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Abstract

We consider the problem of which ordinary irreducible representations of the alternating
groupAn remain irreducible modulo a prime p. We solve this problem for p = 2, and present
a conjecture for odd p, which we prove in one direction.

1 Introduction

In the modular representation theory of finite groups, it is interesting to know which
ordinary irreducible representations remain irreducible modulo a prime p. For the symmetric
groups Sn, this amounts to classifying the irreducible Specht modules over any field, and
this problem has been solved through the combined efforts of James, Mathas, Lyle and the
author. In this paper, we address the same problem for the alternating groups An. For these
groups we do not have anything like the very rich Specht module theory of the symmetric
groups, but we can exploit the very close relationship between the symmetric groups and the
alternating groups. Accordingly, the majority of this paper concerns the representation theory
of the symmetric group.

Since An has index 2 in Sn, the case p = 2 behaves very differently from the case of odd
characteristic; this case is actually straightforward to deal with, using Benson’s work on the
representation theory of the alternating group in characteristic 2. For odd characteristic, we
reduce the problem to one concerning the symmetric groups, and conjecture a solution to
this problem. We then prove this conjecture in one direction (i.e. we prove that the ordinary
characters which we claim remain irreducible in characteristic p really do remain irreducible).

In the next section, we summarise the background theory we shall require, most of which
concerns the symmetric group. In Section 3, we prove our main result in characteristic 2. In
Section 4, we give our conjecture for the case of odd characteristic, and explore the combinatorics
of the partitions involved in the conjecture. In Section 5 we give our partial proof of this
conjecture.
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Fellowship from the Royal Commission for the Exhibition of 1851. The author is very grateful
to the Commission for its generous support.
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2 Background

Almost all of this paper is concerned with the representation theory of the symmetric group,
with the consequences for the alternating group being easily deduced. The classic reference
for the modular representation theory of the symmetric group is James’s book [J2]. Here we
summarise the important points, together with some newer material.

For this paper, let let F be any field. By [J2, Theorem 11.5], every field is a splitting field for
Sn; when necessary, we shall assume that F is a splitting field for An. We use the convention
that the characteristic of a field is the order of its prime subfield.

If N and M are modules for some group algebra and m is a non-negative integer, we may
write N ∼Mm to indicate that N has the same composition factors (with multiplicities) as M⊕m.

2.1 Partitions and Specht modules

A partition of n is defined to be a non-increasing sequence λ = (λ1, λ2, . . . ) of non-negative
integers whose sum is n. When writing partitions, we frequently group equal parts, and omit
zeroes. We write ∅ for the unique partition of 0. We often identify a partition with its Young
diagram

[λ] =
{
(i, j) ∈N ×N

∣∣∣ j 6 λi

}
,

whose elements are called nodes. We frequently draw the Young diagram by means of boxes in
the plane, so that, for example, the Young diagram of (4, 2, 1) is as follows.

If λ is a partition, the conjugate partition λ′ is given by

λ′i =
∣∣∣∣{ j

∣∣∣ λ j 6 i
}∣∣∣∣ .

Given a positive integer p, a partition is called p-regular if it does not have p equal positive
parts, and p-restricted if its conjugate is p-regular.

To each partition λ of n is associated a Specht module Sλ for FSn. If F has infinite charac-
teristic, then the modules Sλ are irreducible and pairwise non-isomorphic, and afford all the
irreducible representations of FSn as λ ranges over the set of partitions of n. We write χλ for
the character of the representation afforded by Sλ.

If F has finite characteristic p, then Sλ affords the p-modular reduction of the character χλ,
and is no longer necessarily irreducible. If λ is p-regular, then Sλ has an irreducible cosocle Dλ;
the modules Dλ are pairwsie non-isomorphic and afford all the irreducible representations of
FSn as λ ranges over the set of p-regular partitions of n.

We also need to address briefly the Schur algebraSF(n,n) overF. This is a finite-dimensional
algebra whose module category is equivalent to the category of polynomial representations of
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the general linear group GLn(F) of degree n; the book by Green [G] is the essential reference
for the Schur algebra. For each partition λ of n, one defines a Weyl module ∆λ for SF(n,n). This
has an irreducible cosocle Lλ, and the modules Lλ give all the irreducible representations of
SF(n,n) as λ varies.

2.2 Hooks and rim hooks

The combinatorial representation theory of the symmetric group is controlled by hooks. If
λ is a partition and (i, j) is a node of λ, we define the (i, j)-hook length hλ(i, j) to be the number of
nodes in the Young diagram directly to the right of or directly below (i, j), including (i, j) itself.
That is, hλ(i, j) = λi − i + λ′j − j + 1.

Now suppose e is a positive integer. The rim of (the Young diagram of) λ is the set of nodes
(i, j) of λ such that (i + 1, j + 1) is not a node of λ. A rim e-hook of λ is a connected portion ~ of
the rim consisting of exactly e nodes, such that λ \ ~ is the Young diagram of a partition.

Suppose ~ is a rim e-hook of a partition λ. The top-rightmost node in ~ is called the hand
node of ~, and the bottom-leftmost node of ~ is the foot node. If we write these nodes as (i, k) and
(l, j) respectively, then we have the following:

• (i, k) is the last node in its row, i.e. k = λi;

• (l, j) is the last node in its column, i.e. l = λ′j;

• the (i, j)-hook length hλ(i, j) equals e.

Thus there is a correspondence between rim hooks of length e, and nodes whose hook length
is e. We say that (i, j) is the node corresponding to ~.

A partition λ is an e-core if it has no rim e-hooks, or equivalently if none of its hook lengths
equals e. Given any partition λ, we can obtain an e-core by repeatedly removing rim e-hooks
from λ. The e-core we obtain is independent of the choice of rim hooks removed at each stage,
and is called the e-core of λ. The number of rim hooks removed to reach the e-core is the
e-weight of λ.

Example. Suppose F has characteristic 3, and let λ = (42, 2, 13). Then λ has 3-core (3, 1) and
3-weight 3, as can be seen from the following diagram.

•

•

•

−→

•

• • −→ •

• •

−→

2.3 Blocks and the abacus

The most important application of hooks and cores is the classification of the blocks of Sn.
If F has characteristic p and λ and µ are partitions of n, then Sλ and Sµ lie in the same block
of FSn if and only if λ and µ have the same p-core. In this case, we will abuse terminology by
saying that λ and µ lie in the same block. Two partitions of n having the same p-core necessarily
have the same p-weight, and so we may talk about the (p-)weight and (p-)core of a block of
FSn.
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Partitions and blocks are more easily visualised using the abacus, which is a combinatorial
gadget introduced by James. Given p, take an abacus with p vertical runners, and mark
positions 0, 1, . . . on these runners reading from from left to right and top to bottom, so that the
jth runner from the left contains the positions j − 1, j + p − 1, j + 2p − 1, . . . from the top down.
For example, if p = 5 then the abacus is marked as follows.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14ppp ppp ppp ppp ppp
If x < y, then we may say that position y is lower than position x, or that position y occurs after
position x.

Now suppose λ is a partition, and choose an integer r > λ′1. For i = 1, . . . , r, define
βi = λi + r − i. Place a bead on the abacus at position βi, for each i. The resulting configuration
is called the abacus display for λ with r beads.

The important feature of an abacus display for a partition is that moving a bead into an
empty space a positions above it on the same runner corresponds to removing a rim ap-hook
from λ. Thus, an abacus display for the p-core of λ is obtained by moving all the beads up their
runners as far as they will go. Two partitions of n therefore lie in the same block if and only
if they have the same numbers of beads on corresponding runners. Accordingly, we may talk
of the abacus display for a block by specifying the number of beads on each runner and the
weight of the block.

Following Richards [R], we define a numbering of the runners of the abacus for a given
block B, and an array of integers called the pyramid for B, as follows. First move all the beads
up as far as possible to obtain an abacus display for the p-core of the block. Now for each
runner R, let q(R) be the position of the first empty space on that runner. Arrange the resulting
p integers in ascending order as q0 < · · · < qp−1, and number the runners from 0 to p − 1 so that
position qi appears on runner i for each i. We use this numbering (rather than the left-to-right
numbering employed elsewhere) exclusively in this paper.

Now for each 0 6 i < j 6 p − 1, define

iB j =

⌊
q j − qi

p

⌋
.

Then the array of integers ( iB j) is the pyramid for B. (Note that this is not quite the definition
given by Richards, but it is more convenient for our purposes.)

Now we can define the p-quotient of a partition λ. Take an abacus display for λ, and for
i ∈ {0, . . . , p − 1} regard runner i on its own as an abacus with one runner, and let λ(i) be the
corresponding partition. That is, λ(i) j is the number of empty spaces above the jth lowest bead
on runner i. Then (λ(0), . . . , λ(p−1)) is called the p-quotient of λ, and together with the p-core of
λ it specifies λ. Our numbering of the runners of the abacus means that the p-quotient does not
depend on the choice of the number of beads on the abacus. Moreover, a partition is uniquely
specified by its p-quotient together with the pyramid of block in which it lies.

Example. Suppose p = 5 and λ = (33, 23, 12). This has the following abacus display with 15
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beads. v v v v vv v v vv v vv v v
Moving the beads up to the highest possible positions, we obtain an abacus display for the
5-core (2), and we have (q0, q1, q2, q3, q4) = (14, 15, 17, 18, 21). So the runners are numbered
1, 4, 2, 3, 0 from left to right, and the 5-quotient of λ is (∅, (1), (12),∅,∅). The pyramid of the
block B containing λ has 0B4 = 1B4 = 1, and iB j = 0 for all other i, j.

In this paper we shall be concerned with self-conjugate partitions, so we now discuss the
effect of conjugation on abacus displays. Given an abacus display for λ, an abacus display for
λ′ is obtained by rotating the abacus display by 180◦, and replacing each empty space with a
bead and each bead with an empty space. This rotation reverses the order ≺, so that runner
i becomes runner p − 1 − i. So if λ has p-quotient (λ(0), . . . , λ(p − 1)), the p-quotient of λ′ is
(λ(p − 1)′, . . . , λ(0)′). As a consequence, we see that a self-conjugate partition λ must have
λ(i) = λ(p − 1 − i)′ for each i. We can also relate the pyramids of the blocks B,B∗ containing
λ, λ′: we have iB j = p−1− jB∗p−1−i for each i, j.

2.4 Scopes pairs

Scopes [S] discovered important relationships between symmetric group blocks of the same
weight. Suppose B is a block of FSn of weight w, and take an abacus display for B. Suppose
runners i and j are adjacent, with runner i to the left of runner j, and that there are κmore beads
on runner j than on runner i. Then there is a block A of FSn−κ of weight w, with an abacus
obtained from the given abacus for B by interchanging these two runners. We say that (A,B) is
a [w : κ]-pair.

The two blocks in a [w : κ]-pair have many features in common. These have been discussed
at length elsewhere, so we state just the results we need. First we compare the pyramids of A
and B; the proof of the following lemma is immediate from the definition.

Lemma 2.1. Suppose (A,B) is a [w : κ]-pair as above, and 0 6 k < l 6 p − 1. Then

kAl =

 kBl − 1 (k = i, l = j)

kBl (otherwise).

Now we quote a result about induction and restriction in [w : κ]-pairs, and use it to provide
an inductive step for our proofs. Given a module lying in B, we write M↓A for the projection
of M↓Sn−κ onto A; we define the notation ↑B similarly.

Proposition 2.2. Suppose (A,B) is a [w : κ]-pair as above. If S is any simple module in A or B, then
S↑B (or S↓A, respectively) has at least κ! composition factors.

Proof. This may be proved using similar arguments to those found in [S], or using Kleshchev’s
modular branching rules [BK]. �

Proposition 2.3. Suppose (A,B) is a [w : κ]-pair as above, and that λ is a partition in B. Define the
partition Φ(λ) in A by swapping runners i and j of the abacus display. Then λ and Φ(λ) have the same
p-quotient, and if there are no beads on runner i in the abacus display for λ which have an empty space
immediately to the right (on runner j), then Sλ and SΦ(λ) have the same number of composition factors.
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Proof. The assertion about quotients is straightforward, since the numbering of runners in the
abacus for A is the same as the numbering of runners in the abacus display for B but with i and j
interchanged. Now suppose the given condition on the abacus display for λ holds. Then there
must be exactly κ beads on runner j of this abacus display which have no bead immediately to
the left, and so by the Branching Rule [J2, Theorem 9.3] we have

Sλ↓A∼ (SΦ(λ))κ!.

Similarly we have
SΦ(λ)

↑
B
∼ (Sλ)κ!.

Since induction and restriction and projection onto blocks are exact functors, Proposition 2.2
gives the result. �

Example. Suppose F has characteristic 3, and B is the weight 2 block of FS10 with 3-core (3, 1).
Then B has an abacus in which the numbers of beads on the runners are 3, 2, 4 from left to right.
Hence there is a block A of FS8 possessing an abacus where the numbers of beads are 3, 4, 2
from left to right; A is the weight 2 block with 3-core (2), and (A,B) is a [2 : 2]-pair.

B contains the partition λ = (6, 14), for which we have Φ(λ) = (5, 13). We can see the
relationship between these partitions from their abacus displays.

(6, 14) =

1 0 2v v vv vv v vv (5, 13) =

1 2 0v v vv vv v vv
We have

Sλ↓A ∼ (SΦ(λ))2, SΦ(λ)
↑

B
∼ (Sλ)2,

so that these two Specht modules have the same composition length.

2.5 Rouquier blocks

Suppose B is a block of FSn of weight w, and calculate the pyramid for B. We say that B
is Rouquier if iB j > w − 1 for every i < j. Rouquier blocks have proved to be a useful tool in
the study of the representation theory of Sn. One of the main advantages of working with
Rouquier blocks is that their decomposition numbers are well understood. Suppose B is a
Rouquier block of FSn, and that µ is a partition in B. Then it is easy to check that µ is p-regular
if and only if µ(0) = ∅. Now suppose λ and µ are partitions in B with µ p-regular. Given
any partitions α, β, γ, let cαβγ be the corresponding Littlewood–Richardson coefficient, which we
interpret as zero if |α| , |β| + |γ|. Define

δλµ =
∑

p−1∏
i=0

cλ(i)
τ(i)σ(i+1)

p−1∏
j=1

cµ( j)
σ( j)′τ( j)

 ,
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where the sum is over all choices of partitions σ(1), . . . , σ(p−1), τ(1), . . . , τ(p−1), and we interpret
τ(0) and σ(p) as ∅.

Now recall the Weyl modules ∆λ and simple modules Lλ for the Schur algebra SF(n,n). If
µ and ν are p-regular partitions in B, define

εµν =


∏p−1

i=1

[
∆µ(i)′ : Lν(i)′

]
(if |µ(i)| = |ν(i)| for all i)

0 (otherwise).

Then we have the following result. This was proved by Turner [T], using earlier results for
the decomposition numbers for Rouquier blocks of Iwahori–Hecke algebras due to Chuang
and Tan [CT] and independently Leclerc and Miyachi [LM].

Theorem 2.4. Suppose B is a Rouquier block of FSn. If λ and ν are partitions in B with ν p-regular,
then

[Sλ : Dν] =
∑
µ

δλµεµν,

summing over all p-regular partitions µ in B.

In order to use this theorem, we shall need the following lemma; this was proved in [F2]
with a rather narrower definition of Rouquier blocks.

Lemma 2.5. [F2, Lemma 3.1] Suppose B is a block of FSn of weight w. Then there is a sequence
n = n0 < n1 < · · · < nt of integers and a sequence B = B0,B1, . . . ,Bt, where Bi is a block of FSni such
that (Bi−1,Bi) is a [w : ni − ni−1]-pair for each i, and Bt is a Rouquier block.

2.6 p-regularisation

In [J1], James proved a theorem which describes one composition factor of every Specht
module Sλ, even when λ is not p-regular. This is of particular interest in the study of irreducible
Specht modules, since it tells us which simple module Dµ is isomorphic to a given irreducible
Specht module.

Given a prime p and l > 0, we define the lth ladder in N ×N to be the set{
(i, j) ∈N ×N

∣∣∣ i + (p − 1) j = l + p − 1
}
.

Now given a partition λ, we define the p-regularisation λreg by finding the nodes of λ contained
in each ladder, and moving them to the highest possible positions in that ladder. It is a
straightforward exercise to check that this gives the Young diagram of a p-regular partition.

Example. Suppose λ = (62, 3, 23). Then the 2-regularisation of λ is (7, 6, 4, 3, 1). The Young
diagrams of these two partitions, with nodes labelled according to the ladders containing
them, are as follows.

1 2 3 4 5 6 1 2 3 4 5 6 7
2 3 4 5 6 7 2 3 4 5 6 7
3 4 5 3 4 5 6
4 5 4 5 6
5 6 5
6 7

Now we have the following.

Theorem 2.6. [J1, Theorem A] Suppose F has prime characteristic p, and λ is a partition. Then
[Sλ : Dλreg

] = 1.
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2.7 Dual modules and the sign representation

If M is an FSn-module, let M∗ denote the dual module. Let sgn denote the one-dimensional
‘sign’ representation of FSn.

Theorem 2.7.
1. [J2, Theorem 11.5] Every simple FSn-module is self-dual. In particular, if F has infinite charac-

teristic then Sλ∗ � Sλ for every λ.

2. [J2, Theorem 8.15] For any partition λ and any field F,

Sλ ⊗ sgn � (Sλ
′

)∗.

The functor − ⊗ sgn is a self-equivalence of the category of FSn-modules, and this induces
an involutory bijection on the set of blocks of FSn; let B∗ denote the image of B under this map,
and call B∗ the conjugate block to B. Theorem 2.7 implies that B and B∗ have the same weight,
and that the p-core of B∗ is the conjugate partition to the p-core of B.

2.8 Irreducible Specht modules and Weyl modules

The question of which ordinary irreducible representations of Sn remain irreducible in
characteristic p amounts to classifying the irreducible Specht modules over a field of character-
istic p. This was done for p = 2 by James and Mathas, and for odd p by the author, building on
work of James, Mathas and Lyle.

Suppose λ is a partition and p is a prime, and define the p-power diagram of λ to be the
diagram obtained by filling the (i, j)-box in the Young diagram of λ with νp(hλ(i, j)), for each
node (i, j). (As usual, νp(h) denotes the largest power of p dividing an integer h.)

For example, if λ = (18, 11, 4, 1), then the 2-power diagram of λ is as follows (here and
throughout this paper we omit zeroes from p-power diagrams).

1 1 2 1 1 2 1
1 1 2 1
1

Now we say that λ is a p-JM partition if the following property holds: whenever (i, j) is a node
of λ with νp(hλ(i, j)) > 0, either all the entries in row i of the p-power diagram are equal or all
the entries in column j are equal. It is easy to see that a p-JM partition is p-regular if and only
if all the entries in any column of the p-power diagram are equal. Now we have the following
theorem.

Theorem 2.8. [JM1, JM2, L, F1, F2]
1. If F has characteristic 2, then the Specht module Sλ is irreducible if and only if λ is a 2-regular or

2-restricted 2-JM partition, or λ = (22).

2. If F has odd characteristic p, then the Specht module Sλ is irreducible if and only if λ is a p-JM
partition.

We also need the classification of irreducible Weyl modules for the Schur algebra SF(n,n).
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Theorem 2.9. [JM1, Theorem 4.5] Let λ be a partition of n, and suppose F has prime characteristic p.
Then the Weyl module ∆λ is irreducible if and only if λ is a p-restricted p-JM partition.

For example, the partition λ = (18, 11, 4, 1) above is a 2-regular 2-JM partition, so if F has
characteristic 2 the Specht modules Sλ and Sλ

′

and the Weyl module ∆λ
′

are irreducible.

2.9 Restriction from the symmetric group to the alternating group

Finally we address the alternating group An. Suppose F is a splitting field for An, and M
is an irreducible FSn-module. If the characteristic of F is not 2, then basic Clifford theory tells
us that M↓An is irreducible if and only if M ⊗ sgn � M; otherwise M↓An splits as a direct sum
M+
⊕M− of two irreducible modules. Furthermore, all irreducible FAn-modules arise in this

way. If the characteristic of F is infinite, then by Theorem 2.7, we have Sλ ⊗ sgn � Sλ
′

; so
the irreducible character χλ restricts to an irreducible character ψλ of the alternating group if
λ , λ′ (and in this case χλ

′

also restricts to ψλ), while if λ = λ′ then χλ restricts to the sum of
two irreducible characters ψλ+, ψλ−.

The situation in characteristic 2 is more complicated, and was settled by Benson [B]. If λ is
a 2-regular partition, then we call λ an S-partition if for every j > 1 we have

• λ2 j−1 − λ2 j 6 2, and

• if λ2 j−1 − λ2 j = 2, then λ2 j−1 and λ2 j are odd.

Then we have the following.

Theorem 2.10. [B, Theorem 1.1] Suppose F has characteristic 2 and is a splitting field for An, and
let λ be a 2-regular partition of n. Then Dλ

↓An splits as a direct sum of two non-isomorphic simple
FAn-modules if λ is an S-partition, and otherwise is irreducible.

Armed with these results, we can reduce our main problem to a question purely concerning
the representation theory of Sn. The following result is immediate from the fact that modular
reduction and restriction are exact functors which commute.

Proposition 2.11. Suppose F has prime characteristic p and is a splitting field for An, and that ψ is an
irreducible character of the alternating group An, of the form ψλ or ψλ± for λ a partition of n. Then the
p-modular reduction of ψ is irreducible if and only if one of the following happens:

I. λ , λ′, and Sλ is an irreducible FSn-module which remains irreducible on restriction to FAn;

II. λ = λ′ and Sλ is an irreducible FSn-module;

III. λ = λ′ and Sλ has exactly two composition factors, which both remain irreducible on restriction
to FAn.

3 The main result in characteristic 2

Now we give our main result in characteristic 2.
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Theorem 3.1. Suppose ψ = ψλ or ψλ± is an irreducible character of the alternating group An. Then
the 2-modular reduction of ψ is irreducible if and only if the 2-modular reduction of χλ is irreducible,
i.e. if and only if λ is a 2-regular or 2-restricted 2-JM partition or λ = (22).

In order to prove this result, we need to examine conditions I–III of Proposition 2.11 in
characteristic 2. This involves closer examination of S-partitions.

Lemma 3.2. Suppose λ is a 2-regular 2-JM partition, and λ , λ′. Then λ is not an S-partition.

Proof. Suppose λ is a 2-regular 2-JM partition and an S-partition. We will show that λ is
self-conjugate.

We have λ2 j−1 − λ2 j 6 2 for each j. If λ2 j−1 − λ2 j = 2 for some j, then λ2 j is odd and hence at
least 1, and we have

hλ(2 j − 1, λ2 j) = 4, hλ(2 j, λ2 j) = 1,

contradicting the 2-JM condition. So in fact λ2 j−1 − λ2 j 6 1 for every j.
Now suppose λ2 j − λ2 j+1 > 2 for some j. Then we have

hλ(2 j − 1, λ2 j − 1) = 4, hλ(2 j, λ2 j − 1) = 2,

again contradicting the 2-JM condition.
We conclude that λ j − λ j+1 6 1 for every j, i.e. λ is 2-restricted. A partition which is both

2-regular and 2-restricted has the form (r, r− 1, . . . , 2, 1) for some r, and so is self-conjugate. �

Lemma 3.3. Suppose λ is a partition of n with λ = λ′. Then the 2-regularisation of λ is an S-partition.

Proof. We prove this by induction on n, with the case n = 0 being trivial. If n > 1, then define
a partition λ− as follows. Suppose l is maximal such that ladder l contains nodes of λ, and
suppose in fact that ladder l contains i nodes of λ. If i is odd, then the fact that λ = λ′ means
that l is odd and

(
l+1
2 ,

l+1
2

)
is a node of λ; in this case we define λ− = λ \

(
l+1
2 ,

l+1
2

)
. If i is even,

then define λ− by removing the highest and lowest nodes of λ lying in ladder l. In either case,
λ− will be self-conjugate.

Let µ− be the 2-regularisation of λ−, and µ the 2-regularisation of λ. λ− is self-conjugate, so
by induction µ− is an S-partition. We consider how µ is obtained from µ−.

• If i is odd, write i = 2 j− 1. µ is obtained from µ− by adding the node (2 j− 1, l + 2− 2 j). In
particular, µ−2 j−1 = l + 1 − 2 j is even, and so µ−2 j > µ

−

2 j−1 − 1. So µ2 j > µ2 j−1 − 2, with µ2 j−1

being odd. The condition on µ2 j′−1 and µ2 j′ for any j′ , j follows from the corresponding
conditions on µ−.

• If i is even, write i = 2 j. µ is obtained from µ− by adding the nodes (2 j − 1, l + 2 − 2 j) and
(2 j, l + 1−2 j). Hence µ2 j−1−µ2 j = 1. The condition on µ2 j′−1 and µ2 j′ for any j′ , j follows
from the corresponding conditions on µ−. �

Now we can prove our main result.

Proof of Theorem 3.1. Suppose F is a splitting field for An of characteristic 2, and consider
possibilities I–III of Proposition 2.11. Suppose that λ is either (22) or a 2-regular or 2-restricted
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2-JM partition. If λ = λ′, then condition II of Proposition 2.11 is satisfied. If not, then Sλ � Dλreg
,

and the 2-regularisation λreg is either λ (if λ is 2-regular) or λ′ (if λ is 2-restricted). In either
case, λreg is a non-self-conjugate 2-regular 2-JM partition; by Lemma 3.2 λ is not an S-partition,
and so by Theorem 2.10 condition I is satisfied.

Conversely, suppose one of conditions I–III holds for λ. If condition I or condition II holds,
then certainly λ is as claimed, so all we need to do is show that condition III cannot hold. If
λ = λ′, then by Lemma 3.3 λreg is an S-partition. So the composition factor Dλreg

of Sλ splits on
restriction to the alternating group, and condition III fails. �

4 The case of odd characteristic

4.1 The main conjecture

Now we consider the case where F has odd characteristic. We begin by refining the
conditions of Proposition 2.11.

Theorem 4.1. Suppose F is a splitting field for An of odd characteristic p, and ψ = ψλ or ψλ± is an
irreducible character of the alternating group An. Then the p-modular reduction of ψ is irreducible if
and only if one of the following holds.

A. λ is a p-JM partition.

B. λ = λ′ and the Specht module Sλ has exactly two composition factors.

Proof. We must relate conditions A and B to conditions I–III of Proposition 2.11. Suppose first
that condition A holds. If λ = λ′, then condition II holds. If λ , λ′, then we must show that
condition I holds, i.e. Sλ � Sλ ⊗ sgn. Assuming otherwise, we have

Sλ
′

� (Sλ ⊗ sgn)∗ � (Sλ)∗ � Sλ,

using Theorem 2.7 and the fact that Sλ is irreducible. But it is well-known that in odd character-
istic there are no isomorphisms between distinct Specht modules (this is an easy consequence
of [J2, Corollary 13.17]), and we have a contradiction. So condition I holds.

Obviously conditions I and II each imply condition A, so condition A is equivalent to
conditions I and II.

Clearly condition III implies condition B, so we must show that the converse is true. If
condition B holds, suppose that Dµ and Dξ are the composition factors of Sλ; we must show
that these simple modules do not split on restriction to the alternating group, i.e. Dµ � Dµ

⊗sgn
and Dξ � Dξ

⊗ sgn. Since Sλ has exactly one composition factor isomorphic to Dλreg
, we

know that Dµ � Dξ. Furthermore, Sλ is indecomposable [J2, Corollary 13.18], so is a non-split
extension of (say) Dµ by Dξ. Theorem 2.7 tells us that Sλ � (Sλ ⊗ sgn)∗, and so Sλ is also a
non-split extension of Dξ

⊗ sgn by Dµ
⊗ sgn. Hence

Dξ
⊗ sgn � Dµ � Dξ, Dµ

⊗ sgn � Dξ � Dµ.

So condition III is equivalent to condition B, and the theorem is proved. �



12 Matthew Fayers

In order to solve our main problem, therefore, it remains to classify the self-conjugate parti-
tions λ such that Sλ has exactly two composition factors, when F is a field of odd characteristic.
We now describe a conjectured classification, analogous to the description of p-JM partitions in
terms of p-power diagrams.

Definition. Suppose p is an odd prime and λ is a partition. We say that a partition λ is an
R-partition if

• λ = λ′,

• λ is not a p-JM partition, and

• there is a node n of λ such that for any node (i, j) , n of λ for which νp(hλ(i, j)) > 0, either
all the entries in row i of the p-power diagram for λ are equal, or all the entries in column
j are equal.

Informally, λ is an R-partition if it self-conjugate and satisfies the conditions of being a p-JM
partition except at one node. Since λ is not a p-JM partition, this node is unique; we call it the
distinguished node of λ.

Example. Suppose p = 3, and λ = (9, 7, 4, 3, 23, 12). Then λ has the following 3-power diagram.

1
1

1

1 1

So λ is an R-partition, with distinguished node (3, 3).

Although the definition of an R-partition depends on the prime p, the latter will always be
clear from the context. Now we can state our conjecture.

Conjecture 4.2. Suppose λ is a self-conjugate partition.

1. If char(F) = 3, then Sλ has exactly two composition factors if and only if one of the following
holds:

• λ = (r, 1r−1) or (r, 2, 1r−2) for some r ≡ 2 (mod 3);

• λ has weight 1;

• λ = (33).

2. If char(F) = p > 5, then Sλ has exactly two composition factors if and only if λ is an R-partition.
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Remarks.
1. Note that the partitions described in the first two cases for p = 3 are R-partitions. However,

there are other R-partitions when p = 3 (for example, the partition (9, 7, 4, 3, 23, 12) above)
which yield Specht modules with more than two composition factors in characteristic
3. The reason for the difference in characteristic 3 will be seen later in the discussion of
Rouquier blocks, and is in some sense analogous to the way 2-JM partitions can yield
reducible Specht modules in characteristic 2.

2. We have been able to verify Conjecture 4.2 for blocks of weight at most 3 in all character-
istics, and also for blocks of weight at most 5 when p = 5, and blocks of weight at most
6 when p = 3. We hope that the reader will find this evidence compelling. It is worth
while noting that, according to our conjecture and the analysis of R-partitions below, a
Specht module corresponding to a self-conjugate partition can have composition length
2 only if it lies in a block of odd weight. In fact, we conjecture that a Specht module
corresponding to a self-conjugate partition of even weight has a composition factor Dµ

such that Dµ
⊗ sgn � Dµ; this statement (which is trivial for blocks of weight 0 and

straightforward to verify for blocks of weight 2) would imply that Conjecture 4.2 holds
for partitions with even weight.

The purpose of the rest of this paper is to prove the ‘if’ part of Conjecture 4.2.

4.2 Analysis of R-partitions

In order to prove our conjecture in one direction, we must examine R-partitions in greater
detail. We assume from now on that p is odd.

Lemma 4.3. Suppose λ is an R-partition with distinguished node n. Then:

1. n is of the form (i, i) for some i;

2. νp(hλ( j, j)) = 0 for all nodes ( j, j) of λ with j , i;

3. if ( j, k) is a node of λwith j < k and νp(hλ( j, k)) > 0, then all the entries in column k of the p-power
diagram are equal;

4. if ( j, k) is a node of λ with j > k and νp(hλ( j, k)) > 0, then all the entries in row j of the p-power
diagram are equal.

Proof.
1. Write n = (i, j). Since λ = λ′, the node n′ = ( j, i) also satisfies the conditions of the

definition. But n is unique, so i = j.

2. Suppose νp(hλ( j, j)) > 0. Then either all the entries in row j of the p-power diagram are
equal, or all the entries in column j are equal. But sinceλ is self-conjugate, these properties
are equivalent, so they both hold. In particular, p divides hλ( j, λ j), so hλ( j, λ j) > p, which
implies that λ j = λ j+1. But then hλ( j, j) and hλ( j + 1, j) differ by 1, and so cannot both be
divisible by p; contradiction.
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3. We know that either the entries in column k of the diagram are all equal, or the entries in
row j are all equal. If the latter holds, then we have νp(hλ( j, j)) > 0, and so by (2) we have
j = i. But then all the entries in row i are equal, and λ is a p-JM partition; contradiction.

4. This follows from (3), given that λ is self-conjugate. �

In order to give a better description of R-partitions, we examine what happens to an R-
partition λ when we remove the rim hook ~ corresponding to the distinguished node. ~ has
length ap for some a, and (since λ is self-conjugate) is symmetric about the line j = k, that is,
whenever ~ contains a node ( j, k) it also contains the node (k, j). ~ contains a unique node of the
form ( j, j) (namely, the unique such node in the rim of λ), and hence contains an odd number
of nodes altogether. So a is odd; λ can take different forms according to whether a > 1 or a = 1,
and we consider the case a > 1 first.

Proposition 4.4. Suppose λ is a R-partition, with distinguished node n and corresponding rim hook ~

of length ap. If a > 1, then n = (1, 1) and λ2 6
p + 1

2
.

Proof. We certainly have n = (i, i) for some i. Write a = 2b + 1, and number the nodes of ~ as
n1, . . . , nap from top right to bottom left. Then n1 = (i, λi) =

(
i, i + bp +

p−1
2

)
. Write nbp as ( j, k);

then k − j =
p+1

2 , and j > i.
Suppose that ( j + 1, k) is a node of λ. Then λ j+1 > k; since ( j, k) is contained in the rim of λ,

( j + 1, k + 1) is not a node of λ, and so in fact λ j+1 = k. Hence

hλ( j + 1, j + 1) = λ j+1 − ( j + 1) + λ′j+1 − ( j + 1) + 1

= 2k − 2 j − 1

= p;

since j + 1 > i, this contradicts Lemma 4.3(2).
So ( j + 1, k) is not a node of λ, and we therefore have λ′k = j. This gives

hλ(i, k) = λi − i + λ′k − k + 1

=
(
i + bp +

p − 1
2

)
− i + j − k + 1

= bp.

So νp(hλ(i, k)) > 0, and hence by Lemma 4.3(3) we have p | hλ(l, k) for every 1 6 l 6 j. So we
have

p | λl − l + λ′k − k + 1 = λl − l + j − k + 1

for each such l, and hence

hλ(l, l) ≡ 2(λl − l) + 1 ≡ 2(k − j − 1) + 1 ≡ 0 (mod p).

Now Lemma 4.3(2) gives l = i for every 1 6 l 6 j; in other words, i = j = 1. So k =
p+3

2 and
λ′k = j = 1, which implies λ2 6

p+1
2 . �
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From Proposition 4.4, we see that if a > 1 and we remove the rim hook ~ from λ, we are left
with the partition ξ given by

ξ j = max{λ j+1 − 1, 0}

for all j. ξ is clearly self-conjugate and satisfies ξ1 6
p−1

2 . This in turn implies that ξ is a p-core,
since the largest hook length in ξ is

hξ(1, 1) = 2ξ1 − 1 < p.

Example. Suppose p = 7 and λ = (11, 4, 3, 2, 17). This has the following 7-power diagram.

1 1

1

So λ is an R-partition. The rim hook corresponding to the distinguished node (1, 1) has length
21, and when we remove it, we obtain ξ = (3, 2, 1), which is a 7-core.

Now we prove a converse to Proposition 4.4.

Proposition 4.5. Suppose ξ is a self-conjugate partition with ξ1 6
p − 1

2
. Suppose λ is a self-conjugate

partition obtained from ξ by adding a rim ap-hook to ξ, for some integer a. Then λ is an R-partition.

Proof. Let ~ be the rim hook which is added to ξ to obtain λ, and let ( j, k) be the hand node of
~. Since λ and ξ are both self-conjugate, the foot node of ~ must be (k, j). So we have

k − j = j − k + (ap − 1),

which gives

k − j =
ap − 1

2
.

This implies that a is odd, and it also gives k > ap+1
2 . We claim that in fact ( j, k) =

(
1, ap+1

2

)
. If

not, then the node ( j − 1, k) is a node of λ. ( j − 1, k) cannot be a node of ~ since ( j, k) is the hand
node, and so ( j − 1, k) ∈ ξ. This gives ξ j−1 > k > ap+1

2 >
p+1

2 ; but by assumption ξ j−1 6 ξ1 6
p−1

2 ;
contradiction.

So the hand node of ~ is
(
1, ap+1

2

)
and the foot node is

( ap+1
2 , 1

)
. We therefore have

λi =



ap + 1
2

(i = 1)

ξi−1 + 1
(
2 6 i 6 p+1

2

)
1

(p+3
2 6 i 6 ap+1

2

)
0

( ap+3
2 6 i

)
.
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So if i > p+3
2 , then the ith column of λ and the ith row of λ each have length at most 1, so the

values in the p-power diagram are automatically constant down the ith column and along the
ith row. We have hλ(1, 1) = ap, so in order to show that λ is an R-partition with distinguished
node (1, 1), it suffices to show that whenever (i, l) is a node of λ with i, l 6 p+1

2 and (i, l) , (1, 1),
we have p - hλ(i, l). We assume that i 6 l; the case i > l will then follow from the fact that λ is
self-conjugate.

If 2 6 i 6 l 6 p+1
2 , then

hλ(i, l) = λi − i + λl − l + 1

= ξi−1 − (i − 1) + ξl−1 − (l − 1) + 1

= hξ(i − 1, l − 1),

and this is not divisible by p, since ξ is a p-core.
If i = 1 and 2 6 l 6 p+1

2 , then

hλ(i, l) = λ1 + λl − l =
ap + 1

2
+ ξl−1 + 1 − l,

and the inequalities 2 6 l 6 p+1
2 and 0 6 ξl−1 6

p−1
2 imply that this lies strictly between a−1

2 p and
a+1

2 p, and therefore cannot be divisible by p. �

Now we examine the case where the rim hook corresponding to the distinguished node of
an R-partition has length p.

Proposition 4.6. Suppose λ is an R-partition, and let ξ be the partition obtained by removing the
rim hook ~ corresponding to the distinguished node of λ. If ~ contains exactly p nodes, then ξ is a
self-conjugate p-JM partition with the property that νp(hξ( j, k)) = 0 whenever ( j, k) is a node of ξ with

| j − k| 6
p − 1

2
.

Proof. Since ~ has length p, the hand and foot nodes of ~ must be
(
i, i +

p−1
2

)
and

(
i +

p−1
2 , i

)
respectively, where (i, i) is the distinguished node of λ. Hence ξl = λl whenever l > i +

p+1
2 , and

so hξ( j, k) = hλ( j, k) whenever ( j, k) is a node of ξ with j or k at least i +
p+1

2 . So for j > i +
p+1

2 the
entries in column j or row j of the p-power diagram for ξ are constant (since they are constant
in the diagram for λ), and so to prove the proposition it suffices to show that νp(hξ( j, k)) = 0
whenever ( j, k) is a node of ξ with j, k 6 i +

p−3
2 ; this automatically includes all nodes of ξ with

| j − k| 6 p−1
2 , since for k > i +

p−1
2 we have ξk 6 i − 1.

So suppose ( j, k) is a node of ξ with j, k 6 i +
p−3

2 . If j, k < i, then we have hξ( j, k) = hλ( j, k),
and this is not divisible by p, since if it were, then either hλ( j, j) or hλ(k, k) would be also,
contradicting Lemma 4.3(2). So we need only consider the case where at least one of j and k
lies between i and i +

p−3
2 . By replacing ( j, k) with (k, j) if necessary, we may assume that j 6 k,

and hence that i 6 k 6 i +
p−3

2 . Now we have λk+1 = ξk + 1, which gives hξ( j, k) = hλ( j, k + 1). If
this is divisible by p, then by Lemma 4.3(3) the entries in column k + 1 of the p-power diagram
for λ are constant; in particular, νp(hλ(i, k + 1)) > 0. But the (i, k + 1) rim hook of λ is a proper
subset of the (i, k) rim hook of λ, so has length strictly less than p; contradiction. �
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We also prove a converse to this result. First we state a simple lemma concerning self-
conjugate p-JM partitions; this is analogous to Lemma 4.3, and is proved in exactly the same
way.

Lemma 4.7. Suppose ξ is a self-conjugate p-JM partition.

1. If ( j, j) is a node of ξ, then νp(hξ( j, j)) = 0.

2. If ( j, k) is a node of ξ with νp(hξ( j, k)) > 0 and j 6 k, then all the entries in the kth column of the
p-power diagram for ξ are equal.

3. If ( j, k) is a node of ξ with νp(hξ( j, k)) > 0 and j > k, then all the entries in the jth row of the
p-power diagram for ξ are equal.

Proposition 4.8. Suppose ξ is a self-conjugate p-JM partition with the property that νp(hξ( j, k)) = 0

whenever ( j, k) is a node of ξ with | j − k| 6
p − 1

2
. Suppose λ is a self-conjugate partition obtained by

adding a rim hook of length p to ξ. Then λ is an R-partition.

Proof. Let ~ be the rim hook added to ξ to obtain λ, and write (i, k) for the hand node of ~. The
foot node must then be (k, i), and so we have

k − i = i − k + p − 1,

so that k = i +
p−1

2 .
So λ j = ξ j whenever j > i +

p+1
2 , and hence hλ( j, l) = hξ( j, l) whenever ( j, l) is a node of λ

with j or l at least i +
p+1

2 . If j > i +
p+1

2 , then ξ j < j, so the entries in row j and column j of the
p-power diagram for ξ are constant (by Lemma 4.7) and so the entries in row j and column j of
the diagram for λ are constant.

It remains to show that νp(hλ( j, l)) = 0 whenever j, l 6 i+ p−1
2 and ( j, l) , (i, i); since hλ(i, i) = p,

this will imply that λ is an R-partition with distinguished node (i, i). We assume without loss
of generality that j 6 l.

If j 6 l < i, then we have λ j = ξ j and λl = ξl, so that hλ( j, l) = hξ( j, l). This cannot be divisible
by p, since if it were, then either hξ( j, j) or hξ(l, l) would be too, contradicting Lemma 4.7.

If i 6 j 6 l 6 i +
p−1

2 , then we have λ j, λl 6 λi = i +
p−1

2 , so that

hλ( j, l) = λ j + λl − ( j + l) + 1

6 2
(
i +

p − 1
2

)
− (2i + 1) + 1

= p − 1,

so hλ( j, l) cannot be divisible by p.
Next we suppose that j < l = i. Then we have λ j = ξ j and λl = λi = i +

p−1
2 . So

hλ( j, l) = ξ j − j +
p + 1

2
;

if this is divisible by p, then so is

2(ξ j − j) + 1 = hξ( j, j);
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contradiction.
Finally we consider the case where j < i < l 6 i +

p−1
2 . In this case we have

hλ( j, l) = λ j − j + λl − l + 1

= ξ j − j + (ξl−1 + 1) − l + 1

= hξ( j, l − 1).

If this is divisible by p, then by Lemma 4.7 the entries in column l − 1 of the p-power diagram
for ξ are constant, and in particular hξ(i − 1, l − 1) is divisible by p. But |(i − 1) − (l − 1)| 6 p−1

2 ,
and this contradicts the assumption on ξ. �

Example. Suppose p = 5, and consider the partitions

λ = (14, 10, 5, 4, 3, 25, 14), µ = (12, 8, 5, 4, 3, 23, 14).

We have hλ(3, 3) = hµ(3, 3) = 5, and when we remove the (3, 3)-rim hook the resulting partition
ξ is a self-conjugate 5-JM partition, with ν5(hξ( j, k)) = 0 when | j − k| 6 2. When we remove
the (3, 3)-rim hook from µ, the resulting partition π is a self-conjugate 5-JM partition, but has
ν5(hπ(2, 4)) > 0. As a consequence, λ is an R-partition, but µ is not. We illustrate this with the
5-power diagrams of these partitions.

λ =

1
1

1

1 1 ξ =

1
1

1 1

µ =

1
1

1

1 1
π =

1
1

1 1

We can summarise our analysis of R-partitions in the following way. R-partitions are of
two distinct types:

I. self-conjugate partitions obtained by adding a rim ap-hook, for some odd a, to a self-

conjugate partition ξ with ξ1 6
p − 1

2
;
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II. self-conjugate partitions obtained by adding a rim p-hook to a self-conjugate p-JM parti-

tion ξ such that νp(hξ( j, k)) = 0 whenever | j − k| 6
p + 1

2
.

Note that these types are not mutually exclusive: for Type I, we do not require a > 1, and
clearly an R-partition of Type I with a = 1 is also an R-partition of Type II.

When p = 3, type I partitions are precisely those listed in the first case of Conjecture 4.2(1).

4.3 R-partitions on the abacus

As in [F2], we prove our main result by considering partitions on the abacus. We begin with
a description of the abacus display for p-JM partitions, which was given in a slightly different
form in [F2].

Proposition 4.9. [F2, Proposition 2.1] Let p = char(F). Suppose λ is a partition lying in a block B of
FSn, and take an abacus display for λ. Then λ is a p-JM partition if and only if:

1. λ(k) = ∅ for k , 0, p − 1;

2. λ(p − 1) is a p-regular p-JM partition;

3. λ(0) is a p-restricted p-JM partition; and

4. λ(k)1 + λ(l)′1 6 kBl + 1 for all k < l.

We seek a similar description for R-partitions. Recalling the discussion from §2.3 of the effect
of conjugation on abacus displays, we see that if we take an abacus display for a self-conjugate
partition in which the number of beads is a multiple of p, then

• runner p−1
2 is the middle runner, and contains exactly c beads, and

• for any i, the ith runner from the left and the ith runner from the right have numbers
summing to p − 1, and contain exactly 2c beads between them.

In fact, it will be more convenient for us to use an abacus in which the number of beads is
cp +

p+1
2 , for an integer c. Then the above statements imply the following lemma.

Lemma 4.10. Suppose λ is a self-conjugate partition, and take an abacus display for λ with cp +
p + 1

2
beads, for an integer c. Then:

• runner p−1
2 is the leftmost runner, and contains exactly c + 1 beads;

• for any i, the ith runner from the right and the (i + 1)th runner from the left will have numbers
summing to p − 1, and contain exactly 2c + 1 beads between them.

Now we can describe type I R-partitions on the abacus.

Proposition 4.11. Supposeλ is a self-conjugate partition, and take an abacus display forλwith cp+
p + 1

2
beads. Then λ is an R-partition of type I if and only if:

1. on any runner, the number of beads is either c or c + 1;
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2. λ
(p−1

2

)
has the form (b + 1, 1b) for some b; and

3. λ(i) = ∅ for all i , p−1
2 .

Proof. We prove the ‘only if’ part; the ‘if’ part is very similar. λ is obtained by adding a rim
ap-hook to a self-conjugate partition ξ with ξ1 6

p−1
2 . ξ has the same p-core as λ (in fact, ξ is

the p-core of λ), so property (1) will hold for λ if and only if it holds for ξ. Consider the abacus
display for ξ, which is obtained by sliding all the beads as far up their runners as they will
go. The condition ξ1 6

p−1
2 implies that the last bead in the abacus display occurs at or before

position cp + p − 1. In particular, the number of beads on any runner is at most c + 1. Now
Lemma 4.10 implies that the number of beads on any runner is either c or c + 1.

λ is obtained from ξ by adding a single ap-hook; this corresponds to moving a single bead
to a lower position on the same runner. If this runner is runner j, then we have λ(i) = ∅ for i , j.
The fact that λ is self-conjugate implies that λ(p − 1 − j) = λ( j)′, and so we must have j =

p−1
2 ,

and λ( j) = λ( j)′. Viewing runner j as an abacus with one runner, we see that λ( j) is obtained
from ξ( j) = ∅ by adding a single rim a-hook, which means that λ( j) is a hook partition, and
hence λ( j) =

(
a+1

2 , 1
(a−1)/2

)
. �

Example. If p = 5 and a is odd, then there are exactly four R-partitions of type I and weight a.
For example, if a = 5, these are

(13, 112) =

2 3 4 0 1v v v v vv v v vv v v v vv v v
v

, (13, 2, 111) =

2 3 0 4 1v v v v vv v v vv v v v vv v v
v

,

(13, 3, 2, 110) =

2 0 3 1 4v v v v vv v v vv v v v vv v v
v

, (13, 32, 110) =

2 0 1 3 4v v v v vv v v vv v v v vv v v
v

,

and the 5-power diagrams of these partitions are as follows.

2 1 1

1

1

2 1 1

1

1
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2 1 1

1

1

2 1 1

1

1

Now we turn to type II partitions.

Proposition 4.12. Suppose λ is a self-conjugate partition lying in a block B. Then λ is an R-partition
of type II if and only if:

1. λ(p − 1) is a p-regular p-JM partition;

2. λ(0) is a p-restricted p-JM partition;

3. λ
(p−1

2

)
= (1);

4. λ(k) = ∅ for k <
{
0, p−1

2 , p − 1
}
;

5. λ(k)1 + λ(l)′1 6 kBl + 1 for all k < l.

Proof. We prove the ‘only if’ part; the converse is similar. λ is obtained by adding a rim
p-hook to a self-conjugate p-JM partition ξ. Thus λ(k) = ξ(k) except for one value of k; since
λ is self-conjugate, this value must be p−1

2 . So λ
(p−1

2

)
is obtained by adding a rim 1-hook to

ξ
( p−1

2

)
= ∅, i.e. λ

(p−1
2

)
= (1). By Proposition 4.9, properties 1, 2 and 4 hold for ξ, and so they

hold for λ.
So it remains to show property 5. Since the block containing ξ has the same pyramid as B,

Property 5 follows from the properties of ξ, except possibly in the case where k or l equals p−1
2 .

Assuming k =
p−1

2 (the other case following by conjugation), the result is clearly true unless
l = p − 1. So it remains to show that p−1

2
Bp−1 > λ(p − 1)′1.

Write s = λ(p − 1)′1 = ξ(p − 1)′1. Since ξ is a p-JM partition, Proposition 4.9 tells us that
p−1

2
Bp−1 > s − 1; so property 5 can only fail if p−1

2
Bp−1 = s − 1. Assuming this, we take an abacus

display for ξ with cp +
p+1

2 beads. Then there are c + 1 beads on runner p−1
2 , and c + s beads on

runner p − 1. Since ξ(p − 1)′1 = s, there must be beads in the top c positions on runner p − 1,
followed by an empty space, at position x, say. We have

cp + 1 6 x 6 cp + p − 1. (∗)

Suppose the first bead below position x on runner p − 1 occurs at position x + dp. Moving
this bead up into the space at position x corresponds to removing a rim dp-hook ~ from ξ. Let
( j, k) be the node of ξ corresponding to ~; we calculate j and k.
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The fact that ξ is a p-JM partition together with Proposition 4.9(4) implies that there are no
beads on the abacus after position x except on runner p − 1, where there are s such beads. So
the bead at position x + dp corresponds to ξs (that is, x + dp = ξs + cp +

p+1
2 − s), and when it

is moved up to position x, it is still the sth lowest bead, so corresponds to the sth part of the
resulting partition. This means that removing ~ from ξ only affects the sth part of ξ, so ~ must
be a horizontal strip in row s. Hence ( j, k) is the leftmost node of this strip, i.e. j = s and

k = ξs − dp + 1

= x + dp − cp −
p + 1

2
+ s − dp + 1

= x − cp −
p + 1

2
+ s + 1.

But now (∗) yields |k − j| 6 p−1
2 , but this contradicts the definition of a type II partition. The

result follows. �

Example. Let p = 5 and consider the partition (24, 15, 11, 6, 5, 4, 35, 24, 19), which has the follow-
ing abacus display.

3 0 2 4 1v v v v vv v v vv v v v vv v v vv v v vv v vv v vvv

We can read off the 5-quotient of λ as
(
(3, 1),∅, (1),∅, (2, 12)

)
. (2, 12) is a 5-regular 5-JM partition,

and the block B containing λ has 0B2 = 2B4 = 3, 0B4 = 6. So λ is an R-partition, as we can also
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see from its 5-power diagram.

1 1
1
1

1

1 1 1

1

5 Proof of the ‘if’ half of Conjecture 4.2

5.1 The main result for type I partitions

In this section we prove that a Specht module corresponding to an R-partition of type I
has exactly two composition factors. In order to do this, we extend the set of partitions under
consideration. Say that a partition λ (not necessarily self-conjugate) is a super-hook if its p-core
ξ has ξ1, ξ′1 6

p−1
2 , and if its p-quotient satisfies λ

( p−1
2

)
= (b + 1, 1b) for some b, and λ(i) = ∅ for

i , p−1
2 . By Proposition 4.11, the super-hooks include the R-partitions of type I.

Lemma 5.1. Suppose ξ , ∅ is a partition with ξ1, ξ′1 6
p − 1

2
, and take an abacus display for ξ with

cp +
p + 1

2
beads. Then there are adjacent runners i and j, with i to the left of j, neither of which is runner

p−1
2 , such that runner j contains one more bead than runner i.

Proof. The fact that ξ1 6
p−1

2 means that the last bead on the abacus display is at or before
position cp + p − 1; on the other hand, ξ′1 6

p−1
2 , so the first empty space is at or after position

cp + 1. So every runner has beads in the top c positions, and no beads outside the top c + 1
positions. Furthermore, the leftmost runner contains exactly c + 1 beads, and among positions
cp + 1, . . . , cp + p− 1 there are exactly p−1

2 beads. From this we see that runner p−1
2 is the leftmost

runner.
Since ξ , ∅, it has a removable node. Hence for some x there is a bead at position x and an

empty space at position x− 1. If we let i, j the runners containing positions x− 1, x respectively,
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then the preceding paragraph implies that neither i nor j is the leftmost runner, and that there
are exactly c beads on runner i and c + 1 beads on runner j. �

Now we can prove the main result of this subsection.

Proposition 5.2. Suppose char(F) is an odd prime p, and λ is a super-hook. Then Sλ has exactly two
composition factors. In particular, every Specht module corresponding to an R-partition of type I has
exactly two composition factors.

Proof. We proceed by induction on |ξ|, where ξ is the p-core of λ. If ξ = ∅, then λ =
((

bp +
p+1

2

)
, 1bp+(p−1)2

)
. This is a ‘hook partition’, and the composition length of such a partition is

known thanks to Peel’s theorem [P, Theorem 2]; in particular, Sλ has exactly two composition
factors. Now assume ξ , ∅, let B be the block containing λ and take an abacus display for
B. By Lemma 5.1, there are adjacent runners i and j, neither of which is runner p−1

2 , such that
runner j has one more bead than runner i. Let A be the block of FSn−1 obtained by moving a
bead from runner j to runner i. Then (A,B) is a [w : 1]-pair, and the p-core π of A is properly
contained in ξ. In particular, |π| < |ξ| and π1 6 ξ1 6

p−1
2 , π′1 6 ξ

′

1 6
p−1

2 .
In the abacus display for λ, the beads on runners i and j are as high up as possible, since

neither i nor j equals p−1
2 . So there cannot be any bead on runner i with an empty space

immediately to its right. So by Proposition 2.3 Sλ has the same number of composition factors
as SΦ(λ), and Φ(λ) is a super-hook. By induction, SΦ(λ) has exactly two composition factors, and
the result follows. �

This enables us to prove the ‘if’ part of Conjecture 4.2 for p = 3.

Proof of the ‘if’ half of Conjecture 4.2(1). If λ has the form (r, 1r−1) or (r, 2, 1r−2) with r ≡ 2
(mod 3), then λ is an R-partition of Type I, and the result follows from Proposition 5.2.

Blocks of weight 1 are very well understood; in particular, a 3-block of weight 1 has a
decomposition matrix of the form

1 0
1 1
0 1

,

with the rows corresponding to partitions in decreasing dominance order. If λ is one of
these partitions, then it must be the middle one (since conjugation of partitions reverses the
dominance order), and hence Sλ has exactly two composition factors.

Finally, we look at the case λ = (33). The decomposition matrix for S9 in characteristic 3
appears in [J2], and shows that S(33) has two composition factors, namely D(6,3) and D(4,3,2). �

5.2 The main result for type II partitions

In this section, we address partitions of type II when p > 5. Again, we extend the class of
partitions under consideration. Say that a partition (not necessarily self-conjugate) is good if it
satisfies conditions (1–5) of Proposition 4.12. We shall prove the following.

Proposition 5.3. If char(F) = p > 5 and λ is a good partition, then Sλ has exactly two composition
factors.
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To prove this, we use use a sort of downwards induction, with the Rouquier blocks as the
initial case. First we show that property (5) of Proposition 4.12 allows us to induce Specht
modules appropriately.

Proposition 5.4. Suppose (B,C) is a [w : κ]-pair. Suppose that λ is a good partition in B. Then there
is a good partition Ψ(λ) in C such that Sλ and SΨ(λ) have the same number of composition factors.

Proof. Suppose an abacus for B is obtained from an abacus for C by moving beads from runner
j to runner i. Let Ψ(λ) be the partition obtained by swapping runners i and j in the abacus
display for λ. If we can show that there is no bead on runner i in the abacus display for λ with
an empty space immediately to the left (equivalently, there is no bead on runner i in the abacus
display for Ψ(λ) with an empty space immediately to the right), then the result will follow
from Proposition 2.3 and Lemma 2.1.

Suppose there are c beads on runner i and d beads on runner j in the abacus display for λ.
Since runner j lies to the left of runner i, we have iB j = d − c − 1. Write s = λ(i)1, t = λ( j)′1. The
given condition on λ then says that s + t 6 d − c. The lowest bead on runner i occurs in row
s + c of the abacus, while the highest empty space on runner j occurs in row d − t + 1. So every
empty space on runner j occurs after every bead on runner i, and the result follows. �

Corollary 5.5. Proposition 5.3 holds if and only if it holds for partitions in Rouquier blocks.

Proof. This follows from Proposition 5.4 and Lemma 2.5. �

It remains to prove Proposition 5.3 for Specht modules in Rouquier blocks; this is easy,
given the formula in §2.5 for the decomposition numbers in these blocks.

Proposition 5.6. Proposition 5.3 holds for partitions in Rouquier blocks.

Proof. Suppose λ is a good partition lying in a Rouquier block B. Recall that we have λ(i) = ∅

unless i ∈
{
0, p−1

2 , p−1
}
, andλ

(p−1
2

)
= (1). Suppose we have partitionsσ(1), . . . , σ(p), τ(0), . . . , τ(p−

1) with τ(0) = σ(p) = ∅ such that
∏p−1

i=0 cλ(i)
τ(i)σ(i+1) , 0. Then we must have σ(1) = λ(0) and

τ(p − 1) = λ(p − 1); σ
(p+1

2

)
and τ

( p−1
2

)
must equal (1) and ∅ in some order, and σ(i), τ( j) must be

∅ for all remaining values of i and j.
Now suppose µ is a p-regular partition in B, with

∏p−1
j=1 cµ( j)

σ( j)′τ( j) , 0. Since p > 5, we have

1 , p−1
2 and p+1

2 , p − 1, so given these values of σ(i), τ( j) we must have

µ(1) = σ(1)′, µ
( p−1

2

)
= τ

( p−1
2

)
, µ

( p+1
2

)
= σ

(p+1
2

)′
, µ(p − 1) = τ(p − 1)

and µ(i) = ∅ for all remaining values of i. So δλµ is non-zero only when µ is one of the partitions
µ1, µ2 with p-quotients

(∅, λ(0)′,∅, . . . ,∅, (1),∅,∅, . . . , λ(p − 1)),

(∅, λ(0)′,∅, . . . ,∅,∅, (1),∅, . . . , λ(p − 1))

(where the (1) occurs in position p−1
2 or p+1

2 ), and in fact we have δλµ1 = δλµ2 = 1. By Theorem
2.9 the Weyl modules ∆λ(0),∆(1),∆λ(p−1)′ are all irreducible, and so for i = 1, 2 and any νwe have

εµiν =

1 (ν = µi)

0 (otherwise).
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Hence by Theorem 2.4 the composition factors of Sλ are precisely Dµ1
and Dµ2

. �

This completes the proof of Proposition 5.3, and hence the proof of the ‘if’ part of Conjecture
4.2.
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