ

[0]
must be

simple, i.e. λ[0] is p-restricted JM-partition. So by Proposition 5.9 λ is an R-partition of type II. �

6 Homomorphisms between Specht modules

In this section, we review some results on homomorphisms between Specht modules and prove
a result that we shall need later. This material is discussed at length elsewhere, so in the interests of
brevity we specialise as much as possible.

6.1 Tableau homomorphisms

We begin with some combinatorics. Throughout this section let λ and µ be fixed compositions of
n. A λ-tableau of type µ is a function T from the Young diagram of λ toNwith the property that exactly
µi nodes are mapped to i, for each i. We write Tr,c for the image of the node (r, c) under T, and we
illustrate T by drawing the Young diagram and filling the (r, c)-box with Tr,c, for each (r, c). A tableau
is row-standard if its entries weakly increase from left to right along the rows, and semistandard if it is
row-standard and its entries strictly increase down the columns.

Recall that Mλ denotes the Young permutation module associated with λ. For each row-standard
λ-tableau T of type µ, there is an FSn-homomorphism ΘT : Mλ

→ Mµ defined in [J2, §13]. If λ is a
partition, then the Specht module Sλ is a submodule of Mλ, and the restriction of ΘT to Sλ is denoted
Θ̂T. If T is semistandard, we refer to Θ̂T as a semistandard homomorphism. Now we have the following
result.

Theorem 6.1 [J2, Lemma 13.11 & Theorem 13.13]. Suppose λ and µ are compositions of n.

1. The set
{ΘT | T a row-standard λ-tableau of type µ}

is an F-basis for HomFSn(Mλ,Mµ).

2. If λ is a partition, the set {
Θ̂T

∣∣∣ T a semistandard λ-tableau of type µ
}

is an F-basis for the space of all FSn-homomorphisms Sλ →Mµ which can be extended to Mλ.
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3. If λ is a partition and p > 3, then every FSn-homomorphism Sλ →Mµ can be extended to Mλ.

In view of this theorem, a natural way to construct a homomorphism Sλ → Sµ when p > 3 is to
find a linear combination of semistandard homomorphisms Sλ → Mµ whose image lies in Sµ; the
latter condition can be checked using James’s Kernel Intersection Theorem [J2, Corollary 17.18] and
the author’s results from [F4], so that we now have a reasonably fast algorithm [F4] for computing
HomFSn(Sλ, Sµ). Even when p = 2, this method can often be used to construct homomorphisms
between Specht modules (including the homomorphisms described in this paper), though it will not
in general find all homomorphisms.

In this section we want to show the existence of a non-zero homomorphism Sλ → Sµ in a certain
case, and we construct this as the composition of two known homomorphisms between Specht
modules. But we have some work to do in showing that this composition is non-zero. In order to
do this, we need to discuss dominance. If T is a row-standard λ-tableau of type µ, let T[l, r] denote
the total number of entries less than or equal to l in rows 1, . . . , r of T. If U is another row-standard
λ-tableau of type µ, we say that T dominates U (and write T Q U) if T[l, r] > U[l, r] for all l, r.

Example. The dominance order on the set of row-standard (3, 2)-tableaux of type (22, 1) may be
represented by the following Hasse diagram.

2 2 3
1 1

1 2 3
1 2

1 2 2
1 3

1 1 2
2 3

1 1 3
2 2

The following lemma will be very useful.

Lemma 6.2. Suppose T is a row-standard λ-tableau, and write Θ̂T as a linear combination
∑

S tSΘ̂S of
semistandard homomorphisms. Then S Q T for each S with tS , 0.

Proof. This follows directly from the algorithm given in [F4, §5.2] for semistandardising Θ̂T (and in
fact is quite easy to see from [J2, §13] where the homomorphisms Θ̂T are introduced). �

Example. Continuing from the last example, if we let T = 1 2 2
1 3

, then by Lemma 6.2 Θ̂T should be a

linear combination of homomorphisms Θ̂S with S Q T. From the diagram above we see that the only
such S is S = 1 1 2

2 3
. And indeed (as can easily be shown using the results below) Θ̂T = −Θ̂S.

Now we describe two particular constructions of homomorphisms that we shall use. Throughout
this section we assume that p is finite.
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6.2 One-node Carter-Payne homomorphisms

Suppose λ is a partition of n with a removable node (a, b) and an addable node (c, d) of the same
residue, with c > a. Let µ be the partition obtained by removing (a, b) and adding (c, d). Then there is a
non-zero FSn-homomorphism Sλ → Sµ; this is a special case of the Carter–Payne Theorem [CP], and
an explicit formula for this homomorphism may be found in the paper of Lyle [L2]. For simplicity,
we concentrate on a special case.

Suppose λ and µ are as above, and suppose additionally that λ has no removable nodes in rows
a + 1, . . . , c− 1; that is, λa+1 = · · · = λc−1 = d. For each a < r 6 c define a λ-tableau CPλµ(r) of type µ by

CPλµ(r)x,y =


r (if (x, y) = (a, b))
x + 1 (if r 6 x < c and y = d)
x (otherwise).

Example. Taking p = 3, λ = (42, 23, 12), µ = (4, 3, 24, 1), (a, b) = (2, 4) and (c, d) = (6, 2), we have

CPλµ(3) = 1 1 1 1
2 2 2 3
3 4
4 5
5 6
6
7

, CPλµ(4) = 1 1 1 1
2 2 2 4
3 3
4 5
5 6
6
7

, CPλµ(5) = 1 1 1 1
2 2 2 5
3 3
4 4
5 6
6
7

, CPλµ(6) = 1 1 1 1
2 2 2 6
3 3
4 4
5 5
6
7

.

Now we have the following result, which is a very special case of [L2, Theorem 4.5.4].

Proposition 6.3. Suppose λ, µ are as above. Then HomFSn(Sλ, Sµ) is one-dimensional, and a non-zero
homomorphism Sλ → Sµ is given by

∑c
r=a+1(−1)rΘ̂CPλµ(r).

6.3 Restrictisation homomorphisms

In this section we consider the homomorphisms arising in the following theorem, which may be
regarded as a homomorphism-space analogue of Theorem 2.1.

Theorem 6.4 [FLM, Theorem 1.5]. Suppose λ is a partition of n. Then

dimF
(
HomFSn(Sλ, Sλ

rest
)
)

= 1.

A non-zero homomorphism Sλ → Sλ
rest

is constructed in [FLM] as a tableau homomorphism Θ̂T,
but for a tableau T which is not necessarily semistandard. This leads to an additional problem (which
creates a large part of the work in [FLM]) of showing that Θ̂T is non-zero. In order to prove our result
on composition of homomorphisms, we shall find the least dominant tableau occurring when Θ̂T is
expressed as a linear combination of semistandard homomorphisms; we note that this gives a new
proof that Θ̂T is non-zero.

First we must describe the tableau T. In fact, there is a range of possibilities for T, yielding
homomorphisms Θ̂T which agree up to sign. These tableaux are called magic tableaux in [FLM], and
we define them here using one of the recursive characterisations given in [FLM], which we re-phrase
for our own purposes.

Let λ be a partition of n. Write full(λ) for the number of ‘full’ ramps in λ (i.e. ramps in which
every node is a node of λ); then it is easy to see that full(λ) = λrest

1 . If we look at the first ramp which
is not full, we can find a node of this ramp, in row m say, which is not a node of λ. Then we have
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λm + (m− 1)(p− 1) = full(λ), while for any 1 6 l 6 m we have λl + (l− 1)(p− 1) > full(λ). Call such a
value of m a nice value for λ. Having chosen a nice value m, we define a partition λ◦ by

λ◦i =

λi − p + 1 (i < m)
λi+1 (i > m).

It is easy to see that (λ◦)rest = (λrest
2 , λrest

3 , . . . ); in particular, full(λ◦) = λrest
2 . Now given any λ◦-tableau

U, define a λ-tableau U+ by

U+
x,y =


1 (if x < m and y < p)
Ux,y−p+1 + 1 (if x < m and y > p)
1 (if x = m)
Ux−1,y + 1 (if x > m).

Now we can define magic tableaux recursively: the unique tableau for the empty partition is magic,
and if λ , ∅, a magic tableau for λ is any tableau of the form U+, where U is a magic λ◦-tableau for
some nice value m.

Example. Take p = 3 and λ = (8, 6, 2, 12), giving λrest = (6, 5, 4, 2, 1) and full(λ) = 6. The only nice
value for λ is m = 3, giving λ◦ = (6, 4, 1, 1). One can show recursively that

1 1 2 2 2 2
1 1 3 3
1
4

is a magic λ◦-tableau, giving the magic λ-tableau

1 1 2 2 3 3 3 3
1 1 2 2 4 4
1 1
2
5

.

Now we have the following theorem.

Theorem 6.5 [FLM, Theorem 2.2 & Lemma 4.2]. Supposeλ is a partition, and T is a magicλ-tableau. Then
Θ̂T defines a non-zero homomorphism from Sλ to Sλ

rest
. If U is any other magic λ-tableau, then Θ̂U = ±Θ̂T.

Now we consider expressing a ‘magic homomorphism’ as a linear combination of semistandard
homomorphisms. Given a partition λ, define a λ-tableau Re(λ) as follows: let Re(λ)x,y equal x plus
the number of nodes below (x, y) in the same ramp which are not nodes of λ. Informally, we construct
Re(λ) by filling each box with the number of the row that box moves to when we construct λrest from
λ. Hence Re(λ) has type λrest.

Example. Take λ = (8, 6, 2, 12) and p = 3. Then

Re(λ) = 1 1 1 1 1 1 2 3
2 2 2 2 3 4
3 3
4
5

.
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Our aim in this section is to prove the following statement.

Proposition 6.6. Supposeλ is a partition and T a magicλ-tableau, and write Θ̂T as a linear combination∑
S aSΘ̂S of semistandard homomorphisms. Then aRe(λ) = ±1, and for any S with aS , 0 we have

S Q Re(λ).

We begin with a lemma about Re(λ).

Lemma 6.7. Suppose λ is a partition, and (a, b) and (c, d) are nodes of λ with (p− 1)a + b 6 (p− 1)c + d.

1. If a = c, then Re(λ)a,b 6 Re(λ)c,d.

2. If a < c, then Re(λ)a,b < Re(λ)c,d.

In particular, Re(λ) is semistandard.

Proof. For this proof, say that a node is missing if it not a node of λ.

1. The conditions imply that b 6 d. For every missing node (x, y) in the same ramp as (a, b) there
is a missing node (x, y + d− b) in the same ramp as (a, d). Hence the number of missing nodes
below (a, d) in the same ramp is at least the number of missing nodes below (a, b) in the same
ramp.

2. Arguing as in the previous case, the number of missing nodes below row a and in the same
ramp as (a, b) is at most the number of missing nodes below row a and in the same ramp as
(c, d). Of the latter nodes, at most c− a− 1 lie between rows a and c; so the number of missing
nodes below row c and in the same ramp as (c, d) is strictly greater than the number of missing
nodes below row a and in the same ramp as (a, b) plus a− c, and this gives the result. �

Now we describe the relations in [FM, F4] used to ‘semistandardise’ homomorphisms. For these
and subsequent results, we need some notation for multisets of positive integers, which we collect
here.

• Given a multiset X, let Xi denote the multiplicity of i as an element of X.

• Given two multisets X,Y, let XtY denote the multiset with (XtY)i = Xi + Yi for all i.

• Given a multiset X, let X + 1 denote the multiset obtained from X by increasing each element
by 1.

• Given any l,n ∈ N let {l}n denote the multiset with n elements all equal to l.

• Given a tableau T, let Ti denote the multiset of entries in the ith row of T.

With this notation in place, we can state a useful result for manipulating tableau homomorphisms.
This is a combination of [F4, Theorem 3.1] and [FM, Lemma 4].

Proposition 6.8. Suppose λ is a partition, A is a row-standard λ-tableau and 1 6 h < k. Suppose R, S,
T are multisets of positive integers with Rt StT = Ah

tAk and |S| > λh. Let S be the set of all pairs
(U,V) of multisets such that S = UtV and |R|+ |U| = λh. For each (U,V) ∈ S, let A[U,V] denote the
row-standard λ-tableau with

A[U,V]i =


RtU (if i = h)

TtV (if i = k)

Ai (otherwise).

Then ∑
(U,V)∈S

∏
i>1

(Ri + Ui

Ri

)(Ti + Vi

Ti

)
Θ̂A[U,V] = 0.
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Remark. It is shown in [F4, §5.2] that the relations obtained from Proposition 6.8 are sufficient to
express a tableau homomorphism Θ̂T as a linear combination of semistandard homomorphisms;
in fact, only the case k = h + 1 is required. Since the semistandard homomorphisms are linearly
independent, this means that any linear relation between tableau homomorphisms is a consequence
of the relations obtained from Proposition 6.8.

Before we proceed, we note a simple corollary.

Corollary 6.9. Suppose λ is a partition, A is a row-standard λ-tableau and 1 6 h < k. Suppose that for
some l ∈ Nwe have Ah

l + Ak
l > λh. Then Θ̂A = 0.

Proof. Take R =
{
i ∈ Ah

∣∣∣ i , l
}
, S = {l}A

h
l +Ak

l and T =
{
i ∈ Ak

∣∣∣ i , l
}

in Proposition 6.8. Then S =

{(U,V)}, where U = {l}λh−|R| and V = {l}λk−|T|. So the sum in Proposition 6.8 has only one term, in
which the binomial coefficients are all 1, and we get Θ̂A = 0. �

Now we show that the operation U 7→ U+ preserves relations between tableau homomorphisms.

Proposition 6.10. Suppose λ is a partition and m is a nice value for λ, and let λ◦ be as above. Suppose
U is a set of row-standard λ◦-tableaux of type (λ◦)rest, and that coefficients (cU)U∈U are chosen such
that

∑
U∈U cUΘ̂U = 0. Then ∑

U∈U

cUΘ̂U+ = 0.

Proof. From the remark following Proposition 6.8, it suffices to consider only relations of the form
given in that proposition. So suppose A, h, k,R,S,T are as in Proposition 6.8 (with λ◦ in place of λ).
Then we have ∑

(U,V)∈S

∏
i>1

(Ri + Ui

Ri

)(Ti + Vi

Ti

)
Θ̂A[U,V] = 0,

and we want to show ∑
(U,V)∈S

∏
i>1

(Ri + Ui

Ri

)(Ti + Vi

Ti

)
Θ̂A[U,V]+ = 0.

We consider three cases.

Case 1: k < m.
In this case we have (A+)h = Ah + 1t {1}p−1 and (A+)k = Ak + 1t {1}p−1. We define

R̂ = R + 1,

Ŝ = S + 1t {1}p−1,

T̂ = T + 1t {1}p−1.

Then R̂, Ŝ, T̂ satisfy the hypotheses of Proposition 6.8 (with A+ in place of A), so (with the obvious
definition of Ŝ) we have

0 =
∑

(Û,V̂)∈Ŝ

∏
i>1

( R̂i + Ûi

R̂i

)( T̂i + V̂i

T̂i

)
Θ̂A+[Û,V̂]

=
∑

(Û,V̂)∈Ŝ

( Û1

0

)(p− 1 + V̂1

p− 1

)∏
i>2

( R̂i + Ûi

R̂i

)( T̂i + V̂i

T̂i

)
Θ̂A+[Û,V̂].
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Any term with V̂1 > 0 can be neglected, since
(p−1+v

p−1
)
≡ 0 (mod p) for any 0 < v < p. When

V̂1 = 0, we have Û1 = p− 1, and so

(Û, V̂) = (U + 1t {1}p−1,V + 1)

for some (U,V) ∈ S, and A+[Û, V̂] = A[U,V]+. Conversely, if (U,V) ∈ S, then (U + 1t {1}p−1,V +

1) ∈ Ŝ. Hence

0 =
∑

(U,V)∈S

(p− 1
0

)(p− 1
p− 1

)∏
i>2

( R̂i + Ui−1

R̂i

)( T̂i + Vi−1

T̂i

)
Θ̂A[U,V]+

=
∑

(U,V)∈S

∏
i>2

(Ri−1 + Ui−1

Ri−1

)(Ti−1 + Vi−1

Ti−1

)
Θ̂A[U,V]+

=
∑

(U,V)∈S

∏
i>1

(Ri + Ui

Ri

)(Ti + Vi

Ti

)
Θ̂A[U,V]+

as required.

Case 2: h < m 6 k.
In this case (A+)h = Ah + 1t {1}p−1, while (A+)k+1 = Ak + 1. We define

R̂ = R + 1,

Ŝ = S + 1t {1}p−1,

T̂ = T + 1.

Now R̂, Ŝ, T̂ satisfy the hypotheses of Proposition 6.8 (with A+ in place of A, and k + 1 in place
of k); proceeding as in Case 1, we have

0 =
∑

(Û,V̂)∈Ŝ

( Û1

0

)( V̂1

0

)∏
i>2

( R̂i + Ûi

R̂i

)( T̂i + V̂i

T̂i

)
Θ̂A+[Û,V̂].

For any pair (Û, V̂) with V̂1 > 0 we have Θ̂A+[Û,V̂] = 0 by Corollary 6.9 (with l = 1 and with m
and k + 1 in place of h and k). So now we need only consider pairs (U,V) with Û1 = p− 1 and
V̂1 = 0, and we can proceed as in Case 1.

Case 3: m 6 h.
In this case we have (A+)h+1 = Ah + 1 and (A+)k+1 = Ak + 1, and applying Proposition 6.8 with
R + 1,S + 1,T + 1, h + 1, k + 1,A+ in place of R,S,T, h, k,A yields the result. �

Next we introduce a result which gives relations between tableau homomorphisms which allow
us to move all the 1s in a tableau up to the top row. We use the following variation on Proposition 6.8;
this was actually proved before Proposition 6.8, although it follows from the latter fairly easily by
induction.

Proposition 6.11 [FM, Lemma 7]. Suppose λ is a partition, B is a row-standard λ-tableau and h, r ∈ N. Let
V denote the set of submultisets V of Bh such that r < V and |V| = Bh+1

r . For each V ∈ V, let B[V] denote the
row-standard λ-tableau with

B[V]i =


Bh
\Vt {r}B

h+1
r (if i = h)

Bh+1
\ {r}B

h+1
r tV (if i = h + 1)

Bi (otherwise).
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Then
Θ̂B = (−1)Bh+1

r
∑
V∈V

∏
i>1

(Bh+1
i + Vi

Vi

)
Θ̂B[V].

Using this, we can prove the following.

Proposition 6.12. Suppose λ is a partition and m is a nice value for λ, and define λ◦ as above.

1. Θ̂Re(λ◦)+ can be expressed as a linear combination ±Θ̂Re(λ) +
∑

S cSΘ̂S, where each S is a row-
standard λ-tableau with S B Re(λ).

2. If T is a semistandard λ◦-tableau with T B Re(λ◦), then Θ̂T+ can be expressed as a linear
combination

∑
S cSΘ̂S, where each S is a row-standard λ-tableau with S B Re(λ).

Proof.
1. Let R = Re(λ◦). We use Proposition 6.11 to re-write Θ̂R+ by moving all the 1s up to the top row.

We apply Proposition 6.11 m− 1 times, each time with r = 1, taking h = m− 1,m− 2, . . . , 1 in
turn. At a given step, we move all the 1s from row h + 1 to row h, and move a multiset of entries
greater than 1 from row h to row h + 1. Since R is semistandard, the entries in row h of R are all
at least h; hence the entries not equal to 1 in row h of R+ are all at least h + 1. Furthermore, there
are at least full(λ◦)− (h− 1)(p− 1) hs in row h of R. We have

full(λ◦) = λrest
2

> λrest
1 − p + 1 (since λrest is p-restricted)

= full(λ)− p + 1,

so we see that the first full(λ)− h(p− 1) entries in row h of R+ are equal to h + 1. So each time
we apply Proposition 6.11, one of the terms we obtain involves moving only entries equal to
h + 1 down to row h + 1. Taking this term at every stage we obtain the tableau Re(λ), and the
coefficient of Θ̂Re(λ) obtained is ±1; indeed, the binomial coefficients in Proposition 6.11 are
always trivial, since all the entries in row h + 1 of R+ (other than the 1s) are strictly greater than
h + 1.

Any other term we obtain from our repeated applications of Proposition 6.11 involves moving
all the 1s up to row 1, and moving full(λ)− h(p− 1) entries greater than or equal to h + 1 down
from row h to row h + 1 for each 1 6 h < m, with a strict inequality at some point. Hence the
resulting tableau will strictly dominate Re(λ).

2. This case is similar to the previous one: when we apply Proposition 6.11 repeatedly, we move
all the 1s in T up to row 1, and move full(λ)− h(p− 1) entries greater than or equal to h + 1 down
from row h to row h + 1. Since T B Re(λ◦)+, any tableau resulting from this process will strictly
dominate Re(λ). �

Example. Take p = 3, λ = (8, 6, 2, 12) and m = 3. Then

Re(λ◦) = 1 1 1 1 1 2
2 2 2 3
3
4

, Re(λ◦)+ = 1 1 2 2 2 2 2 3
1 1 3 3 3 4
1 1
4
5

.
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Applying Proposition 6.11 twice to move the 1s up to the top row, we get the following possibilities.

1 1 2 2 2 2 2 3
1 1 3 3 3 4
1 1
4
5

1 1 2 2 2 2 2 3
1 1 1 1 3 3
3 4
4
5

1 1 2 2 2 2 2 3
1 1 1 1 3 4
3 3
4
5

1 1 1 1 1 1 2 2
2 2 2 3 3 3
3 4
4
5

1 1 1 1 1 1 2 3
2 2 2 2 3 3
3 4
4
5

1 1 1 1 1 1 2 2
2 2 2 3 3 4
3 3
4
5

1 1 1 1 1 1 2 3
2 2 2 2 3 4
3 3
4
5

So our homomorphism Sλ → Sλ
rest

is a linear combination of the homomorphisms labelled by the
semistandard tableaux at the right. The bottom tableau at the right-hand side is Re(λ), occurs with
coefficient 1, and is the least dominant.

Proof of Proposition 6.6. We use induction on |λ|, with the case λ = ∅ being trivial. Suppose λ , ∅,
and m be the nice value chosen in the construction of T. Then T = U+ for a magic λ◦-tableau U, and by
induction we can assume that when we write Θ̂U as a linear combination

∑
V uVΘ̂V of semistandard

homomorphisms, we have uRe(λ◦) = ±1 while uV = 0 for any V S Re(λ◦).
By Proposition 6.10 we have

Θ̂T = Θ̂U+ =
∑

V

uVΘ̂V+ ;

by Proposition 6.12 this equals±Θ̂Re(λ) plus a linear combination of homomorphisms Θ̂S for S B Re(λ).
By Lemma 6.2 each Θ̂S can be written as a linear combination of semistandard homomorphisms Θ̂R
for R Q S B T, and the result follows. �

6.4 Composition of homomorphisms

Our aim in this section is to show that the composition of the homomorphisms from the two pre-
vious sections is non-zero, given a certain additional condition. Specifically, we prove the following
result.

Proposition 6.13. Suppose λ is a partition of n with a removable node (a, b) and an addable node (c, d)
of the same residue with c > a and (p− 1)c + d > (p− 1)a + b, and that λ has no removable nodes in
rows a + 1, . . . , c− 1. Let µ be the partition obtained from λ by removing (a, b) and adding (c, d). Then
there is a non-zero FSn-homomorphism Sλ → Sµ

rest
.
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In order to prove Proposition 6.13, we need to describe how to compose tableau homomorphisms.
Recall that if S is a tableau, then S j denotes the multiset of entries in row j of S, and in particular S j

i
denotes the number of entries equal to i in row j of S. If x1, x2, . . . are non-negative integers with finite

sum x, we write (x1, x2, . . . )! for the multinomial coefficient x!
x1!x2! . . .

.

Proposition 6.14 [DF, Proposition 4.7]. Suppose λ, µ, ν are compositions of n, S is a λ-tableau of type µ
and T is a µ-tableau of type ν. Let X be the set of all collections X = (Xi j)i, j>1 of multisets such that

|Xi j
| = S j

i for each i, j,
⊔
j>1

Xi j = Ti for each i.

For X ∈ X, let UX denote the row-standard λ-tableau with (UX) j =
⊔

i>1 Xi j. Then

ΘT ◦ΘS =
∑
X∈X

∏
i, j>1

(
X1 j

i ,X
2 j
i , . . .

)
!ΘUX .

Our aim is to use Proposition 6.14 to show that the composition of the homomorphisms Sλ →
Sµ → Sµ

rest
from the last two sections is non-zero. Rather than attempting to give an explicit expression

for this composition, we use Propositions 6.3 and 6.6 to find the least dominant tableau occurring
when the composition is expressed in terms of semistandard homomorphisms.

Given λ and µ as in Proposition 6.13, let V be the λ-tableau obtained from Re(µ) by moving the
(c, d)-entry up to position (a, b). Note that by Lemma 6.7 V is semistandard.

Lemma 6.15. Suppose λ and µ are as above, and T is a semistandard µ-tableau of type µrest with
T B Re(µ). If W is a row-standard tableau obtained from T by moving an entry from row c up to row
a, then W 6C V.

Proof. Suppose to the contrary that V B W. Since V agrees with Re(µ) and W agrees with T in rows
1, . . . , a− 1, and we have V B W while Re(µ) C T, all four tableaux must agree on rows 1, . . . , a− 1.
Similarly, all four tableaux agree on rows c + 1, c + 2, . . . .

V is obtained from Re(µ) by moving an entry t = Re(µ)c,d from row c up to row a. By Lemma 6.7, t
is the largest entry in rows a, . . . , c of Re(µ). By the previous paragraph (and since T and Re(µ) have the
same type) the largest entry in rows a, . . . , c of T is also t. So W is obtained from T by moving an entry
less than or equal to t from row c up to row a. Since T B Re(µ), this gives W B V, a contradiction. �

For the next proposition, recall the tableaux CPλµ(a + 1), . . . ,CPλµ(c) from Section 6.2.

Proposition 6.16. Suppose a < r 6 c and T is a semistandard µ-tableau of type µrest with T Q Re(µ).

1. If r = c and T = Re(µ), then ΘT ◦ΘCPλµ(r) equals a linear combination ΘV +
∑

U cUΘUU, where

each U is a row-standard tableau with V S U.

2. If r < c or T B Re(µ), then ΘT ◦ΘCPλµ(r) equals a linear combination
∑

U cUΘUU, where each U is

a row-standard tableau with V S U.

Proof. Taking S = CPλµ(r) and ν = µrest, Proposition 6.14 simplifies considerably in our situation. It
says that ΘT ◦ΘS is a linear combination of row-standard tableaux U obtained from T by moving an
entry from row r to row a and moving an entry from row j + 1 to row j for each r 6 j < c. If we let
U(T, r) be the particular tableau obtained by moving the largest possible entry at each stage, then we
have U Q U(T, r) for any other such U. So it suffices to consider only the tableaux U(T, r).
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Since µa+1 = · · · = µc−1 and T is semistandard, the largest entries in rows a + 1, . . . , c− 1 are the
entries in column d, and these are strictly increasing. Hence for a < r < c we have U(T, r) B U(T, r + 1).
So it suffices to consider only the tableau U(T, c). But by Lemma 6.15 V S U(T, c) if T B Re(µ).

It remains to observe that the coefficient of V in ΘRe(µ) ◦ΘCPλµ(c) is 1; but this follows from Lemma 6.7:
since (c, d) lies in the same ramp as or a later ramp than (a, b), we have Re(µ)c,d > Re(µ)a,b−1, so all the
multinomial coefficients in the coefficient of ΘV equal 1. �

Proof of Proposition 6.13. By Proposition 6.3, a non-zero homomorphism α : Sλ → Sµ is given by∑c
r=a+1(−1)rΘ̂CPλµ(r). By Proposition 6.6, there is a non-zero homomorphism β : Sµ → Sµ

rest
of the form

Θ̂Re(µ) +
∑

S bSΘ̂S, where each S is a semistandard tableau strictly dominating Re(µ).
The composition β ◦α may be computed using Proposition 6.14. By Proposition 6.16, we get

β ◦α = ±Θ̂V +
∑

U

cUΘ̂U,

where each U is a row-standard tableau with V S U. Hence when we write such a U as a linear
combination of semistandard homomorphisms, the coefficient of Θ̂V is zero, by Lemma 6.2. So when
we write β ◦α as a linear combination of semistandard homomorphisms, the coefficient of Θ̂V is ±1,
and in particular β ◦α , 0. �

Remark. For simplicity, we have concentrated on quite a special case. It is possible to weaken the
assumptions on λ and µ and use the same argument: we can allow removable nodes in λ between
rows a and c, as long as these none of these removable nodes has the same residue as (a, b), and as
long as µi −µi+1 < p for all a < i < c. We leave the reader to check the details (referring to [L2] for the
formula for a homomorphism Sλ → Sµ).

However, it is not generally the case that the composition of a one-node Carter–Payne homo-
morphism and a restrictisation homomorphism is non-zero. For example, take p = 3, λ = (6) and
µ = (5, 1), so that µrest = (3, 2, 1). S(6) is isomorphic to the simple module D(23) (which happens to be
the trivial FS6-module); since soc(S(3,2,1)) is a different simple module D(3,2,1), there is no non-zero
homomorphism S(6)

→ S(3,2,1).

7 Proof of the main theorem

We now come to the proof of our main theorem. We proceed by induction, with our main tool
being Proposition 4.7. As we shall see, this deals with all cases except for two families of partitions
which we deal with using the other techniques described above.

7.1 Notation and assumptions

Throughout this section, p = 2h + 1 is an odd prime. J denotes the set of p-JM-partitions, andA
denotes the set of self-conjugate partitions that (according to Theorem 3.3) label Specht modules with
exactly two composition factors. So if p > 5 then A is the set of R-partitions, while if p = 3 then A
comprises the R-partitions of type I, the self-conjugate partitions of 3-weight 1 and the partition (33).

It will be helpful to make some assumptions that will remain in force for the next few sections.
Essentially, these say that λ is a partition which cannot be dealt with by Proposition 4.7(1,2) or
Proposition 5.12. Recall that if λ is a partition and 0 6 i 6 h, then λO±i denotes the partition obtained
by repeatedly removing all removable nodes of residue i or −i. Similarly, we define λ4±i to be the
partition obtained from λ by repeatedly adding addable nodes of residue ±i.
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Assumptions and notation in force for Sections 7.1–7.5
λ is a self-conjugate partition which is not p-quotient-separated and is not inA orJ . λO±i

∈ A∪{λ}
for each 0 < i < h, while λO±h

∈ A∪J ∪ {λ}.

We observe some immediate consequences of these assumptions. Suppose 0 6 i < h and λO±i , λ.
Then by Proposition 5.10 λO±i is not an R-partition of type I, since λ is not. Also, when p = 3 λO±i

cannot equal (33), since this partition has one removable node and two addable nodes, all of residue 0.
So λO±i must be an R-partition of type II, and if in addition p = 3 then λO0 has 3-weight 1; in particular,
λO±i is p-quotient-separated.

λ is obtained from λO±i by adding equal numbers of addable i- and (−i)-nodes. But we cannot
have λ = (λO±i)4±i, since then by Proposition 5.4(3) λ would be p-quotient-separated, contradicting
our assumptions. So λ is obtained from λO±i by adding some but not all of the addable i-nodes, and
some but not all of the addable (−i)-nodes. In particular, λO±i has at least two addable i-nodes.

A similar discussion applies statement applies when λO±h , λ. In this case λO±h can be an R-
partition of type I, but only of p-weight 1, since an R-partition of type I with p-weight greater than 1
has a removable h-node. An R-partition of type I with p-weight 1 is also an R-partition of type II, and
so in fact we can assume λO±h is an R-partition of type II or a JM-partition, and in particular we can
assume λO±h is p-quotient-separated; as in the last paragraph, this means that λ must have at least
one addable h-node and at least one addable (−h)-node.

7.2 First case

In this section we consider the case where λO0 , λ.

Proposition 7.1. Suppose λO0 , λ and (λO0)(0) = ∅. Then  0(λ).

Proof. From the discussion in Section 7.1 λO0 is an R-partition of type II, so we have (λO0)(h) = (1), and
hence λ(h) = (1). Since λO0 is self-conjugate, we have (λO0)(p−1) = (λO0)(0) = ∅; so there is some r such
that position kp− 1 is occupied in the abacus display for λO0 if and only if k 6 r, while position kp is
occupied if and only if k < −r. The fact that λO0 has at least two addable 0-nodes means that r > 1.

The abacus display for λ is obtained by moving some but not all of the beads in positions
rp− 1, . . . ,−rp− 1 to the adjacent positions on runner 0; since λ is self-conjugate, the bead in position
ip− 1 is moved if and only if the bead in position −ip− 1 is moved. This means that there must be
some −r 6 i < j 6 r with i 6 0 such that λ has beads in positions jp and ip− 1 and spaces in positions
jp− 1 and ip. If j > 1, then the number of beads in positions ip + 1, . . . , jp− 2 is at least j− i, since for
each i < k < j there is a bead in position kp or kp− 1, and there is also a bead in position h; hence by
Lemma 5.2 we have  0(λ). If i 6 −2 then again the number of intervening beads is at least j− i, since
there is a bead in position h− 2p. In the case where j = 0, i = −1 and p > 5, there must be a bead
in position h− p− 1 or h− p + 1, since if both of these positions are vacant, then (by self-conjugacy)
then positions h− 1 and h + 1 are occupied, so that λO0 is not p-quotient-separated, a contradiction. So
again we have at least j− i beads between positions ip and jp− 1, and again  0(λ).

The remaining case is where p = 3, and the only pair i < j such that positions 3 j and 3i− 1 are
occupied while positions 3 j− 1 and 3i are vacant is (−1, 0). In this case we must have r = 1, and hence
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λ has abacus display

.

So λ = (33), contrary to assumption. �

To help us deal with the case where (λO0)(0) , ∅, we use the following lemma.

Lemma 7.2. Suppose λO0 , λ. Then λO±i = λ for all 1 < i 6 h.

Proof. Since λ has both addable and removable 0-nodes, we have either λ(0) , ∅ or λ(p−1) , ∅ by
Lemma 5.1. But λ is self-conjugate, so in fact λ(0) , ∅ , λ(p−1).

Suppose the lemma is false, and take 1 < i 6 h such that λO±i , λ. Then either λO±i is an R-partition
of type II, or i = h and λO±i is a JM-partition. In either case, runner 0 must be either the largest or
smallest runner of λO±i by Propositions 5.7 and 5.9. But since λ (and hence λO±i) has an addable 0-
node, runner 0 cannot be the smallest runner, by Proposition 5.4(1). So runner 0 is the largest runner
of λO±i, and hence (in the abacus displays for both λO±i and λ) the first space on runner 0 occurs after
the last bead on any other runner. But λO0 is an R-partition of type II, so the abacus display for λO0

(and hence for λ) has a bead in position h; so the first space on runner 0 in the abacus display for λ is
at position p or later. Since λ is self-conjugate, this means that the last bead on runner p− 1 is no later
than position −1− p. But now λ has no addable 0-nodes, contrary to assumption. �

Proposition 7.3. Suppose λO0 , λ and (λO0)(0) , ∅. Then p > 5, and either  0(λ) or  p−1(λ).

Proof. The fact that p > 5 follows from our standing assumptions (in particular, the definition of A
when p = 3). λO0 is an R-partition of type II with (λO0)(0) , ∅, and hence (λO0)(h) = (1) and (λO0)(i) = ∅
for i , 0, h, p− 1; the same applies to the p-quotient of λ. By Proposition 5.9 runners 0 and p− 1 must
be the smallest and largest runners of λO0 in some order, and in fact by Proposition 5.4(2) runner 0
is the smallest (since λO0 has at least two addable 0-nodes). So in the abacus display for λO0, every
position before the first space on runner 0 is occupied, and every position after the last bead on runner
p− 1 is vacant.

λO0 is a self-conjugate partition, which means that position ip−1 in the abacus display is occupied
if and only if position −ip is vacant. Together with the statements in the last paragraph, this implies
that there is a finite set I of positive integers such that:

• the occupied positions on runner p−1 of λO0 are the positions ip−1 for all i ∈ I and all i 6 0; and

• the vacant positions on runner 0 of λO0 are the positions −ip for all i ∈ I and all i 6 0.

The fact that λO0 has at least two addable 0-nodes means that I is non-empty.
λ is obtained from λO0 by moving some but not all of the beads in positions ip− 1 (for i ∈ ±I∪ {0})

to the right; the fact that λ is self-conjugate means that the bead in position ip−1 is moved if and only
if the bead in position −ip− 1 is moved.

Suppose first that for some i < j 6 0 the bead in position jp− 1 is moved but the bead in position
ip− 1 is not. Then λ has beads in positions jp and ip− 1, and spaces in positions jp− 1 and ip, and
we claim that the number of beads in between these two positions is at least j− i. Indeed, there is a
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bead in position kp− 1 or kp (or possibly both) for each i < k < j, and additionally there is a bead in
position jp− h or jp− h− 2 (since λ is self-conjugate and λ(h−1) = λ(h+1) = ∅). So  0(λ), by Lemma 5.2.

So suppose there are no such i and j. Then in particular the bead in position −1 is not moved in
constructing λ from λO0, but the beads in positions ±lp−1 are moved, where l = max I. By Lemma 7.2
λO±i = λ for i , 0, 1, and since position h−p is vacant, this means that positions h−p+1, h−p+2, . . . ,−2
are vacant. On the other hand, the first paragraph of this proof shows that position −lp− 2 must be
occupied (in λO0, and hence in λ). So λ has beads in positions −1 and −lp− 2, and spaces in positions
−2 and −lp− 1; the number of intervening beads is at least l, since for each 1 6 k 6 l at east one of
positions −kp− 1,−kp is occupied, and so  p−1(λ). �

7.3 Second case

Here we consider the case where there is 0 < i < h such that λO±i , λ while λO± j = λ for all
0 6 j < i.

Proposition 7.4. Suppose 0 < i < h, and that λO±i , λ. Then either  i(λ) or  p−i(λ), or runner i− 1
is the largest runner in the abacus display for λO±i, or runner i is the smallest runner in the abacus
display for λO±i.

Proof. Suppose first that (λO±i)(i−1) , ∅. Since λO±i is an R-partition of type II, this means that runner
i− 1 is either the largest or the smallest runner in λO±i; but λO±i has at least two addable i-nodes, so
by Proposition 5.4(2) runner i− 1 must be the largest runner. Similarly, if (λO±i)(i) , ∅, then runner i
is the smallest runner in λO±i.

So assume (λO±i)(i−1) = (λO±i)(i) = ∅. This means that there are integers b < c such that in the
abacus display for λ:

• for k < b, both of the positions kp + i− 1 and kp + i are occupied;

• for b 6 k < c, exactly one of the positions kp + i− 1 and kp + i is occupied;

• for c 6 k, neither of the positions kp + i− 1 and kp + i is occupied.

Suppose that for some k, positions kp + i and (k− 1)p + i− 1 are occupied while positions kp + i− 1
and (k− 1)p + i are vacant. If there is at least one bead in a position between (k− 1)p + i and kp + i− 1,
then  i(λ), by Lemma 5.2. On the other hand, if all of these positions are vacant, then in the abacus
display for λO±i every runner except runner i− 1 has a space before the bead in position kp + i− 1; so
by Proposition 5.4(1) runner i− 1 is the largest runner of λO±i.

Assume instead that there is no such k. Since λ is obtained from λO±i by adding some but not
all of the addable i-nodes (and some but not all of the addable (−i)-nodes), there must be k such
that in the abacus display for λ positions kp + i− 1 and (k− 1)p + i are occupied while positions kp + i
and (k− 1)p + i− 1 are vacant. Since λ is self-conjugate, this means that positions −kp + p− i + 1 and
−(k + 1)p + p− i are occupied while positions −kp + p− i and (−k− 1)p + p− i + 1 are vacant. Repeating
the argument from the last paragraph (with i replaced by p− i and k replaced by −k) we find that
either  p−i(λ) or runner p− i is the largest runner in λO±i, i.e. runner i is the smallest. �

We now consider the possibilities in Proposition 7.4 in more detail. We need to treat the case i > 1
and i = 1 separately.

Proposition 7.5. Suppose 1 < i < h, and that λO±i , λ while λO± j = λ for all 0 6 j < i. Suppose
furthermore that runner i− 1 is the largest runner in the abacus display for λO±i. Then  i(λ).
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Proof. Since λO±i is an R-partition of type II and runner i−1 is its largest runner, we have (λO±i)( j) = ∅
for j , i− 1, h, p− i. In particular, (λO±i)(0) = ∅. Since λ (and hence λO±i) has no removable 0-nodes,
position 0 in the abacus is vacant (for both partitions), and hence position lp is vacant for all l > 0.
The assumption that λO± j = λ for all j < i then means that position lp + i− 1 is vacant (in λ) for all
l > 0.

Let dp + i− 1 be the first vacant position on runner i− 1 in λO±i; since λO±i is p-quotient-separated
and there is a bead in position h, we must have d > 1. The fact that dp + i−1 is the first vacant position
on runner i− 1 means that for each c < d at least one of the positions cp + i− 1 and cp + i is occupied
in λ; in fact, since (λO±i)(i) = ∅, there is some b 6 d such that

• for c = b, . . . , d− 1 exactly one of the positions cp + i− 1 and cp + i is occupied, and

• for c < b both of the positions cp + i− 1 and cp + i are occupied.

By assumption λ has at least one addable i-node, so there is some k such that position kp + i− 1 is
occupied while position kp + i is vacant. From the first paragraph of the proof we must have k < 0,
and in particular k < d − 1. Taking a maximal such k, we therefore have positions kp + i − 1 and
(k + 1)p + i occupied, while positions kp + i and (k + 1)p + i− 1 are vacant. There is at least one bead
among positions kp + i + 1, . . . , (k + 1)p + i− 2: if k = −1 then we can take the bead in position −i, while
if k < −1 we can take the bead in position h− 2p. So  i(λ) by Lemma 5.2. �

Now we consider the case i = 1.

Proposition 7.6. Suppose p > 5, and that λO±1 , λ while λO0 = λ. Suppose furthermore that runner 0
is the largest runner in the abacus display for λO±1. Then either  1(λ) or  p−1(λ).

Proof. Since λO0 = λ, position 0 in the abacus display for λ is vacant. If we let dp be the first vacant
position on runner 0 in λO±1, then, arguing as in the proof of Proposition 7.5, we must have d > 1. In
particular, position 0 is occupied in the abacus display for λO±1, and hence position 1 is occupied in
the abacus display for λ. Since λ is self-conjugate, position −1 is occupied and position −2 is vacant.

λ has an addable 1-node, so there is some k such that position kp is occupied and position kp + 1
is vacant. If k < 0, then taking a maximal negative such k and copying the last part of the proof of
Proposition 7.5, we get  1(λ). So suppose k > 0. Then by self-conjugacy position −kp− 2 is occupied
and position −kp− 1 is vacant. For every 0 > l > −k at least one of the positions lp− 2 and lp− 1 is
occupied (since otherwise we would have (λO±1)(p−2) , ∅); furthermore, at least one of positions −p
and 1− p is occupied (since d > 0); hence the number of beads between positions −kp− 1 and −2 is at
least k, and so  p−1(λ). �

Now we consider the situation where runner i is the smallest in the abacus display for λO±i. Again,
we have to consider the cases i > 1 and i = 1 separately.

Proposition 7.7. Suppose 1 < i < h, and that λO±i , λ while λO± j = λ for all 0 6 j < i. Suppose
furthermore that runner i is the smallest runner in the abacus display for λO±i. Then  i(λ).

Proof. The fact that λO±i is an R-partition of type II with smallest runner i means that (λO±i)( j) = ∅
for all j , i, h, p− i− 1. Suppose that for some l < k positions kp + i and lp + i− 1 are occupied in the
abacus display for λ, while positions kp + i− 1 and lp + i are vacant; choose such a pair (k, l) with k− l
as small as possible. Arguing as in the first paragraph of the proof of Proposition 7.5, we must have
l < 0. Now for every k > m > l, positions mp + i and mp + i− 1 must both be occupied: if both were
vacant then we would have (λO±i)(i−1) , ∅, while if only one were vacant then the choice of k, l would
be contradicted. So if k− l > 1 then the number of beads between positions lp + i and kp + i− 1 is at
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least k− l, and so  i(λ), as required. If k− l = 1 and k < 0, then there is a bead in position lp + h, so
again  i(λ). Finally if k = 0 and l = −1 then there is a bead in position −i, so again  i(λ).

So we can assume that there are no such k and l. This means that the last bead on runner i in the
abacus display for λ is either earlier than or adjacent to the last bead on runner i−1, and hence occurs
no later than position −p + i. Furthermore, since λ has at least one addable i-node and there are no
beads on runner i− 1 after position −p + i− 1, there must be a space on runner i no later than position
−p + i. Now we claim that for every i < j < h, there is a space on runner j no later than position −p + j.
If this claim is not true, take the first j for which it fails. Then there is a space on runner j− 1 with
an adjacent bead on runner j, so λO± j , λ. Hence λ has at least one addable j-node; since there is no
space on runner j before position j, there must be a bead on runner j− 1 in position j− 1 or later. This
means that j > i + 1 and that λ( j−1) , ∅, and hence (λO±i)( j−1) , ∅, contradicting the first sentence of
the proof.

So our claim holds. In particular, if i < h− 1 there is a space on runner h− 1 no later than position
−p + h− 1. So (because λ(h−1) = ∅) there is no bead on runner h− 1 after position −2p + h− 1. But there
is a bead in position h and a bead in position cp + h for all c 6 −2, so λ has removable h-nodes but
no addable h-nodes; contradiction. The same argument applies when i = h− 1 and there is a space in
position −p + h− 1.

The only remaining case is where i = h− 1 and there is a bead in position −p + h− 1 and a space
on runner h− 1 earlier than this bead. From our assumptions so far, there is also a bead in position
−p + h− 2, and a space on runner h− 2 earlier than this bead. Hence λ(h−2) , ∅. Now we consider the
partition λO±h. Since (λO±h)(h−2) = λ(h−2) , ∅, λO±h is either a JM-partition or an R-partition of type II,
and runner h− 2 is either the largest or the smallest runner of λO±h. The first space on runner h− 2
occurs before the last bead on runner h− 1 (which is no earlier than position h− 1), so in fact runner
h− 2 is the smallest runner of λO±h. However, λ has a space on runner h− 1 no later than position
−2p + h− 1, which means that λO±h has a space on runner h + 1 no later than position −2p + h + 1, i.e.
earlier than the last bead on runner h− 2. So by Proposition 5.4(1) λO±h is not p-quotient-separated, a
contradiction. �

Now we consider the case i = 1.

Proposition 7.8. Suppose p > 5, and that λO±1 , λ while λO0 = λ. Suppose furthermore that runner 1
is the smallest runner in the abacus display for λO±1. Then either  1(λ) or  p−1(λ).

Proof. Since runner 1 is the smallest in the abacus display for λO±1, the last bead on this runner occurs
before the space in position h− p, i.e. no later than position 1− p. Hence for every l > 0 at most one of
the positions lp and lp + 1 is occupied in the abacus display for λ. If none of the positions lp for l > 0
is occupied, then we can just copy the proof of Proposition 7.7 to deduce that  1(λ). So assume that
position kp is occupied for some k > 0. In fact we must have k > 0, since if position 0 were occupied
then λ would have a removable 0-node. By the above analysis position kp + 1 is vacant, and position
1 is occupied, since otherwise we would have (λO±1)(0) , ∅.

Since λ is self-conjugate, this means that positions −1 and −kp− 2 are occupied, while positions
−2 and −kp − 1 are vacant. Furthermore, for each 0 > l > −k at least one of the positions lp − 2
and lp− 1 is occupied, and in addition at least one of the positions −p and 1− p is occupied (again
since (λO±1)(0) = ∅). So the number of beads between positions −kp− 1 and −2 is at least k, and so
 p−1(λ). �

Remark. It turns out that the results in this subsection are to some extent redundant, because (given
our standing assumptions) if 1 < i < h− 1 and λO± j = λ for 0 6 j < i, then λO±i = λ also. However,
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proving this statement appears to be just as difficult as the results we have proved in this section,
which in any case are still needed for the cases i = 1, h− 1.

7.4 Third case

We are left with the situation where λO±i = λ for 0 6 i < h. We now have two possibilities to
consider, since λO±h could be an R-partition of type II or a JM-partition. In this section we address the
first of these possibilities.

Proposition 7.9. Suppose that λO± j = λ for all 0 6 j < h, and that λO±h is an R-partition of type II.
Then either  h(λ) or  h+1(λ), or p = 3 and λ = (43, 3).

Proof. Because λO±h is an R-partition of type II, we have (λO±h)(h) = (1), which means that in the
abacus display for λO±h (and hence in the abacus display for λ):

• for l = 0 and for every l 6 −2 there are at least two beads among positions lp + h− 1, lp + h and
lp + h + 1; and

• for l = −1 and for every l > 1 there is at most one bead among positions lp + h− 1, lp + h and
lp + h + 1.

Note also that if there is a bead in position h− 1 in the abacus display for λ, then since λO± j = λ for
all j < h, there are beads in positions h− 2, h− 3, . . . ,−h. But this contradicts the self-conjugacy of λ,
so position h− 1 is vacant, and hence positions h and h + 1 are occupied. Symmetrically, position −h
is occupied and positions −h− 2 and −h− 1 are vacant.

λ must have at least one addable h-node, so there is an integer k such that position kp + h− 1 is
occupied and position kp + h is vacant. We consider separately the cases k 6 −2 and k > 1.

If k 6 −2, then there are occupied positions h and kp + h− 1 and vacant positions h− 1 and kp + h;
from our observations so far, the number of intervening beads is at least −2(k + 1) > −k, and so  h(λ).

Alternatively, suppose k > 1. The condition that λO± j = λ for 0 6 j < h means that positions
kp + h− 2, kp + h− 3, . . . , (k− 1)p + h + 2 are all occupied; by self-conjugacy, positions −kp + h− 2,−kp +

h−3, . . . , (−k−1)p + h + 2 are all vacant. But now if p > 5 then the first space on runner 0 is earlier than
the last bead on runner p− 1 and vice versa, so that λO±h is not p-quotient-separated; contradiction.

We are left with the case where p = 3 and k > 1. In this case positions −1 and −3k−2 are occupied,
while positions −2 and −3k− 1 are vacant. The number of intervening beads is at least 2(k− 1), so if
k > 2 then we have  2(λ). So we can assume that the only bead on runner 0 with a space immediately
after it is in position 3. Now consider positions 6, 7 and 8 on the abacus; from above, there is at most
one bead among these three positions. There cannot be a bead in position 6; in addition, there cannot
be a bead in position 7 (since then there would be a bead in position −9 and a space in position −8,
again contrary to hypothesis). If there is a bead in position 8, then we have beads in positions 8 and
−5 and spaces in positions 7 and −4, with intervening beads in positions 3, 2, 1 and −1, so  2(λ).

So we can assume that positions 6, 7 and 8 are all vacant. If any position after position 8 is
occupied, then we have (λO±1)(0) , ∅; but since p = 3, our assumptions on λ means that λO±1 has
3-weight 1, so (λO±1)(0) = ∅. So all positions after position 8 are also vacant. The only possibilities left
are that λ = (43, 3) or (6, 53, 4, 1), but in the latter case we again have  2(λ). �

7.5 Fourth case

Now we come to the most difficult case. In addition to our standing assumptions, we assume
throughout this subsection that λO±h is a JM-partition, and λO± j = λ for all 0 6 j < h. In particular, this
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means that (λO±h)(h) = ∅, which immediately gives some information about the middle three runners
of the abacus display for λ.

Lemma 7.10. Suppose k ∈ Z. Then in the abacus display for λ:

• at least two of the positions kp + h− 1, kp + h and kp + h + 1 are occupied if k < 0, while

• at most one of the positions kp + h− 1, kp + h and kp + h + 1 are occupied if k > 0.

In the next few results we analyse various possibilities for the configuration of the middle three
runners of the abacus display for λ. To help us, we introduce some notation in which we give portions
of the abacus diagram focusing on the middle three positions in a given row. For example, given an
integer k we may write k to mean that positions kp + h− 1 and kp + h + 1 are occupied in the
abacus display for λ, while position kp + h is vacant.

Lemma 7.11. Suppose that k for some k. Then  −h(λ) and  h(−h)(λ).

Proof. The fact that λO± j = λ for all j < h means that positions kp + h− 2, kp + h− 3, . . . , (k− 1)p + h + 1
are occupied. In particular, this means that k cannot equal 0, since then by self-conjugacy we would
have −1 , a contradiction. So k > 1, and hence k− 1 (since at most one of the positions
kp + h− 1, kp + h and kp + h + 1 is occupied).

The self-conjugacy ofλ now implies that −k− 1 and −k . In particular, there are beads
in positions (k− 1)p + h + 1 and −(k + 1)p + h and spaces in positions (k− 1)p + h and −(k + 1)p + h + 1.
Since λ is self-conjugate, exactly half of the positions from−kp+h to (k−1)p+h inclusive are occupied,
so there are 1

2 ((2k− 1)p + 1) beads in these positions; in particular, there are at least 2k beads between
positions −(k + 1)p + h + 1 and (k− 1)p + h, and so  −h(λ).

Exactly the same analysis applies to the partition λOh; the only essential difference is that the bead
in position k− p + h has moved to position −kp + h− 1, but this makes no difference to the count of
intervening beads, so  −h(λOh), which gives  h(−h)(λ). �

Lemma 7.12. Suppose there is no k for which k . Then k for some k, and hence  h(λ).

Proof. If there is no k for which k , then for every k > 0 we have either k or k ,
and so for every k < 0 we have either k or k . But now λ has no addable h-nodes;
contradiction.

So k for some k. So (by self-conjugacy) there are beads in positions kp+h and−(k+1)p+h−1,
and spaces in positions kp + h− 1 and −(k + 1)p + h. By a similar argument to that used in the proof of
Lemma 7.11, the number of intervening beads is at least 2k + 1, and so  h(λ). �

Lemma 7.13. If k and l for some k > l, then  (h+1)h(h+1)(λ).

Proof. The self-conjugacy of λ implies that −k− 1 and −l− 1 . So in the abacus display
for λO(h+1)h, positions −(l + 1)p + h + 1 and −(k + 1)p + h are occupied, while positions −(l + 1)p + h and
−(k + 1)p + h + 1 are vacant. The number of intervening beads is at least 2(k− l− 1) + 1 > k− l, and so
 −h(λO(−h)h), i.e.  (−h)h(−h)(λ). �

Lemma 7.14. Suppose that for some k < l we have k and l , and that positions (k− 1)p +

h + 1 and (l + 1)p + h are vacant, and define µ to be the partition obtained from λ by repeatedly adding
all addable nodes of residue not equal to h or −h. Then  h(µ) and  h+1(µ), and hence Sλ has at least
three composition factors.
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Proof. Since position (k − 1)p + h + 1 is vacant and λO± j = λ for all j < h, positions (k − 1)p + h +

2, . . . , kp + h− 2 are also vacant. Hence in the abacus display for µ, position kp + h− 1 is vacant. So
the abacus display for µ has beads in positions kp + h and −(k + 1)p + h− 1, and spaces in positions
kp + h−1 and −(k + 1)p + h. The number of intervening beads is 1

2 ((2k + 1)p−1), which is at least 2k + 1.
So  h(µ).

Now we show that  −h(µ). Since position (l + 1)p + h is vacant in λ, it is also vacant in µ. Since
position lp + h + 1 is occupied in λ, position (l + 1)p + h− 1 is occupied in µ. As we have already seen,
position kp + h− 1 is vacant in µ, while position kp + h is occupied. µ is self-conjugate, so the abacus
display for µ has beads in positions−(k + 1) + h + 1 and −(l + 2)p + h, and spaces in positions−(k + 1) + h
and −(l + 2)p + h + 1. The number of intervening beads is at least l− k + 1, and so  −h(µ).

So we have  h(−h)h(µ) and  (−h)h(−h)(µ), so by Lemma 4.6 and Proposition 4.7 Sµ has at least three
composition factors. So by Lemma 4.4 Sλ does too. �

Lemma 7.15. Suppose that 0 . Then there is some l > 1 such that either l or l .

Proof. Suppose not, i.e. for every l > 1 either l or l . We will show that λ is p-quotient-
separated, contrary to assumption. Since λO0 = λ, position 0 is vacant in the abacus display for λ.
Since λO± j = λ for all j < h, this then means that positions 1, . . . , h− 2 are also vacant. In addition, the
fact that position h + 1 is vacant means that positions h + 2, . . . , p + h−2 are also vacant. Symmetrically,
positions −2p + h + 2, . . . ,−p + h− 2 and −p + h + 2, . . . ,−1 are all occupied.

Now we claim that there is at least one value of l for which l . If not, then position lp+h+1 is
vacant inλ for all l > 0, and hence (sinceλO± j = λ for j < h) so are positions lp+h+2, . . . , (l+1)p+h−2.
In other words, all positions k > 0 apart from position h are vacant, and all positions k < 0 apart from
position −p + h are occupied. Hence λ is the partition (h + 1, 1h); but this has p-weight 1, contrary to
assumption.

By assumption λO±h is a JM-partition, and in particular is p-quotient-separated. We claim that
runner h− 1 is the largest runner in λO±h. Choose l such that l . Then the abacus display for
λO±h has a bead in position lp + h− 1 > p + h− 1, and every runner apart from runner h− 1 has a space
before this position. So by Proposition 5.4(1) runner h− 1 is largest. Symmetrically, runner h + 1 is
smallest, and hence for every i , h− 1, h, h + 1 we have λ(i) = (λO±h)(i) = ∅. So the abacus display for
λ has the following properties.

• For any i , h− 1, h, h + 1, the last bead on runner i occurs in position −p + i, and the first space
in position i.

• On runner h− 1, the last bead occurs in position −p + h− 1.

• On runner h, the last bead occurs in position h and the first space in position −p + h.

• On runner h + 1, the first space occurs in position h + 1.

It follows that λ is p-quotient-separated; contradiction. �

Lemma 7.16. Suppose that for every k > 0 either k or k . Then there is a p-restricted
partition ν < {λrest,mp(λrest)} such that HomFSn(Sλ, Sν) , 0. Hence Sλ has at least three composition
factors.

Proof. Since position lp + h + 1 is vacant in the abacus display for λ for every l > 0 and λO±i = λ for
all 0 6 i < h, positions lp + h + 2, . . . , (l + 1)p + h− 2 are also vacant. In addition, position 0 is vacant,
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and so positions 1, . . . , h− 2 are vacant as well. So every position k > 0 not on runner h is vacant, and
symmetrically every position k < 0 not on runner h is occupied.

Now we observe that there must be at least two values of l for which l : if there are no such
values, then λ = ∅, while if there is only one such value then λ is an R-partition of type I, and either
way our assumptions are violated. Let k be minimal such that k , and define a partition µ by
moving the bead in position kp + h to position kp + h− 1, and the bead in position −(k + 1)p + h− 1 to
position −(k + 1)p + h. Then µ is obtained from λ by removing a node and adding a node lower down
of the same residue. The number of beads in positions −(k + 1)p + h + 1, . . . , kp + h− 2 is kp + h > 2k + 1,
and so (arguing as in the proof of Lemma 5.2) the added node is in a later ramp than the removed node.
Furthermore, the minimality of k means that there are no addable nodes (of any residue) between the
removed node and the added node. Hence by Proposition 6.13 there is a non-zero homomorphism
Sλ → Sν, where ν = µrest. Since soc(Sν) � Dν, this means that Dν occurs as a composition factor of Sλ,
and it just remains to show that ν < {λrest,mp(λrest)}.

Since µ is obtained from λ by moving a node to a different ramp, λ and µ cannot possibly have
the same restrictisation, so ν , λrest. To show that ν , mp(λrest), we claim that (λrest)′1 = λ′1. To see
this, we examine the Young diagram of λ. Let l1 > · · · > lr be the values of l for which l . Then
λ is the partition(

l1p + h + 1, l2p + h + 2, . . . , lrp + h + r, rlrp+h, (r− 1)(lr−1−lr)p−1, . . . , 1(l1−l2)p−1
)
.

The last non-empty ramp of λ must contain a removable node (a, b); we cannot have a 6 r, since then
a < b and the removable node (b, a) lies in a later ramp; so (a, b) is a node of the form (lip + h + i, i), for
1 6 i 6 r. This node lies in ramp (li(p− 1) + i)p + (p− 1)h− p, and this is obviously maximised for i = 1.
So the node in the last non-empty row of λ lies in the last non-empty ramp, and hence λrest′

1 = λ′1.
A similar argument applies to µ, and so we have ν′1 = µ′1 = λ′1, the latter equality following from

the fact that there are least two values of l for which l . Now observe that λ′1 ≡ h + 1 (mod p),
and so if ν = mp(λrest) then λrest′

1 + mp(λrest)′1 ≡ 1 (mod p), contradicting Lemma 2.4. �

Now we combine the results of this subsection.

Proposition 7.17. Suppose λO± j = λ for all j < h, and that λO±h is a JM-partition. Then Sλ has at least
three composition factors.

Proof. We consider the various possibilities for the middle three runners of the abacus display for
λ. If we have k for some k, then by Lemma 7.11 we have  h(−h)h(λ) and  (−h)h(−h)(λ), so we are
done by Proposition 4.7(4); so assume there is no such k. Now by Lemma 7.12 we have k for
some k, and by Lemma 7.15 we can assume k > 0. If there is no l such that l then we are done
by Lemma 7.16, so we assume there is at least one such l. If l < k, then we are done by Lemmas 7.12
and 7.13 (using Proposition 4.7(4)), so we may assume that for every k, l with k and l
we have k < l. Now taking k, l maximal such that k and l , positions (k− 1)p + h + 1 and
(l + 1)p + h in the abacus display for λ are vacant, and so we are done by Lemma 7.14. �

7.6 The proof of Theorem 3.3

Now we combine the results proved in this section to give a proof of Theorem 3.3. As noted in
Section 3, the ‘if’ part has already been proved in [F3], so we need only prove the ‘only if’ part. In
other words, we must prove that if λ is a self-conjugate partition not in A or J , then Sλ has at least
three composition factors. If λ is p-quotient-separated, then Proposition 5.12 gives the result, so we
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can assume this is not the case. We proceed by induction on |λ|, using the partitions λO±i. If there
is any i for which λO±i , λ and λO±i < A∪J , then by Theorem 2.5 and by induction Sλ

O±i
has at

least three composition factors, so by Proposition 4.7(1) Sλ does too. In addition, if i < h and Sλ
O±i

is
irreducible then by Proposition 4.7(2) Sλ has at least three composition factors. So we can assume that
λO±i

∈ A∪ {λ} for each 0 6 i < h, while λO±h
∈ A∪J ∪ {λ}. So the assumptions listed in Section 7.1

apply. λ must have at least one removable node, so for some i we have λO±i , λ. Let 0 6 i 6 h be
minimal with this property, and consider the possibilities for i.

If i = 0, then by Propositions 7.1 and 7.3 we have either  0(λ), or p > 5 and  p−1(λ). So we are
done by Proposition 4.7(3).

If 1 6 i < h, then by Propositions 7.4–7.8 we have either  i(λ) or  p−i(λ), and so again we are done
by Proposition 4.7(3).

If i = h, then from the discussion in Section 7.1, λO±h is either an R-partition of type II or a JM-
partition. In the first case, Proposition 7.9 gives either  h(λ) or  −h(λ), or p = 3 and λ = (43, 3). If
 h(λ) or  −h(λ), then we are done by Proposition 4.7(3), while if p = 3 and λ = (43, 3), then we have
 121(λ) and  212(λ), so Proposition 4.7(4) gives the result (or we can just use the readily-available
decomposition numbers for S15). Finally, we have the case where i = h and λO±h is a JM-partition.
This is dealt with in Proposition 7.17.

Theorem 3.3 now follows by induction.

8 Irreducible representations which remain irreducible modulo every
prime

We conclude this paper with a corollary of our main theorem, in which we classify the irreducible
representations of An that remain irreducible modulo every prime. The result is unsurprising.

Theorem 8.1. Suppose ψ is an ordinary irreducible character of the alternating group An and that ψ
remains irreducible modulo every prime. Then ψ is one-dimensional.

The same result for the symmetric groups was proved by Kleshchev and Premet in [KP], though
an easier proof [JM3] follows from the classification of irreducible Specht modules in characteristic 2.

Proof of Theorem 8.1. Assume n > 2, with the case n = 1 being trivial, and use the notation of
Section 3.

Suppose ψ = ψλ, for λ , λ′. Then ψ is the restriction to An of an irreducible character χλ of Sn.
By [F3, Proposition 2.11] ψλ remains irreducible modulo a given prime p if and only if χλ does, so the
result follows from the corresponding result for the symmetric groups.

Now suppose ψ = ψλ± for λ = λ′. By [F3, Theorem 3.1], ψ is reducible modulo 2 unless λ = (22)
or λ = (r, r− 1, . . . , 1) for some r > 2. So by Theorem 3.3, ψ remains irreducible modulo 2 and modulo
3 if and only if λ = (22) or (2, 1). But in both of these cases ψ is one-dimensional. �

9 Index of notation

For the reader’s convenience we conclude with an index of the notation we use in this paper. We
provide references to the relevant subsections.
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Basic objects

Sn the symmetric group on {1, . . . ,n}
An the alternating group on {1, . . . ,n}
F a field
p the characteristic of F (taking p = ∞ if Q ⊆ F)
h 1

2 (p− 1) (when p is odd)
FSn-mod the category of FSn-modules
resH M the restriction of a module M to a subgroup H

Partitions

λ a composition or its Young diagram 2.1
|λ| the size (i.e. the number of nodes) of a composition λ 2.1
∅ the unique partition of 0 2.1
λ′ the conjugate to a partition λ 2.1
λrest the p-restrictisation of a partition λ 2.1
rmpl(λ) the number of nodes of λ in ramp l 2.1
rmp+

l (λ) the number of addable nodes of λ in ramp l 2.1
rmp−l (λ) the number of removable nodes of λ in ramp l 2.1
mp(λ) the image of a p-restricted partition λ under the Mullineux map 2.4
J the set of JM-partitions 2.5
A the set of self-conjugate partitions (conjecturally) labelling Specht modules of

composition length 2
3

cγαβ the Littlewood–Richardson coefficient corresponding to partitions α, β, γ 5.3

Representations of the symmetric group

Mλ the Young permutation module indexed by a composition λ 2.1
Sλ the Specht module indexed by a partition λ 2.1
Dλ the simple module indexed by a p-restricted partition λ 2.1
sgn the one-dimensional sign representation of FSn 2.4
χλ the character of Sλ, when p = 0 3
ψλ the restriction of χλ to An, when λ , λ′ 3
ψλ+, ψλ− the irreducible summands of the restriction of χλ to An, when λ = λ′ 3

Restriction functors

ei the i-restriction operator FSn-mod→ FSn−1-mod, for i ∈ {0, . . . , p− 1} 4.1
e(r)

i the rth divided power of ei, for r > 0 4.1

εiM max
{
r > 0

∣∣∣∣ e(r)
i M , 0

}
, for a non-zero module M 4.1

e(max)
i M e(εiM)

i M 4.1
remi(λ) the number of removable i-nodes of a partition λ 4.1
λOi the partition obtained from λ by removing all the removable i-nodes 4.1
λOi1,...,ir ((λOi1)Oi2 . . . )Oir 4.1
λO±i the partition obtained from λ by repeatedly removing all removable nodes of

residue ±i
4.3

λ4i the partition obtained from λ by adding all the addable i-nodes 4.1
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λ4±i the partition obtained fromλby repeatedly adding all addable nodes of residue
±i

7.1

nori(λ) the number of normal i-nodes of a partition λ 4.1
λHi the partition obtained from λ by removing all the normal i-nodes 4.1
 i1,...,ir(λ) noril((λ

rest)Hi1...il−1) < remil(λ
Oi1...il−1) for some 1 6 l 6 r 4.3

The abacus(
λ(0), . . . , λ(p−1)

)
the p-quotient of a partition λ 5.1

qi(λ) the position of the first space on runner i in the abacus display for the p-core
of λ

5.3

πλ the permutation of Z/pZ such that qπ(0) < · · · < qπ(p−1) 5.3[
λ[0], . . . , λ[p−1]

]
the ordered p-quotient of λ 5.3

dλµ, aλµ functions used in the formula for decomposable numbers for Rouquier parti-
tions

5.3

k positions kp + h and kp + h + 1 are occupied in the abacus display for λ, while
position kp + h− 1 is vacant

7.5

Tableaux and homomorphisms

Tx,y the entry in row x and column y of a tableau T 6.1
ΘT the homomorphism Mλ

→Mµ labelled by a λ-tableau T of type µ 6.1
Θ̂T the restriction of ΘT to Sλ 6.1
Q the dominance order on tableaux 6.1
λ◦ a partition used in the construction of a magic λ-tableau 6.3
A+ a λ-tableau constructed from a λ◦-tableau A 6.3
Re(λ) the ‘restrictisation tableau’ of shape λ and type λrest 6.3

Multisets

Ti the multiset of entries in the ith row of a tableau T 6.4
Xi the multiplicity of a natural number i as an element of a multiset X 6.4
XtY the multiset defined by (XtY)i = Xi + Yi for all i 6.4
X + 1 the multiset obtained by adding 1 to every element of X 6.4
{l}n the multiset with n elements all equal to l 6.4
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