This is the first author’s version of a work that was accepted for pub-
lication in the Journal of Algebra. Changes resulting from the publishing
process, such as peer review, editing, corrections, structural formatting,
and other quality control mechanisms may not be reflected in this docu-
ment. Changes may have been made to this work since it was submitted
for publication. A definitive version was subsequently published in
J. Algebra 306 (2006) 76-103.
http:/ /dx.doi.org/10.1016/j.jalgebra.2006.01.054



Adjustment matrices for weight three blocks
of Iwahori-Hecke algebras

Matthew Fayers
Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.

Kai Meng Tan
Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543.

2000 Mathematics subject classification: 20C08, 20C30

Abstract

We compute the ‘adjustment matrices” for weight 3 blocks of Iwahori-Hecke algebras of type
A, in characteristic 2 or 3. This enables all the decomposition numbers for weight 3 blocks to be

calculated.
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1 Introduction

Let IF be any field, and g an invertible element of FF. Given a non-negative integer n, let H, =
Hr 4(S,) denote the Iwahori-Hecke algebra of the symmetric group &,,. This has generators Ty, ..., T;—1
and relations

(T, —q)(T;+1) =0 1<i<n-1)
T.TiTi = T TiTiyq (1<i<n-2)
TT, =TT, 1<i<j—2<n-3)

Of course, if g = 1 then H,, is simply the group algebra of &,,.

The algebra H,, arises in the study of groups with BN-pairs, and its representation theory has been
extensively studied. If g is not a root of unity in F, then H, is semi-simple; if g is a root of unity, then
the representation theory is very similar to the representation theory of &, in characteristic p, with the
prime p replaced by the integer e which is defined to be the least integer such that 1+ g+ - - +¢° 1 =
0 in F. One of the most important problems in the representation theory of H, is to determine the
decomposition numbers, i.e. the composition multiplicities of the irreducible modules in the so-called
Specht modules; in the case g = 1, these are the decomposition numbers in the usual representation-
theoretic sense. This problem remains open in general, but has been solved in some special cases.
If F has infinite characteristic (throughout this paper we use the convention that the characteristic of
[F is the order of the prime subfield of IF) then there is a recursive method — the LLT algorithm — for
calculating the decomposition numbers. If [ has finite characteristic, then we can still use the infinite
characteristic result: if we take a primitive eth root of unity 4’ in C, then the decomposition matrix for
H, may be obtained from the decomposition matrix for Hc,,(S,) by post-multiplying by a certain
square matrix with non-negative integer entries called the adjustment matrix for H,. So in effect the
problem of calculating the decomposition matrix of H, is equivalent to calculating its adjustment
matrix.

Another approach which enables us to determine some decomposition numbers for H, is to look
at the blocks of H, individually, and to concentrate on blocks of small weight. To each block of H,, is
associated a non-negative integer called the weight of the block, and the complexity of the represen-
tation theory of blocks of weight w increases with w. Blocks of weight 0 are simple (and indeed all
simple blocks have weight 0); and blocks of weight 1 are of finite representation type, and are well
understood. Blocks of weight two were addressed by Richards [14] who gave a combinatorial de-
scription of their decomposition numbers (assuming that char(F) # 2). Using the Jantzen—Schaper
formula, he showed that the decomposition numbers for weight 2 blocks are all at most 1 and that the
adjustment matrices for these blocks are trivial; this is in accord with James’s Conjecture, which sug-
gests that the adjustment matrix for a block of #,, of weight w should be trivial if w < char(F). The
first author [4] extended Richards’s work to characteristic 2 and computed the adjustment matrices
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in this case. Blocks of weight 3 have been studied by several authors in the case where char(F) > 5,
and the first author finally showed [5] that the decomposition numbers for such blocks are all at most
1, and verified James’s Conjecture for weight 3 blocks.

The purpose of the present paper is to calculate the adjustment matrices for weight 3 blocks of
H, in the case where the characteristic of IF is 2 or 3. The adjustment matrices remain mysterious
in general, and it is difficult to observe general phenomena, except in blocks whose weight is less
than char(F) (where James’s Conjecture predicts the adjustment matrix) and in so-called ‘Rouquier
blocks’, where the adjustment matrices are related to the decomposition matrices of g-Schur algebras
(although this relationship is only conjectural when g # 1). So the information in the present paper
may be helpful to those trying to spot patterns in adjustment matrices. However, the main result of
this paper is awkward even to state without introducing additional terminology.

In the remainder of this introduction we introduce the background theory we shall require, and in
Section 2, we review the known results for blocks of weight 1, 2 and 3. In Section 3, we introduce the
machinery and notation required to state our main theorem, and we prove some general properties
of adjustment matrices which facilitate an inductive proof of the main theorem. In the remaining
sections, we prove the main theorem in certain special cases which suffice to allow a general proof
by induction: we deal with the “principal” block of H3z, in Section 4, blocks with rectangular cores in
Section 5 and blocks with birectangular cores in Section 6.

Acknowledgement. This research was carried out while the first author was visiting the National
University of Singapore (NUS). He is very grateful to the second author for the invitation, and to
NUS for its hospitality. The second author is supported by Academic Research Fund R-146-000-
043-112 of NUS.

1.1 Background and notation

Mathas’s book [12] is now the standard introduction to the representation theory of H,, and we
take much of our notation from there. Note, however, that we use the Specht modules defined by
Dipper and James [2].

As stated above, g is an invertible element of the field I, and e is the least integer such that
1+g+---+¢°! = 0in F; we are assuming that such an integer exists.

We record here two items of notation we use for modules. If M is a module and 7 a non-negative
integer, then M®" denotes a direct sum of 1 isomorphic copies of M, and we write N ~ M" to indicate
that N has a filtration with 7 factors all isomorphic to M.

1.1.1 Partitions, Specht modules and the abacus

As usual, a partition of n is defined to be a decreasing sequence A = (A1, Ay, ...) of non-negative
integers whose sum is n. For each partition A of n one defines a Specht module S for H,. If Ais
e-regular (that is, if it does not have e equal positive parts), then S* has an irreducible cosocle D*, and
the modules D” give a complete set of irreducible H,-modules as A ranges over the set of e-regular
partitions of n.

A useful way to represent partitions of n is on the abacus. We take an abacus with e vertical
runners, and we mark positions on these runners from the top down; we then number the positions
with non-negative integers, so that the numbers 0, ..., e — 1 appear across the top of the abacus from
left to right, the numbersee, . .., 2e — 1 appear from left to right below these, and so on. For example,
if e = 3, the numbering is as follows:

WO
.
L UIN
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Given a partition A, we choose an integer r greater than the number of non-zero parts of A, and
define the beta-numbers B, ..., B+ by

ﬁi:/\i—i—r—i.

Now we place a bead on the abacus at position f; for each i. The resulting configuration is called an
abacus display for A.

One of the most useful features of the abacus is that it tells us in which block of H, a partition
lies (we abuse notation throughout this paper by saying that a partition lies in a block B to mean that
the Specht module S* lies in B). Given an abacus display for A, we slide all the beads as far up their
runners as they will go. The partition whose abacus display we obtain in this way is called the e-core
of A. This is a partition of n — ew for some non-negative integer w, which is referred to as the weight
of A. Nakayama’s ‘Conjecture” states that two partitions lie in the same block of H, if and only if
they have the same e-core. This automatically implies that they have the same weight, and so we
may speak of the (e)-core and the weight of a block. We also define the abacus display for a block by
specifying the number of beads on each runner, without specifying their positions.

In this paper we shall frequently talk of moving a bead on the abacus one place to the left. We wish
to include the case where the bead lies on the leftmost runner of the abacus, and we abuse notation
by saying ‘move a bead one place to the left’ to mean “‘move a bead from position j to position j — 1/,
evenif j =0 (mode).

1.1.2 Decomposition matrices and adjustment matrices

The central problem in the representation theory of H,, is to determine the composition multiplic-
ities [S* : D¥] for partitions A, u of n with u e-regular. These are usually recorded in the decomposition
matrix, which has rows indexed by partitions of n and columns by e-regular partitions of n, with
the (A, u)-entry of the matrix being [S* : D*]. By restricting attention to the partitions lying in a
particular block B of H;, one may speak of the decomposition matrix for B.

The following simple but very useful result on decomposition numbers follows from the fact that
H,, is a cellular algebra. Recall the usual dominance order > on partitions of n.

Lemma 1.1. [12, Corollary 4.17] Suppose A and y are partitions of n with y e-regular. Then [S* : D¥] =1,
while [S* : D] = 0 unless y = A.

The main object of study in this paper is the adjustment matrix for H,, which relates the decom-
position matrix for H, to that for an Iwahori-Hecke algebra over a field of infinite characteristic.
Recalling the integer e above, we fix a primitive eth root of unity 4’ in C. Given a block B of H,, let
7 be the e-core of B, and let BY be the block of H@,q/(Gn) with e-core 7; we say that BY is the block of
He,q (&y) corresponding to B. Then we have the following, which is proved using a form of modular
reduction.

Theorem 1.2. [12, Theorem 6.35] Suppose B and B are as above. Let D and Dy be the decomposition matrices
of B and B respectively, with rows indexed by partitions of n with e-core vy, and columns indexed by e-reqular
partitions of n with e-core y. Then there exists a square matrix A with non-negative integer entries and with
rows and columns both indexed by e-regular partitions of n with e-core <y, such that D = DyA.

The matrix A in Theorem 1.2 is known as the adjustment matrix for B. Given e-regular partitions
A and p in B, we write a),, for the (A, u)-entry of the adjustment matrix. Adjustment matrices were
introduced by James in [7]; James’s Conjecture asserts that if char(F) > w, then the adjustment matrix
for a block of H,, of weight w is the identity matrix.
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1.1.3 The Mullineux map

Let Ty,..., T,—1 be the standard generators of H,. Let § : H, — H, be the involutory automor-
phism sending T; to g — 1 — T;, and let * : H, — H, be the anti-automorphism sending T; to T;.
Given a module M for H,, define M* to be the module with the same underlying vector space and
with action

h-m=h'm,

and define M* to be the module with underlying vector space dual to M and with H,-action

he- f(m) = f("m).
(Note that in the symmetric group case g = 1, M* is simply M ® sgn, where sgn is the one-dimensional
signature representation, while M* is the usual dual module to M.)

Of course, the functor M — M? respects the block structure of H,; that is, if M and N lie in the
same block of H,,, then M? and N¥ lie in the same block. If a module M lies in a block B, then we
write BF for the block in which M lies, and we call Bf the conjugate block of B.

Now we look at the effect of these functors on Specht modules; let A’ denote the partition conju-
gate to A.

Lemma 1.3. [12, Exercise 3.14(iii)] For any partition A,
SV (§h)P,

Next we turn to the simple modules D*, for A e-regular. It follows from the cellularity of H, that
(DM)* = D*. If we let A° denote the e-regular partition such that (D*)# 22 D*", then ¢ is an involutory
bijection from the set of e-regular partitions of n to itself. This bijection is given combinatorially
by Mullineux’s algorithm [13]; we shall not describe this here, but we note that given an e-regular
partition A, the partition A° depends only on A and ¢, and not on the underlying field.

The functor M + M?* is a self-equivalence of the category of H,-modules, and we have the
following consequence for decomposition numbers.

Corollary 1.4. For any partitions A and y with p e-regular,
[} : D¥] = [sM : DI,
Combining this with Lemma 1.1, we get the following.

Corollary 1.5. Suppose A and p are partitions of n with u e-reqular. Then [S*” : D¥] = 1, while [S : DH] =
0 unless A = u®’.

1.1.4 Induction and restriction

If 0 < x < n, then H,_ is naturally a subalgebra of H,, and we have induction and restriction
functors between the module categories of these two algebras. Given a module M lying in a block B
of H, and given a block A of H,_, we write M|E for the projection onto A of the restriction of M
from H, to H,—x. Similarly, we write N T/’i for a module induced from A to H, and then projected
onto B.

For Specht modules and simple modules, there are various ‘branching rules’ describing the effects
of these functors. Suppose that we have an abacus display for B, and that r; and r; are runners on
the abacus with r, immediately to the right of r1. Let A be the block of H,_x whose abacus display
is obtained from that for B by moving x beads from r; to 1. Given a partition A in B, let A=%, ..., A~%
be the distinct partitions which may be obtained by moving x beads on runner r, one place to the
left. Similarly, given a partition vin A, let v*l,..., v be those partitions which may be obtained by
moving x beads on runner 1 one place to the right.
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Theorem 1.6. The Branching Rule [12, Corollary 6.2]
The module S* B has a filtration in which the factors are SN, ..., 8*", each occurring k! times. Similarly,
SY4E has a filtration in which the factors are sV, ..., 8", each occurring k! times.

For the simple modules D?, the situation is rather more complicated. Given A and B as above,
suppose that we have e-regular partitions A in B and u in A. We define the signature of A to be the
sequence of + and — signs obtained by examining runners r; and r, from bottom to top, writing a +
whenever there is a bead on runner r; with no bead immediately to the right, and writing a — when
there is a bead on runner r, with no bead immediately to the left. We now form the reduced signature
by successively deleting all adjacent pairs +—. If there are any — signs in the reduced signature, the
corresponding beads on runner r; are called normal. If there are at least x normal beads, then we let
A~ be the (e-regular) partition obtained by moving the x highest normal beads one place to the left.

We form the reduced signature of v in exactly the same way; if this contains any + signs, then the
corresponding beads on runner r; of the abacus are called conormal. If there are at least x conormal
beads, then we let v be the (e-regular) partition obtained by moving the x lowest conormal beads
one place to the right.

Theorem 1.7. [1, §2.5]
o If there are fewer than x normal beads in the abacus display for A, then D5 = 0. If there are exactly x

normal beads, then DA 5= (DA™ )@,

o If there are fewer than x conormal beads in the abacus display for v, then DV 15 = 0. If there are exactly
x conormal beads, then DY 152 (DV" )@,

We now consider the relationship between the modular branching rule and the Mullineux map.
Given an abacus display for B, it is a simple matter to construct an abacus display for B*: we simply
rotate the abacus through 180°, and then replace each bead with an empty space and each empty
space with a bead. If we do this with the abacus display described above for B and do the same
for A, then we find that the abacus display for A’ is obtained from that for B* by moving x beads
from one runner to the runner immediately to its left. Given an e-regular partition y in B*, we form
the reduced signature using these two runners as described above, and if there are at least x normal
beads, we define the partition »~. Then we have the following, which is essentially the main result
of [6].

Proposition 1.8. Suppose A is an e-regular partition in B. Then A~ is defined in A if and only if (A°)~ is
defined in A%, and if these partitions are defined then we have (A~)° = (A°)~.

1.1.5 The Jantzen—-Schaper formula

One of the most important tools for calculating and estimating the decomposition numbers of
H, is the (g-analogue of the) Jantzen-Schaper formula. We shall use this in several places in this
paper. Details of the formula may be found in [9]. We note that the formula allows a strengthening
of Lemma 1.1 and Corollary 1.5, by using a coarser form of the dominance order. Given partitions A
and u of n and with e defined as above, we say that A dominates y in the Jantzen—Schaper order if A = u
and if the Young diagram for y may be obtained from that for A by removing a rim hook of length
divisible by e and then adding a rim hook of the same length, or equivalently if an abacus display
for 4 may be obtained from an abacus display for A by moving one bead up its runner and moving
another bead down its runner. We extend this order transitively to give a partial order, of which
the usual dominance order is a refinement. We use the symbol > for this new order, which we use
exclusively from now on. Although this order depends on the integer ¢, no confusion should arise.
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1.1.6 Scopes equivalences

Various Morita equivalences for blocks of the same weight were found by Scopes [15]; her results
were generalised to Iwahori-Hecke algebras by Jost [10].

Suppose that A is a block of H,_, of weight w, and B a block of H, of weight w. Suppose that
there is an abacus display for B with runners 1 and r, such that:

e 13 lies immediately to the right of r¢;
e there are exactly x more beads on runner r; than on runner ry;
¢ by interchanging runners r, and r;, we obtain an abacus display for A.

Then we say that A and B form a [w : «|-pair.

Suppose that A and B form a [w : x]-pair with w < x, and let A be a partition in B. Then there
are exactly x beads on runner r; in the abacus display for A which do not have beads immediately to
their left. If we move each of these beads one place to the left, we obtain a partition in A, which we
denote as ®(A). We have the following.

Theorem 1.9. [12, p. 127] Let A, B and ® be as above. Then:
o D is a bijection between the set of partitions in B and the set of partitions in A;
o O(A) is e-reqular if and only if A is e-reqular;
e for any partition A in B,
SH«%N (Stb(/\) )K!, S@(/\) Tg’\’ (SA)K!;
o for any e-reqular partition A in B,

DA\LA/E (DqD(A))@K!, D¢(/\) Tig (D)L)EBK!;

e the correspondence D* <+ D®W) is induced by a Morita equivalence between B and A.

In view of Theorem 1.9, we say two blocks are Scopes equivalent if they form a [w : x|-pair for
some k > w. We extend this reflexively and transitively to define an equivalence relation on the set
of blocks of weight w, and we refer to an equivalence class as a Scopes class.

1.1.7 Pyramids

In order to understand the combinatorics of Scopes classes, Richards [14] defined the notion of a
pyramid. Let oy be an e-core, and choose an abacus display for y in which there is at least one bead on
each runner. Let p; < --- < p. be those integers such that there is a bead at position p; but no bead at
position p; + e, for each i. Then exactly one p; lies in each congruence class modulo e. We number the
runners of the abacus so that the bead at position p; lies on runner i for each i. For i < j the integer
p;j — pi is a positive integer not divisible by ¢, and it does not depend on the choice of abacus display

for . Given w > 0, we define
iaj:{ngpij (pj = pi < we)
w—1 (pj—pi> we)

for 1 <i < j < e. Weextend this notation to include all pairs of integers i < j by putting ;a; = w —1
ifi <O0orj> e If Bis the block of H,, with core v and weight w, then the set of integers ;4; is called
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the pyramid for B; we shall write ;a;(B) when it is not clear to which block we are referring. We shall
also use shorthands such as ;0; to mean ;2; = 0 and i1+j to mean ;a; > 1.

Note that our definition of the pyramid is slightly different from that of Richards. He defines the
pyramid using the integers ;A; = w — 1 — ;a;.

A crucial property of pyramids is the following.

Proposition 1.10. [14, Lemma 3.1 & Proposition 3.3] Two blocks of weight w are Scopes equivalent if and
only if they have the same pyramid.

2 Blocks of small weight

In this section, we review some notation and basic results for blocks of small weight. In the
interests of brevity, we state only essential results.

2.1 Blocks of weight 1

The following theorem is well known.

Proposition 2.1. Suppose B is a block of H,, of weight 1. Then there are exactly e partitions in B, which are
totally ordered by the Jantzen—Schaper ordering: A' > - -- 1> A°. Furthermore, A! is e-reqular if and only if
1 < i < e—1, and the decomposition number [S* : DV] equals 1if j = i or j = i — 1, and 0 otherwise,
irrespective of char(F). In particular, the adjustment matrix for B is trivial.

2.2 Adjustment matrices for blocks of weight 2

In this section, we give the results which describe the adjustment matrix for a block of H, of
weight 2; we shall need this in order to find the adjustment matrices for weight 3 blocks.

First we need to describe some notation for partitions in blocks of weight 2. Suppose B is a block
of H, of weight 2, and take an abacus display for B. We number the runners of the abacus as in
Section 1.1.7. If A is a partition in B, then the abacus display for A is obtained from the abacus display
for its core by moving two beads down one space each or by moving one bead down two spaces. We
write:

e A = [i,]] if the abacus display for A is obtained by moving two beads down one space each, on
runners i and j (where i may equal j);
e A = [i] if the abacus display for A is obtained by moving the lowest bead on runner i down two

spaces.

If the numbers of beads on the runners of the abacus are by, . . ., b, from left to right, we may refer
to this as the (b, . .., b.) notation. Note that our numbering of runners means that this notation for A
does not depend on the choice of abacus display.

Now we can describe the adjustment matrix for B.

Theorem 2.2. Suppose B is a weight 2 block of H,,, and that A and y are e-regular partitions in B.
1. [14] If char(F) > 3, then ay, = S,
2. [4, Corollary 2.4] If char(F) = 2, then
1 (A=[,i, p=1i], i1liliy1, 2<i<e)
ry = 1 ()\: [Z,Z], U= [Z,l—|—1], i—11i0i+1/ 2§i<€)
Oru  (otherwise).
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2.3 Blocks of weight 3
2.3.1 Notation for weight 3 blocks

In this section, we describe notation for blocks of weight 3, and note some basic results concerning
[3 : K]-pairs.

Suppose B is a block of H,, of weight 3, and fix an abacus display for B. If A is a partition in B,
then we write:

e A = [i] if the display for A is obtained from the display for the core of B by moving the lowest
bead on runner i down three spaces;

e A = [i,j] if the display for A is obtained by moving the lowest bead on runner i down two
spaces, and a bead on runner j down one space (where possibly i = j);

e A = [i,] k] if the display for A is obtained by moving three beads down one space each on
runners 7, j and k (which may coincide).

As with partitions of weight 2, we may refer to this as the (by, ..., b,) notation; we may even write
the partition [i] as [i]g or [i | by, ..., .| (and similarly for [, j] and [i, j, k]) to emphasise which block or
abacus display we are using. Where there is a risk of confusion, we shall be explicit about the weight
of a partition described using this notation.

An advantage of using our numbering of the runners of the abacus is that if A and B are blocks
forming a [3 : x]-pair with « > 3, then the map ® described in §1.1.6 becomes

[kl — (i) K,
il — il
[ — i

foralli,j, k.

2.3.2 Rougquier blocks

There is a class of blocks which is particularly well understood. These blocks are defined for any
weight, but we restrict our attention to blocks of weight 3.

Suppose B is a weight 3 block of H,, with pyramid (;a;). We say that B is Rougquier if ;a; = 2 for
alli < j.

It is easy to verify which partitions in a Rouquier block are e-regular:

e [i] is e-regular if and only if i > 2;
e [i,j] is e-regular if and only if i,j > 2;
e [i,], k] is e-regular if and only if i, j, k > 2.

One particular advantage of Rouquier blocks is that, using a theorem of James, Lyle and Mathas,
we can derive information about the adjustment matrices in a very direct way from the decomposi-
tion numbers. For blocks of weight 3, this is actually sufficient to calculate the adjustment matrices
completely. In order to state the result we need, we define an equivalence relation on the partitions
in a Rouquier block. Given an abacus display for a partition A, we reach the display for the core of A
by moving a bead up one space on the abacus three times. We define the i-mass of A to be the number
of these moves which take place on runner i. For example, the i-mass of the partition [, i, j] is 2 while
the k-mass of this partition is 0, if i # j # k # i. Given partitions A and p, we write A <+ p if and only
if the i-mass of A equals the i-mass of y for each i.
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Proposition 2.3. [8, Proposition 2] Suppose B is a Rouquier block of H,,. If A and y are e-reqular partitions
in B, then
o {[sA :DM (A< p)
A 0 (otherwise).

We shall use this result later in order to calculate the adjustment matrices for Rouquier blocks
explicitly. These will be used to deal with difficult cases in the inductive proof of our main theorem.

2.3.3 [3: «]-pairs

In studying weight 3 blocks, [3 : k|-pairs are a vital tool. Since blocks forming a [3 : x]-pair with
k > 3 are Morita equivalent, the study of blocks of weight 3 centres around [3 : 1}- and [3 : 2]-pairs.
Here we set up some notation and prove some basic results for such pairs, following Martin and
Russell [11].

Suppose A and B form a [3 : «|-pair, and that the abacus display for B is obtained from that for
A by swapping the adjacent runners j and k, where j < k (recall our numbering system for runners
in Section 1.1.7). We say that a partition A in B is exceptional for this [3 : x]-pair if there are more
than x beads on runner k of the abacus display for B with no bead immediately to the left, and non-
exceptional otherwise. Similarly, we say that a partition v in A is exceptional if there are more than x
beads on runner j of the abacus display for v with no bead immediately to the right. Note that if A is
a partition in B, then there are always at least x normal beads on runner k of the abacus display for
A; we define ®(A) to be the partition in A obtained by moving the x highest normal beads one place
to the left.

If A is a non-exceptional partition, then there are exactly x beads on runner k with no bead im-
mediately to the left, and so ®(\) is obtained by moving these x beads to the right. In particular, if
x > 3, then the definition of ® agrees with the definition in §1.1.6, since in that case every partition
in B is non-exceptional.

If A is e-regular, then we say that the simple module D* is exceptional if there are more than x
normal beads on runner k of the abacus display for A. We make a similar definition for A: if v is
an e-regular partition in A we say that DV is exceptional if there are more than x conormal beads on
runner j.

The following is then a familiar result in the study of weight 3 blocks.

Proposition 2.4. Suppose that A and B form a [3 : k|-pair as above, and that A is a partition in B.
o D is a bijection between the set of partitions in B and the set of partitions in A.
o O(A) is e-reqular if and only if A is.
o If A is non-exceptional, then
S B (SO SO 4B o (G,
e If A is e-reqular and D" is non-exceptional, then

DA\l/ig (DQ(A))@K!, D@()\) TAg (D/\>®K!.

o If Ais e-regular and D" is exceptional, then D*|E and D®W) 1B are not semi-simple.

We also need the following.
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Lemma 2.5. Suppose A and B form a [3 : «|-pair, and define ® as above. Let @' be the function from the set of
partitions in B to the set of partitions in A* defined in the same way. If A is an e-reqular partition in B, then

'(A%) = (®())°,
and D" is exceptional if and only if D" is exceptional.

Proof. This follows immediately from Propositions 1.8 and 2.4. O

Now we examine the cases ¥ = 1 and 2 in more detail.

234 [3:1]-pairs

Suppose that A and B form a [3 : 1]-pair, and that the abacus display for B is obtained from that
for A by swapping runners j and k. Then there are 3e exceptional partitions in each of A and B, which
we denote as follows (with 1 < < e):

A B
5 = 00 (FR [k k1) (1 # k)
il =k o = kKK (I=j)
5 = i,k 1] (1K) (kK] (I=k)
kj  (1=k) g = k1) (1 #Fk)
[k, k1] (1 #j,k) k] (I=k)
o= (kKK (1=]) v = 1] (1 #k)
kkl  (1=k) il (=k).

The exceptional simple modules in A and B are the modules D* and D* for those [ such that &,
is e-regular. The bijection ® acts on the exceptional partitions as follows:

CD:DCN—)RI
Br— 7
Y — By

We now give some results on the decomposition numbers of blocks forming a [3 : 1]-pair. Let A
and B be as above, and let C be the block of weight 1 whose abacus display is obtained from that for
B by moving a bead from runner j to runner k. We let A > - - - > A¢ be the partitions in C. We get the
following result on induction and restriction between B and C from Theorems 1.6 and 1.7.

Proposition 2.6. Let B and C be as above. Then there is a permutation 7w € &, such that:

1. if A is a partition in B, then

GA4Co S (if A is of the form a1y, Bty OF V)
B 0 otherwise);
(

2. if A is an e-reqular partition in B, then

DG DM (if A is of the form a(;))
0 (otherwise).
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Corollary 2.7. The partition o is e-regular if and only if 1 <1 < e — 1. In this case, D*~() appears exactly
once as a composition factor of each of

Shn(l) Sﬁn(z), S0, S&(i+1) Sﬁn(m), Sr(+1)

and does not appear as a composition factor of any other Specht module.

Proof. This follows at once from Proposition 2.6, the decomposition matrix of C described in Section
2.1, and the fact that induction is an exact functor. ]

Corollary 2.8.If 1 <1 < e —1, then
ol
Xn(y = VYr(+1)-
Proof. By Corollary 1.5, if A is an e-regular partition then A°’ is the least dominant partition such that
[S*": D] > 0. The result follows since Xr (1) B> Xr(i41) and & > By > 7 for any [. O

2.3.5 [3:2]-pairs

In this section we review some background on [3 : 2]-pairs; the notation here is less complex than
for [3 : 1]-pairs.

Suppose A and B form a [3 : 2]-pair, and that an abacus display for B is obtained by swapping
runners j and k of an abacus display for A. We use the following notation for the exceptional parti-
tions in A and B:

A B
x = /] o = [k kK|
B o= ik B = [ikK
¥ = [jkA Y = [k
0 = [k kK| s = j]

The partitions « and « are always e-regular, and the only exceptional simple modules for this pair
are D* and D*. The bijection ® has the following effect on the exceptional partitions:
O:ar—uw
Br— 6
Y=Y
5— B.
Let C be the block of weight zero whose abacus display is obtained from that for B by moving a

bead from runner j to runner k. Let v denote the unique partition in C.

Proposition 2.9.
1. If A is a partition in B, then

RN {sv (if A =a, B, 7 or 8)

0  (otherwise).

If in addition A is e-reqular, then

~ D" (A =u)
D = {0 (A # ).
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2. The simple module D* appears exactly once as a composition factor of each of S*, SP, SV, S°, and does not
appear as a composition factor of any other Specht module.

Proof. Part (1) follows from Theorems 1.6 and 1.7. Part (2) then follows from the exactness of induc-
tion and the fact that S = D". O

3 The main theorem

The statement of the main theorem is rather complicated. To begin with, we consider Rouquier
blocks. In the symmetric group case, the adjustment matrices for Rouquier blocks of all weights
have been computed (in terms of decomposition matrices for Schur algebras) by Turner [17], and it
is conjectured that an analogue of his result holds for Iwahori-Hecke algebras generally. Here, we
effectively prove this conjecture for weight 3 blocks; it turns out to be straighforward to compute the
adjustment matrices using the Jantzen—-Schaper formula in this case.

With the aid of Proposition 2.3, it suffices to calculate the decomposition numbers d,, for those
pairs (A, ) of e-regular partitions with y > A and A <> pu. For weight 3 blocks, such pairs are as
follows:

e A=[i,i], u=1[i](2<i<e);

e A=1[iii, pu=1[](2<i<e);

e A=1[i,ii], p=1[,i] (2<i<e);

e A=1[i, ik, u=1[i,k] (2<ik<e i#k).

Using the Jantzen-Schaper formula, we obtain the following.

Proposition 3.1.
1. Suppose char(F) = 2, and B is a weight 3 Rouquier block of H,,. Then

0 (A=Tii], u=1[i)
o )1 (A=, p=1i])
[S*: DM = 0 (A=1[ii,i], u=[ii])
1 (A=[ii k], p=[i,k],i#k).

2. Suppose char(IF) = 3, and B is a weight 3 Rouquier block of H,,. Then

1 (A=l = i)
oo ==
S D= A il = i)
0 (A= [iik], u = [i,K], i #K).

The proof of Proposition 3.1 is completely straightforward; note that to estimate the decomposi-
tion number [S* : D*] using the Jantzen-Schaper formula, it suffices to calculate the decomposition
numbers [S” : D¥] for those partitions v with y > v > A. If A = [i] and 4 = [, i, i], then the only such
v is [i,i], while if (A, u) is any of the other pairs given above, then there is no such v. We leave the
calculations to the reader.
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It turns out that the non-zero entries in the adjustment matrices for weight 3 blocks ‘come from’
the Rouquier blocks by induction. We shall make this precise shortly, but first we consider how
induction and restriction of simples in a [3 : k|-pair are related to adjustment matrices.

Suppose A and B are blocks of H,,_, and H, forming a [3 : x]-pair, and recall the map ® defined
in Section 2.3.3.

Lemma 3.2. [5, Lemma 4.3] Suppose that A and B are as above. Suppose A, y are e-regular partitions in B.

1. If D¥ is exceptional, then
= Ao ()@ () = OAp-

2. If D" is non-exceptional, then
Tap = A1) (p)-

Using Proposition 3.1 and Lemma 3.2, it is possible to calculate many entries in the adjustment
matrices of weight 3 blocks. We define a Scopes sequence to be a sequence By, . .., B, of weight 3 blocks
such that for 1 < i < r, B;_1 and B, form a [3 : k;]-pair for some ;. If A is an e-regular partition in By
and A is an e-regular partition in B,, then we say that A induces semi-simply to A via By, ..., B, if there
are e-regular partitions A = AOAD, A = & lying in By, ..., B, respectively such that DM is
non-exceptional for the [3 : «;]-pair (B;_1, B;), and ®(A()) = AU~1) for each i, where @ is the map
defined in Section 2.3.3 for this pair. If there is a similar sequence A = A0 A = X such that

®(AD) = A=) for each i, and exactly one DM is exceptional, then we say that D" induces almost
semi-simply to D* via By,...,B,. If A and A are e-regular partitions lying in weight 3 blocks B and C
respectively, then we say that A induces (almost) semi-simply to A if there is some Scopes sequence
B = By, ..., B, = C such that A induces (almost) semi-simply to A via By, ...,B,.

Now we can state our main theorem. Suppose A and p are e-regular partitions lying in a weight
3 block B of H,,.

If char(F) = 2, we define 2,, to equal 1 if the pair (A, i) satisfies one of the following conditions:

e there is a Rouquier block C and 2 < i < e such that A induces semi-simply or almost semi-
simply to [i,i,i]c, while 4 induces semi-simply to [i]c;

e there is a Rouquier block C and 2 < i # k < e such that A induces semi-simply to [i, i, k|, while
y induces semi-simply to [i, k]c.

If A and p do not satisfy either of the above conditions, then we set 4);, = 6.
If char(IF) = 3, we define 4, to equal 1 if the pair (A, ) satisfies one of the following conditions:

e there is a Rouquier block C and 2 < i < e such that A induces semi-simply to [7,,i]c, while u
induces semi-simply to [i,i]¢;

e there is a Rouquier block C and 2 < i < e such that A induces semi-simply to [i,i]c, while u
induces semi-simply to [i]c.

If A and u do not satisfy either of the above conditions, then we set ), = 6.

Theorem 3.3. Suppose B is a weight 3 block of H,, and that A and y are e-reqular partitions in B. Then
a Ap = a Ay

It will help with the proof of Theorem 3.3 (and it may also be more useful to the reader) to have
a more explicit description of those pairs (A, i) satisfying @5, = 1. In fact, we give a complete
description of partitions inducing semi-simply to any given e-regular partition in a Rouquier block,
as well as those inducing almost semi-simply to the partition [7,7,i]. An explicit (induction-free)
description of the adjustment matrices for weight 3 blocks may be inferred from this.
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Proposition 3.4. Suppose A is an e-regular partition lying in a block B, and that [x] is a symbol of the form
li], [i,j] or [i,j, k] (2 <i < j < k). Then A induces semi-simply to the partition [*|c in some Rouquier block
C if and only if A, [] and the pyramid for B satisfy one of the following sets of conditions.

[*] A Conditions on pyramid for B
li]B i2i41
[1] li,i+1]p il i1, 17 i
[i,i—l—l,i—l—z]B i0iy2
i i _ .[i{i]B i—117i1t
[l, 1,1+ 1]3 i—11+i0i+1
[i,7,1] i3, 15 12
[i,/]B 1" i1, 2
[i,]] i+1,]]s i0i4117;
li,],7lB i-117j, 17, i10;
j,i]B 1717,
i L iy 01 e
li,j,j+1]s i17;0j41
j,j,j+ 1B z'—11+j/+i01+01+1
T i, 715 VST
[i,1,]] ik !
IBHIE i-12j, i0;
L [i,],]]B i2j, j117;
i j.] U J.jlB i-12j, ilj, j-11;
[i,j,k]B i1+j1+k
li,j, K] li, k, K] 2k, j+—11+k, iok
. j. kB i-1175, 017
[k, k, k] i-126, il 11k Ok

Moreover, if one of these sets of conditions holds, then for any Scopes sequence B = By, ..., B, with B, a
Rougquier block, A induces semi-simply to [x|p, via By, ..., B,.

Proof. Given [x], let S[«] be the set of partitions A given in the table. For any weight 3 block B there is
a Scopes sequence B = By, ..., B, with B, a Rouquier block [3, Lemma 3.1], and so it suffices to prove
the following two statements.

1. If A is an e-regular partition lying in a Rouquier block B, then A € S[«] if and only if A = [«]3.

2. If A and B are weight 3 blocks forming a [3 : «]-pair and A is an e-regular partition lying in B,
then:

(a) if D* is non-exceptional for this pair, then A € S[#] if and only if ®(A) € S[x|;
(b) if D" is exceptional for this pair, then ®(1) ¢ S[*].

Part (1) is easy to verify, given the pyramid for a Rouquier block. Part (2) is straightforward (albeit
tedious) to check, given the descriptions of ® in 2.3. O

We need the corresponding result for ‘almost semi-simple’ induction of A to [7, 7, i].

Proposition 3.5. Suppose A is an e-reqular partition lying in a weight 3 block B of H,, and 2 < i < e. Then A
induces almost semi-simply to the partition [i, i,i]|c for some Rouquier block C if and only if A and the pyramid
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for B satisfy one of the following conditions.

A Conditions on pyramid for B
[i—1] i—11i, i-12i11
[i—1,i+1] i—11i, i—1li1
[i,i —1] i—10,17 i1
[i—1,i,i+1] i-10i0i41, i—11ip1
li,i+1,i+1] i—10i41, i—21"i41

Moreover, if A satisfies any of these conditions and B = By, ..., B, is a Scopes sequence with B, a Rouquier
block, then A induces almost semi-simply via this sequence to [i,i,i]p,.

Proof. This is proved similarly to Proposition 3.4. Let S be the set of partitions described. Then it
suffices to prove the following two statements.

1. & does not contain any partition lying in a Rouquier block.

2. If A and B are weight 3 blocks forming a [3 : k]-pair and A is an e-regular partition lying in B,
then:

(a) if D" is non-exceptional for this pair, then A € S & ®(A) € S;

(b) if D is exceptional for this pair, then ®(A) € S if and only if A induces semi-simply to
p p y ply
i,i,i|c for some Rouquier block C.
q

Again, (1) is easy, while (2) can be checked using the description of ® and that of the partitions in-
ducing semi-simply to [i, i, i]¢ listed in Proposition 3.4. O

For the remainder of this section, we state some simple results about adjustment matrices which
will help us to prove Theorem 3.3, and we show that our main theorem is compatible with these.

Lemma 3.6. [5, Lemma 4.2] Suppose B is a block of H,, and that A and y are e-regular partitions in B.
1. El/\‘u = ﬂAoHo.
2. Ifan, # 0, then p = A and A°" & p®'.

The next result shows how certain entries in the adjustment matrix may be derived from the
adjustment matrices for blocks of weight less than 3. Suppose u is an e-regular partition lying in a
weight 3 block B of H,,. We say that y is lowerable if there is a block C of H,_; of weight 0, 1 or 2 such
that D¥|B£ 0.

Proposition 3.7. Suppose A and y are e-regular partitions in a weight 3 block B of H,, and suppose C is a
block of H,—1 of weight 0, 1 or 2 with D | B+ 0.

1. IfD/\ig: 0, then ayy, = 0.
2. If DM|B+£ 0, then there are e-regular partitions A~ and p~ in C such that
pDNg=D',  DME=DF

and

Ay = Ar-pu—-
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Proof. Given an abacus display for B, the abacus display for C is obtained by moving a bead from
runner j to runner 7, where runner i lies immediately to the left of runner j. The fact that C has weight
0, 1 or 2 means that in the abacus display for B the number of beads on runner i is at least that on
runner j. Using Theorem 1.7, we find that the restriction of any simple module from B to C is either
0 or simple. So certainly there is an e-regular partition = with D¥ [~ DI and either D* |B= 0
or there is an e-regular A~ with D* 2=~ D} . Moreover, D¥ is the only simple module in B which
restricts to give D¥ .

Let B” and C° be the blocks of Hc 5 (&,) and H¢ g (S,—1) corresponding to B and C. Let D and E
be the decomposition matrices for BY and CY; let B and C be the adjustment matrices for B and C, so
that the decomposition matrices for B and C are DB and EC respectively.

Let S be the ‘Specht branching matrix” for restriction from B to C: this has rows indexed by
partitions in B and columns indexed by partitions in C, with the (A, v)-entry being the multiplicity of
S" in the Specht filtration for S*|2 given by Theorem 1.6. Since the Branching Rule is independent of
characteristic, S is also the Specht branching matrix for restriction from B® to C°. Let T be the ‘simple
branching matrix” for restriction from B to C: here the rows and columns are indexed by e-regular
partitions in B and C respectively, and the (y, &)-entry is the composition multiplicity [D* |B: D¢].
By Theorem 1.7 the restriction of a simple module from B to C (or from B? to C') is either simple or
zero, and if it is non-zero it is described in a characteristic-free way, so T is also the simple branching
matrix for restriction from B to C°.

By exactness of restriction from B to C, we get

DBT = SEC,
and by exactness of restriction from B° to C? we get
DT = SE,

so that
DBT = DTC.

Since D has full column rank, we may cancel it to get
BT = TC.

We compare the (A, u~)-entries of both sides. We have
(BT)AV— = ZHAV[DVJ,(B; D’[] = d)\y-
v
On the other hand, we have

(TC)/\;A— = Z[DAigi DC]HCV‘
g

T (D/\\ng DM 7£ 0)
o (DM E=0).

O

In order to use Lemma 3.2 and Lemma 3.6(2), we must show that they are compatible with Theo-
rem 3.3.

Lemma 3.8. If A and y are e-regular partitions lying in a weight 3 block B of H,, then Gyeye = dpy.
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Proof. This is certainly true if B is a Rouquier block, where the effect of the Mullineux map may
be read from [16, Proposition 3.3]. For an arbitrary weight 3 block B, take a Scopes sequence B =
By, ..., B; such that B, is Rouquier; then A and p induce semi-simply to partitions A and i via
By, ..., B, if and only if A° and u#° induce semi-simply to A° and 71° via Bﬁ, e, BH, by Lemma 2.5;
a similar statement applies for the case where A induces almost semi-simply to [, i, i]3,. ]

Proposition 3.9. Suppose A and B are blocks of H,—y and H, forming a [3 : k|-pair, and that A and y are
e-reqular partitions in B.

1. If D¥ is exceptional, then

A = Ao\ )o(n) = Orp-

2. If D" is non-exceptional, then
B = Bone(n)

Proof.
L. If A # p and either 4y, = 1 or dg(1)p() = 1, then it is easy to check, using the definition of
a), and Propositions 3.4 and 3.5, that D¥ cannot be an exceptional simple module for the pair
(A, B).

2. By (1), we can assume that D¥ is non-exceptional. Then, by the last statement in Proposition 3.4,
we find that A and p induce semi-simply to given partitions [*|c and [t]c for some Rouquier
block C if and only if ®(A) and ®(u) do; a similar statement holds for the case where A induces
almost semi-simply to [i, i, i]c, using the last statement of Proposition 3.5.

O

The following corollary follows immediately from Proposition 3.9 and Lemma 3.2, since Theorem
3.3 clearly holds for Rouquier blocks by Proposition 3.1.

Corollary 3.10. Suppose A and y are e-reqular partitions lying in a block B of weight 3. If A induces semi-
simply to some partition lying in a Rougquier block, then Theorem 3.3 holds for the pair (A, i), i.e. ay, = Ay,

Now we describe the strategy of our proof of Theorem 3.3, which is by induction on n. Suppose
A and p are e-regular partitions in a weight 3 block B of H,, and there is a block A of H,_, forming a
[3 : x)-pair with B. If D" is non-exceptional or D¥ is exceptional for this pair, then Theorem 3.3 holds
for the pair (A, i) by induction, Lemma 3.2 and Proposition 3.9. So we may assume that for every
such A, D* is exceptional and D is non-exceptional for the pair (A, B). As D* cannot be exceptional
for two different such pairs, we may assume that there is at most one such A, and that we have x = 1
or 2. This means that B is one of three types of block, which we deal with in the remaining three
sections.

4 The principal block of Hs3,

As an initial case for our inductive proof of Theorem 3.3, we consider the block B of H3, with core
&. This has a pyramid ( jax) with ;0 whenever 1 < j < k < ¢, and may be represented on an abacus
with the (3°) notation.

Note that every e-regular partition in B is lowerable. This enables us to calculate the adjustment
matrix for B using Proposition 3.7. In characteristic 3, we immediately deduce a5, = J,, for all e-
regular A and y in B, by Theorem 2.2(1). If char(F) = 2, we need to consider some weight 2 blocks of
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Hsze—1. There are e — 1 of these, which we label By, ..., B,_1. The block B; has core (i, 15*1*i), and its
abacus display is obtained from that for B by moving a bead from runner i + 1 to runner i. Thus B,
may be represented with the (31*1,4, 2, 33*1*1) notation for partitions of weight 2. The pyramid for
B; has

e 0 I<j<k<ior2<j<k<e—lori+1<j<k<e)
M1 (otherwise).
Looking at Theorem 2.2(2), we see that B; has a non-trivial adjustment matrix if and only if there is
some j with ; 11;. This happens only fori =1, j=2andi=e¢—1, j=e.
In By, we find that we have a,; = 1 with v # ¢ if and only if

- _ 2,3] (e>=3)
12,2, ¢ {m (e =2).

To use Proposition 3.7 we need to find the e-regular partitions A and u in B such that v = A~ and
¢ = u~. By Theorem 1.7, these are

A:{@aﬂ (e >3)
2,1] (e=2),

(Note that e cannot equal 4 (or indeed any even integer greater than 2) when char(F) = 2.) So we get
ay, = 1 for this pair.
In B,_; we have a, = 1 with v # ¢ if and only if

v=led, &=[d,
giving
A=lee—1], i =lel.
Summarising, we have the following.

Proposition 4.1. Suppose B is the block of Ha, with core &, and A and y are e-regular partitions in B.

1. If char(FF) = 2, then we have

A= [e,e— 1]/ H= [6])
A=1[332], u=[234], ¢>5)
A=1[332], u=23], e=3)
otherwise).

(
a)w = E
(

2. If char(F) = 3, then we have a,, = xy-

By checking the definition of 4,, together with Propositions 3.4 and 3.5, we find that Theorem 3.3
holds for B.
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5 Blocks with rectangular cores

In this section, we suppose that B is a weight 3 block of H; and that there is exactly one block
A forming a [3 : k]-pair with B, with ¥ = 1. This means that B has a core of the form (x*) for some
x,z > 0 with x +z < e. We puty = e — x — z, and use the (3%,4%, 3Y) notation for partitions in B. We
can easily calculate the pyramid for B: we have 0;if 1 <i<j<x+yorx+1<i<j<e while,l;
ifl<i<xandx+y+1<j<e

By induction, Lemma 3.2 and Proposition 3.9, we can show that a,, = a,, for partitions A and
y# in B unless D" is exceptional and D* is non-exceptional, for the [3 : 1]-pair (A, B). Thus we
assume from now on that D* is an exceptional partition, and hence A = [x +y + 1,x +y + 1] or
[x+y+1,x+y+1,1] for some ! # x, while D¥ is a non-exceptional partition, and we aim to show
ayu = d,, for these partitions. Below we give the values of 4, for such A and p.

Lemma 5.1. Suppose B is as above, and that A and y are e-reqular partitions in B with D" an exceptional
simple module and D" a non-exceptional simple module for the pair (A, B).

e Ifchar(F) = 2, then

1 A=[x+2x+3,x+3, p=[x+2,x+3], y=2z=1)
=141 A=[x+2,x+3,x+3], p=[x+2,x+3,x+4], y=2,2>2)
0 (otherwise).

e Ifchar(F) = 3, then

A=x+1Lx+1, u=[x+1,y=02z=1)
A=x+Lx+1Lx+2], u=[x+1x+2],y=0,z=2)
A=x+1Lx+1L,x+2, pu=[x+1,x+2,x+3],y=0,z>3)
otherwise).

O =, =
N TN TN /N

5.1 The case where i is lowerable

First we suppose that i is lowerable. This means that we may calculate 4, using Proposition 3.7.
We suppose C is a block of H,,_1 of weight 0, 1 or 2 such that D¥ |B+ 0. If C has weight 0 or 1 or
if char(F) = 3 or if D* |B= 0, then we get 1y, = 0 from Proposition 3.7 and Theorem 2.2. So we
suppose that C has weight 2, that char(F) = 2 and that D*| 2+ 0. The fact that C has weight 2 means
that the abacus display for C is obtained from that for B by moving a bead from runner j to runner
j—1,wherej # 1,x+1,x+y+ 1. The fact that D*| B+ 0 then implies that A = [x +y+1,x +y +1,]]
and that j # x, x +y + 2. We then find that D*| 2~ D%, where

x+y+1Lx+y+1 (2<j<x—-1)
A=< [x+yx+y (x+2<j<x+y)
x+y+2,x+y+2] (x+y+3<j<e)

In order for a,, to be non-zero, A must be of the form [i, i] with ;_;1;in C. Examining the pyramid for
C, we see that this happens if and only if y = 2 and j = x + y. In this case we get a5; = 1 only when
fi=[x+yx+y+1],inwhichcasey = [x+y,x+y+1jifz=landpy=[x+y,x+y+1,x+y+2]
if z > 2. Comparing this with Lemma 5.1, we see that a,, = 4), when p is lowerable.
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5.2 The case where y is not lowerable

In this section, we suppose y is not lowerable. A list of such y is given in Table 1. This is essentially
the same as Table 1 from [5], but contains nine extra cases which arise when e is less than 5. There are
fifty-nine cases in all, each of which is labelled with a pair of letters. With each y we give the partition
1°', which depends on the values of x, y and z. The labelling reflects the Mullineux map, so that the
form of the partition #® may be found by interchanging the two letters and interchanging x and z.

Our approach for these partitions will be to induce the simple modules D* and D* up to simple
modules D* and D¥ in a block C where we can easily calculate az;- To aid us, we introduce some
notation for induction. Suppose v is an e-regular partition lying in a weight 3 block D, and take an
abacus display for D. Suppose the number of beads on runner i of the abacus exceeds the number
of beads on the runner to the immediate right by ¥ > 1, and let D; be the block whose abacus is
obtained by interchanging runner i with the runner to its right. Then D and D; form a [3 : x]-pair.
If DY is non-exceptional for this [3 : x]-pair, then define f;(v) to be the e-regular partition such that
DV Tg"g (Dii))®*' and leave f;(v) undefined otherwise (so if §;(v) is defined, then ®(f;(v)) = v,
where @ is the map defined in Section 2.3.3).

Recall that we are seeking to calculate a,,, where A equals [x +y +1,x +y+1]or [x +y+1,x +
y+1,1] for some I, and where y is one of the partitions listed in Table 1. By Lemma 3.6(2), p > A is a
necessary condition for a,, # 0. This means that a A = 0 whenever y is in any of the cases J,, K, L,
M., Ny, since for these cases there is no exceptional A with p > A. Checking with Lemma 5.1, we see
thata,, = 4,, for these cases. By applying Lemma 3.6(1) and Lemma 3.8, we also deal with cases Ay,
AK, AL, AM, AN, CL, CM, CN, GM.

5.2.1 Inducing D¥ to a lowerable simple module

Consider the (partial) function f = fy iy 1fxty+2- - fo. The effect of this is to move each of the
runners e,e — 1,...,x + y + 1 in succession past runner x + 1 (if y > 0) or past runner 1 (if y = 0). It
is easy to see that f(A) is defined, and that if y is in one of the following cases, then f(j) is defined
and is lowerable:

e caseB.: [x+1,x+y+1](withy > 1, z=1),

e caseE.: [1,x+y+1] (withx >2, y =0),

e caseFi: [Lx+y+1,x+1] (withy > 1),

e caseH.: [x+y+1L,x+y+2,x+1] (withy >1, z > 2),
e caseL,: [x+y+1,x+1,x+42] (withy > 2).

Let C be the block in which §(A) and f(u) lie. In characteristic 3, it is then immediate that a;(\;(,,) = 0;
if char(IF) = 2, it is easy to check using Lemma 2.2(2) that a;(,);,) = 0. Hence we have a), = 0. As
an example of the induction, we have f([1,x + 1,x + y +1]) = [x + 1,1 | 3¥*1,47,3Y~1]; we easily see
that this is lowerable from its abacus display:

x+1
x+y+1
x+2
x+y
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" Conditionson x,y,z
Apn [x+y+1] x=1y=0,z=1 |[x,x,x]
Ag  [x+y+1] x=1Ly=1z=1 [x4+yx+yx]
Ac [x+y+1] x=2,y=0,z=1 [xx,x—1]
Ap  [x+y+1] y=0,z=2 [e, e, x]
Ag [x+y+1] x23,y=02z=1 [x,x—1x—2]
Ay [x+y+1] x22,y=12=1 [x+yx,x—1]
A1 [x+y+1] y=2z=1 [x+y,x+y—11x]
Ay [x+y+1] y=02z2>3 [e,e,e —1]
Ax  [x+y+1] y=21223 le,e—1,x+y]
AL [x+y+1] y=2,z=2 le,x+y,x+y—1]
Ay [x+y+1] y=23,z=1 +yx+y—1x+y—2]
AN [x+y+1] y=12z=2 le,e,x +v]
Ba [x+1x+y+1] x=1,y=12z=1 |[xxx]
Bg [x+1x+y+1] x=1,y=2z2=1 [x+yx+yx]
Bce [x+1lx+y+1] x=2,y=1z=1 [x,x,x—1]
B [x+1x+y+1] x23,y=12z=1 [x,x—1x-2]
By [x+1Lx+y+1] x22,y=22z=1 [x+yxx—1]
B; [x+1x+y+1] y=23,z=1 [x+yx+y—1,x%]
Ca [x+y+lLx+y+2 x=1y=0,z=2 [xxx]
Cg [x+y+1lLx+y+2 x=1y=12z=2 [x+y,x+y,x]
Cc [x+y+1l,x+y+2 x=2,y=0,z=2 [xxx—1]
Cg [x+y+lLx+y+2 y=02z23 le e, x]
Co [x+y+lLx+y+2 x=23,y=02z=2 [x,x—1x-2]
Cy [x+y+1lx+y+2 x=22,y=12=2 [x+yxx—1]
G [x+y+1lx+y+2] y=2z=2 [x+y,x+y—11x]
CL [x+y+lLx+y+2 y=22z23 le,x+y,x+y—1]
Cm [x+y+lLx+y+2 y=32z=2 x+yx+y—1,x+y—2]
Cn [x+y+1l,x+y+2] y=12z23 e, e,x+y
D [x+y+1x+1] y>1 e, x+y,x]
Ex [Lx+y+1] x=2,y= X, X, x|
Ec 1,x+y+1] x>23,y=0 x,x,x—1
Fp 1Lx+y+1x+1] y>1 X4y, XX
Gpo [x+y+Lx+y+2,x+y+3] x=1,y=02z=23 [x,x¥]
Gp [x+y+Lx+y+2,x+y+3] x=1,y=1223 [x+yx+yx]
Ge [x+y+Lx+y+2x+y+3] x=2,y=02z23 [rxx—1]
Geg [x+y+Lx+y+2,x+y+3] x>3,y=0,z>3 [r,x—1x—2]
Gy [x+y+Lx+y+2,x+y+3] x>2,y=12>3 [x+y,xx 1]
G [x+y+lx+y+2,x+y+3] y=2,2z>3 [x+yx+y—1x]
Gv [x+y+lx4+y+2,x+y+3] y>3,2z>3 [x+yx+y—1x+y—2]
Hy [x+y+1lx+y+2,x+1 x=1,y=1,2z>22 |[xxx]
Hp [x+y+Lx+y+2x+1 x=1y=22z22 |[x+yx+yx]
He [x+y+lx+y+2,x+1 x=2,y=122>2 [xxx 1]
Heg [x+y+LlLx+y+2x+1 x23,y=12>22 [x,x—1x—-2]
Hy [x+y+Lx+y+2x+1 x=22,y=2222 |x+yxx—1]
H [x+y+Lx+y+2x+1 y=232z22 x+yx+y—1x]
In [x+y+LlLx+1x+2 x=1y=2 [x, x, x]
Ig x+y+Lx+1,x+2 x=1y2>3 [x+y, x+y,x]
Ic [x+y+1l,x+1,x+2 x=2,y=2 [x,x,x —1]
Ig x+y+1Lx+1,x+2 x=23y=2 [x,x—1,x—2]
Iy x+y+1,x+1,x+2 x=22,y=>3 x+y,x,x71}
Ta 1,2] x=23y=0 X, X, x|
Ka [1,2,x+1] x=23,y>1 X, X, X
Lo [Lx+1,x+2] x=2,y>2 X, X, X
Lc 1,x+1,x+2] x=23,y=2 x,x,x — 1]
Mp [x+1,x+2,x+3] x=1y>3 X, X, X]
Mc [x+1,x+2,x+3] x=2,y2=23 [x,x,x — 1]
Mg [x+1,x+2x+3] x>3,y>3 [x,x —1,x —2]
Na [Lx+1] x=2,y=1 [xxx]
Nc [ x+1] x=23y=1 [x,x,x —1]

Table 1
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So we find that if y is in any of these cases, we have a,, = 0, which is equal to 2,, by Lemma 5.1.
Applying the Mullineux map and using Lemma 3.6(1), we may also deal with cases Ag, Ag, An, Aj,
Cs, Cg, C, Cy, D, Gg, Gh, Gr.

5.2.2 Cases G, Gc and Gg

In these cases, we have y = 0,z > 3and y = [x +1,x +2,x + 3]. Suppose a,, # 0. Then the
conditions y > A and A® > " imply that A is one of the exceptional partitions

[x+1,x+1,x+3], [x+1,x+1,x+2], [x—1,x+1,x+1] (ifx > 2).

First we look at A = [x +1,x + 1, x + 3]. We apply the partial function § = (fxi3fxr4a - fe)¥*! to
both A and . For y, it is easy to see that

(Fes )" (1) = [x + 1, x +2,x+3]3%,577%,47,

with abacus display

Applying (fx+3 - - - fe) again, we find f(u) = [x

For A, applying (fy43- - fo)* yields [x +1,x +1,x + 3 | 3%,5772,42]:

Applying (fx43 - - - f.) again yields f(A) = [x
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A very simple application of the Jantzen-Schaper formula yields [ST) : Di(#)] = 1, irrespective
of the underlying characteristic, which means that a;(,);,,) = 0, and so a,, = 0 by Lemma 3.2.

Next we look at A = [x 4+ 1, x + 1, x + 2]. Using Proposition 3.4, we see that this partition induces
semi-simply to a partition in a Rouquier block (namely [x + 1, x + 1]), and so we may apply Corollary
3.10 to obtain a);, = d,,.

Finally we assume x > 2 and look at A = [x —1,x + 1, x + 1]. We apply the Mullineux map to A
and u to get

o Jlz4+1,z+2,2433,4] (x>3)
2+ 1,z+2]3%4Y (x=2),
yo— JEHLz+lz43[3 4] (x>3)
2+ 1,z+1]3%4Y (x =2).

The case x > 3 corresponds to a case which we have dealt with in this subsection, and for this we
have ay.,o = 0, which implies a,, = 0. In the case x = 2, a simple application of the Jantzen-Schaper
formula yields [S*” : D*'] = 1 regardless of the underlying characteristic. So we have a repe = 0, and
soay, = 0.

Checking with Lemma 5.1, we see that a,, = 4,,, for cases G, G¢, Gg. By applying the Mullineux
map, we also deal with cases Ag, Cg.

5.2.3 Cases Cp and Cc

In these cases we have x < 2,y = 0,z = 2and y = [x +1,x +2|. Suppose a,, # 0. Then the
conditions y > A and A°’ > u®" imply that A is one of the partitions

[x+1,x+1], [x+1,x+1,x+2], [x—1,x+1,x+1] (ifx =2).

If A = [x +1,x + 1], then a very simple application of the Jantzen-Schaper formula gives [S" :
D#] = 1 independent of the characteristic, so that a), = 0. If A = [x +1,x + 1,x + 2|, then by
Proposition 3.4 we find that A induces semi-simply to a partition lying a Rouquier block, and we
may apply Corollary 3.10 to obtain a,, = d,,. If x = 2and A = [x — 1,x + 1,x + 1], then we apply
the Mullineux map: we have B! =B, u® = pand A° = [x + 1, x + 1], which is the first case dealt with
here. This gives ), = aye,c = 0.

Checking with Lemma 5.1, we see that a,, = 4, for cases Cs and Cc. By applying the Mullineux
map, we also deal with case Ac.

5.2.4 Case A

In this case wehavex =1,y =0,z = 1, y = [2] and A = [2,2]. We can easily apply the Jantzen—
Schaper formula to get [S* : D¥] = 1 if char(F) = 3, and 0 otherwise. This shows that a,, = 0 if
char(F) # 3, while a,, = 1 for some y > v = A if char(F) = 3. The condition y > v > A forces A = v.
Checking with Lemma 5.1, we see that a,, = 4,,, for this final case too.

We have now dealt with all possible cases, and proved the following.

Proposition 5.2. Suppose that A and B are weight 3 blocks as above, and that Theorem 3.3 holds for A. Then
it holds for B.
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6 Blocks with birectangular cores

In this section, we suppose B is a weight 3 block of H,, and that there is exactly one block A
forming a [3 : 2]-pair with B, and no block forming a [3 : 1]-pair with B. Then B has a core of the form
((2w + x)*, w¥*2) for some w, x,y,z > Owithw + x + y+z = eand w, z > 0. This may be represented
on an abacus with the (3%,5%,4Y,3") notation. We have a Ap = @)y for all e-regular A and p in B by
induction using Lemma 3.2 and Proposition 3.9, except when D? is exceptional for the [3 : 2]-pair
(A,B),ie.whenA = [w+x+y+1lLw+x+y+1,w+x+y+1|3%5%4Y, 3"]. By Proposition 34,
this A induces semi-simply to a partition in a Rouquier block, so that we may apply Corollary 3.10.
We deduce the following.

Proposition 6.1. Suppose A and B are as above, and that Theorem 3.3 holds for A. Then it holds for B.
We conclude this paper with the proof of Theorem 3.3.

Proof of Theorem 3.3. We proceed by induction. Given a weight 3 block B, we suppose first of all
that there is no block A forming a [3 : x]-pair with B. Then B must be the principal block of H3,
discussed in Section 4, and the theorem holds for this block, from Section 4.

Now we suppose that there is at least one block A forming a [3 : x]-pair with B. If A is an e-regular
partition in B such that D" is non-exceptional for this [3 : x]-pairt, then Theorem 3.3 holds for A (and
any u) by induction, using Lemma 3.2 and Proposition 3.9. In particular, if ¥ > 3 (so that there are
no exceptional simple modules), then Theorem 3.3 holds for B by induction. Also, if there are two
different blocks Aj, A forming [3 : k|-pairs with B, then the theorem holds by induction, since there
cannot be a simple module in B which is exceptional for both of these pairs.

We are therefore left with the case where there is exactly one block forming a [3 : x]-pair with B,
and x < 2. If x = 1, then Theorem 3.3 holds for B by induction using Proposition 5.2, while if x = 2,
then the theorem holds using Proposition 6.1. O
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