Regularising a partition on the abacus

Matthew Fayers

Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.

m.fayers@qmul.ac.uk

Abstract

We give an algorithm for computing the *e*-regularisation of a partition using an abacus display with *e* runners.

1 Introduction

This note concerns two combinatorial notions introduced by Gordon James in the context of representation theory of Iwahori–Hecke algebras of type *A*. Since this note is not intended for publication, we omit background and motivation, since these can easily be found elsewhere. The book by Mathas [M] is an excellent reference.

Recall that a *partition* is a sequence $\lambda = (\lambda_1, \lambda_2, ...)$ of non-negative integers such that $\lambda_1 \ge \lambda_2 \ge ...$ and the sum $|\lambda| = \lambda_1 + \lambda_2 + ...$ is finite. We say that λ is a partition of $|\lambda|$. When writing partitions, we usually group together equal parts and omit trailing zeroes. We write \emptyset for the unique partition of 0.

 λ is often identified with its *Young diagram*, which is the subset

$$[\lambda] = \{(i, j) \mid j \leq \lambda_i\}$$

of \mathbb{N}^2 . We refer to elements of the latter set as *nodes*, and to elements of $[\lambda]$ as nodes of λ . We draw the Young diagram as an array of boxes using the English convention, so that i increases down the page and j increases from left to right.

Throughout this note, e denotes an integer greater than or equal to 2. A partition λ is said to be e-regular if there does not exist $i \ge 1$ such that $\lambda_i = \lambda_{i+e-1} > 0$. There is a function G, called e-regularisation, from the set of partitions to the set of e-regular partitions, which has representation-theoretic significance [J, BOX, FLM]. To define this map, we define the lth ladder in \mathbb{N}^2 to be the set

$$\mathcal{L}_l = \{(i,j) \in \mathbb{N}^2 \mid i + (j-1)(e-1) = l\},$$

for each $l \ge 1$. Now we define the lth ladder of a partition λ to be the intersection $\mathcal{L}_l \cap [\lambda]$. It is easy to see that λ is e-regular if and only if for each l the nodes in the lth ladder of λ are as high as possible; whether or not λ is e-regular, one can obtain an e-regular partition by moving the nodes in each ladder of λ to the highest positions in that ladder; this partition is the e-regularisation of λ .

Example. Suppose e = 3, and $\lambda = (5, 3^3, 1^5)$. Then the e-regularisation of λ is $(5, 4^2, 3, 2, 1)$, as we can see from the following Young diagrams, in which we label we label each node with the number of the ladder in which it lies.

1	3	5	7	9		1	3	5	7	9
2	4	6				2	4	6	8	
3	5	7				3	5	7	9	
4	6	8				4	6	8		
5						5	7			
6						6				
7										
8										
9										

Another important concept is the notion of the abacus. With $e \ge 2$ still fixed, we take an abacus with e vertical runners, numbered $0, \ldots, e-1$ from left to right, and we mark positions $0, 1, 2, \ldots$ on these runners, reading from left to right along successive rows. Now given a partition λ , we choose a large integer r, and define

$$\beta_i = \lambda_i + r - i$$

for i = 1,...,r. We place a bead at position β_i for each i, and call the resulting configuration an abacus display for λ (with e runners). Abacus displays are also important in representation theory, chiefly in the classification of blocks of Iwahori–Hecke algebras.

Example. Suppose e = 5. Then the abacus is marked as follows.

0 5 10	1 6 11	2 7 12	3 8 13	4 9 14
	•	•		

If we take $\lambda = (7^2, 5, 4, 2^2, 1^4)$ and r = 12, then we get $(\beta_1, \dots, \beta_{12}) = (18, 17, 14, 12, 9, 8, 6, 5, 4, 3, 1, 0)$, so that the abacus display is as follows.

In an abacus display, we say that position t is *after* position s, or that position s is *before* position t, if s < t. We say that position s is *occupied* if there is a bead at position s, and *empty* otherwise. If we have an abacus display for a partition λ , then it is easy to see that λ is e-regular if and only if there is no $s \ge 0$ such that position s is empty while positions $s + 1, \ldots, s + e$ are all occupied.

The purpose of this note is to give an algorithm for computing the *e*-regularisation of a partition using an *e*-runner abacus display. Although it is straightforward to translate between abacus displays and Young diagrams, this should provide a quicker method of regularising a partition if one is working with abacus displays. If you find this result useful, please cite this note.

2 Regularisation on the abacus

Now we give our algorithm for regularising a partition using its abacus display. We begin by defining two functions on partitions.

Now construct a new abacus display by moving a bead from b_k to $b_k - e$ and a bead from $s_k - e$ to s_k for k = 1, ..., c in turn; the definition of $s_1, ..., s_c$ guarantees that you can do this, i.e. that positions b_k and $s_k - e$ are occupied while positions $b_k - e$ and s_k are empty, as long as k takes the values 1, ..., c in order. Let $A\lambda$ be the partition defined by the resulting abacus display. It is quite easy to see that $A\lambda$ is independent of the choice of abacus display. Define $B\lambda$ in the same way, but replacing the condition ' $s_c < b_{c+1}$ ' with ' $s_{c+1} < b_{c+1}$ '.

Example. Suppose e = 5, and $\lambda = (14^2, 13, 7^2, 6^2, 5^3, 4, 3^2, 2^{11})$:

We have s = x = 1, $(b_1, ..., b_l) = (6, 11, 21, 26, 36)$ and $(s_1, s_2, ...) = (13, 18, 22, 25, 28, 29, ...)$. So in the definition of $A\lambda$ we take c = 2, while in the definition of $B\lambda$ we take c = 3. We find that

It is easy to check that $|A\lambda| = |\lambda|$. Also, if λ is e-singular then we have $s_c > b_c$, which implies that $A\lambda$ exceeds λ in the lexicographic ordering of partitions. Hence applying the function A repeatedly

will terminate in an e-regular partition $\overline{A}\lambda$. A similar statement holds for B, yielding an e-regular partition $\overline{B}\lambda$. We shall prove the following statement, which yields an algorithm (in fact, a choice of algorithms) for regularising on the abacus.

Proposition 1. *For any* λ *, both* $\overline{A}\lambda$ *and* $\overline{B}\lambda$ *coincide with* $G\lambda$ *.*

First we prove the following.

Lemma 2. Suppose λ is a partition. Then either $B\lambda = A\lambda$ or $B\lambda = BA\lambda$.

Proof. Choose an abacus display \mathcal{A} for λ , and let s, b_1, \ldots, b_l and s_1, s_2, \ldots be as in the definitions. Let c be minimal such that $s_c < b_{c+1}$, and let d be minimal such that $s_{d+1} < b_{d+1}$. Then $d \ge c$; if d = c then obviously we have $A\lambda = B\lambda$, so assume that d > c, i.e. $s_{c+1} > b_{c+1}$. Let C be the abacus display for $A\lambda$ obtained as in the definition.

Now in C position $b_{c+1} - e$ is empty; we claim that there must be beads in all positions $b_{c+1} - e + 1, \ldots, b_{c+1}$. This is obviously true for position b_{c+1} , so consider a position $y \in \{b_{c+1} - e + 1, \ldots, b_{c+1} - 1\}$. If y is occupied in \mathcal{A} , then it remains occupied when we pass to C, because on runners other than runner x we only move beads down to positions earlier than b_{c+1} . If position y is empty in \mathcal{A} , then we have $y = s_k$ for some $k \le c$, so when we form C from \mathcal{A} we move a bead down into position y, and we don't move it any further.

 \mathcal{A} and C are exactly the same after position b_{c+1} , and this implies that in C position $s' = b_{c+1} - e$ is the last empty position with e occupied positions immediately after it. The occupied positions below position s' on the same runner (i.e. runner x) are b_{c+1}, \ldots, b_l , and the empty spaces after position s' not on runner x are s_{c+1}, s_{c+2}, \ldots . So to construct $BA\lambda$, we must find the first d' such that $s_{c+d'+1} < b_{c+d'+1}$; from above, we have d' = d - c. Therefore an abacus display for $BA\lambda$ is constructed from C by moving the beads in positions b_{c+1}, \ldots, b_d each up one space, and moving a bead down into position s_k for $k = c + 1, \ldots, d$ in turn. We deduce that $BA\lambda = B\lambda$.

Corollary 3. For any partition λ , we have $\overline{A}\lambda = \overline{B}\lambda$.

Proof. This is immediate from Lemma 2, using induction on lexicographic order.

Before proving Proposition 1, we give a lemma which relates moving a bead to ladder numbers.

Lemma 4. Suppose λ is a partition, and take an abacus display for λ with r beads. Suppose that ξ is a partition whose abacus display is obtained by moving a bead from position t + e to position t, for some t. Let m be the number of empty spaces before position t in either display.

1. Suppose positions $t+1, \ldots, t+e-1$ are occupied in both abacus displays. Then $[\xi] \subset [\lambda]$, and $[\lambda] \setminus [\xi]$ consists of one node from each of the ladders numbered

$$r-t+em-e+1$$
, $r-t+em-e+2$, ..., $r-t+em$.

2. Suppose t < y < t + e, and positions t + 1, ..., y - 1, y + 1, ..., t + e - 1 are occupied in both abacus displays, while position y is unoccupied. Then $[\xi] \subset [\lambda]$, and $[\lambda] \setminus [\xi]$ consists of one node from each of the ladders numbered

$$r - y + em + 1$$
, $r - y + em + 2$, ..., $r - y + em + e$.

П

Proof. It is straightforward enough to write down the actual nodes in each case.

Proof of Proposition 1. We proceed by induction on $|\lambda|$, and for fixed $|\lambda|$ by induction on lexicographic order. Assuming that λ is e-singular, let $\mu = A\lambda$. By induction $\overline{A}\lambda = G\mu$, and so it suffices to show that λ and μ have the same e-regularisation, i.e. that the numbers of nodes in corresponding ladders are the same.

Assume the notation from the definition of $A\lambda$, and suppose first that c>1. Let ξ be the partition obtained from λ by moving the bead from position $b_1=s+e$ to position s. The fact that c>1 means that every position between s and b_2 not on runner x is occupied. By the maximality of s, this means that $b_2=b_1+e$, and in the abacus display for ξ , position $s'=b_1$ is empty and immediately followed by e beads; since the abacus displays for λ and ξ agree after position b_1 , s' must be maximal with this property. s' lies on runner x, and the beads below it on the same runner lie in positions b_2, \ldots, b_l , while the empty spaces occurring after position s' not on runner x lie in positions s_1, s_2, \ldots So if we want to construct the partition $B\xi$, then we must find the smallest c' such that $s_{c'+1} < b_{c'+2}$. From what we already know, we see that c' = c - 1. So an abacus display for $B\xi$ is obtained from the given display for ξ by moving the beads at positions b_2, \ldots, b_c each up one space, and then moving a bead from position $s_k - e$ to position $s_c - e$ to position s_c .

Let m be the number of empty spaces before position s (in any of these abacus displays). By Lemma 4(1) (putting t = s) we see that the Young diagram of ξ may be obtained from the Young diagram of λ by removing one node from each of ladders

$$r-s+em-e+1$$
, $r-s+em-e+2$, ..., $r-s+em$.

Now we apply Lemma 4(2) to μ and $B\xi$. We put $t=s_c-e$, and write t as s+eu+v, with 0 < v < e. Each of the positions $t+1,\ldots,t+e-1$ apart from position y=s+e(u+1) is occupied, by the construction of μ . And we claim that position y is unoccupied; indeed, the definition of c means that we have $b_c < s_{c-1} < s_c < b_{c+1}$, so that $b_c \le y < b_{c+1}$, and by construction, all the positions $b_c, b_c + e, \ldots, b_{c+1} - e$ are empty in the abacus display for μ .

In order to apply Lemma 4, we need to compute the number of empty spaces before position t in the abacus display for μ . Along with the m empty spaces before position s, there are an additional u+1-c spaces on runner x (positions $s,s+e,\ldots,s+ue$, minus positions b_1-e,\ldots,b_c-e), and an additional c-1 spaces not on runner x (namely, positions $s_1-e,s_2-e,\ldots,s_{c-1}-e$). Hence there are m+u empty spaces before position t. Now Lemma 4(2) tells us that the Young diagram for $B\xi$ is obtained from the Young diagram for μ by removing a node from each of the ladders

$$r-s+em-e+1$$
, $r-s+em-e+2$, ..., $r-s+em$.

By induction, ξ and $B\xi$ have the same regularisation (namely $\overline{A}\xi = \overline{A}B\xi$), and therefore λ and μ have the same regularisation, as required.

The case where c=1 is very similar, except that we do not need to compute $B\xi$; we just replace $B\xi$ with ξ in the above argument.

References

[BOX] C. Bessenrodt, J. Olsson & M. Xu, 'On properties of the Mullineux map with an application to Schur modules', *Math. Proc. Cambridge Philos. Soc.* **126** (1999), 443–59.

- [FLM] M. Fayers, S. Lyle & S. Martin, 'p-restriction of partitions and homomorphisms between Specht modules', *J. Algebra* **306** (2006), 175–90.
- [J] G. James, 'On the decomposition matrices of the symmetric groups II', *J. Algebra* **43** (1976), 45–54.
- [M] A. Mathas, *Iwahori–Hecke algebras and Schur algebras of the symmetric group*, University lecture series **15**, American Mathematical Society, Providence, RI, 1999.