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Abstract

We give an algorithm for computing the e-regularisation of a partition using an abacus
display with e runners.

1 Introduction

This note concerns two combinatorial notions introduced by Gordon James in the context of
representation theory of Iwahori–Hecke algebras of type A. Since this note is not intended for
publication, we omit background and motivation, since these can easily be found elsewhere. The
book by Mathas [M] is an excellent reference.

Recall that a partition is a sequence λ = (λ1, λ2, . . . ) of non-negative integers such that λ1 >
λ2 > . . . and the sum |λ| = λ1 + λ2 + . . . is finite. We say that λ is a partition of |λ|. When writing
partitions, we usually group together equal parts and omit trailiing zeroes. We write ∅ for the
unique partition of 0.

λ is often identified with its Young diagram, which is the subset

[λ] =
{
(i, j) | j 6 λi

}
ofN2. We refer to elements of the latter set as nodes, and to elements of [λ] as nodes of λ. We draw
the Young diagram as an array of boxes using the English convention, so that i increases down the
page and j increases from left to right.

Throughout this note, e denotes an integer greater than or equal to 2. A partition λ is said to
be e-regular if there does not exist i > 1 such that λi = λi+e−1 > 0. There is a function G, called
e-regularisation, from the set of partitions to the set of e-regular partitions, which has representation-
theoretic significance [J, BOX, FLM]. To define this map, we define the lth ladder in N2 to be the
set

Ll = {(i, j) ∈N2
| i + ( j − 1)(e − 1) = l},

for each l > 1. Now we define the lth ladder of a partition λ to be the intersection Ll ∩ [λ]. It is
easy to see that λ is e-regular if and only if for each l the nodes in the lth ladder of λ are as high as
possible; whether or not λ is e-regular, one can obtain an e-regular partition by moving the nodes
in each ladder of λ to the highest positions in that ladder; this partition is the e-regularisation of λ.
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Example. Suppose e = 3, and λ = (5, 33, 15). Then the e-regularisation of λ is (5, 42, 3, 2, 1), as we can
see from the following Young diagrams, in which we label we label each node with the number of
the ladder in which it lies.

1 3 5 7 9
2 4 6
3 5 7
4 6 8
5
6
7
8
9

1 3 5 7 9
2 4 6 8
3 5 7 9
4 6 8
5 7
6

Another important concept is the notion of the abacus. With e > 2 still fixed, we take an abacus
with e vertical runners, numbered 0, . . . , e − 1 from left to right, and we mark positions 0, 1, 2, . . .
on these runners, reading from left to right along successive rows. Now given a partition λ, we
choose a large integer r, and define

βi = λi + r − i

for i = 1, . . . , r. We place a bead at position βi for each i, and call the resulting configuration an
abacus display for λ (with e runners). Abacus displays are also important in representation theory,
chiefly in the classification of blocks of Iwahori–Hecke algebras.

Example. Suppose e = 5. Then the abacus is marked as follows.

0 1 2 3 4
5 6 7 8 9

10 11 12 13 14
...

...
...

...
...

If we take λ = (72, 5, 4, 22, 14) and r = 12, then we get (β1, . . . , β12) = (18, 17, 14, 12, 9, 8, 6, 5, 4, 3, 1, 0),
so that the abacus display is as follows.

u u u uu u u uu uu u
In an abacus display, we say that position t is after position s, or that position s is before position

t, if s < t. We say that position s is occupied if there is a bead at position s, and empty otherwise. If
we have an abacus display for a partition λ, then it is easy to see that λ is e-regular if and only if
there is no s > 0 such that position s is empty while positions s + 1, . . . , s + e are all occupied.

The purpose of this note is to give an algorithm for computing the e-regularisation of a partition
using an e-runner abacus display. Although it is straightforward to translate between abacus
displays and Young diagrams, this should provide a quicker method of regularising a partition if
one is working with abacus displays. If you find this result useful, please cite this note.
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2 Regularisation on the abacus

Now we give our algorithm for regularising a partition using its abacus display. We begin by
defining two functions on partitions.

Suppose λ is a partition, and take an abacus display for λ. If λ is e-regular, set Aλ = λ.
Otherwise, there must be some empty position s on the abacus such that positions s + 1, . . . , s + e are
occupied; let s be maximal with this property. (In terms of the Young diagram of λ, this corresponds
to finding the rightmost column where λ is e-singular.) Suppose s lies on runner x, let b1 < · · · < bl
be the positions of the beads below s on this runner, and let s1 < s2 < . . . be the positions of the
empty spaces after position s not on runner x. Let c ∈ {1, . . . , l} be minimal such that sc < bc+1 (this
condition is to be regarded as automatically true in the case c = l).

Now construct a new abacus display by moving a bead from bk to bk − e and a bead from sk − e
to sk for k = 1, . . . , c in turn; the definition of s1, . . . , sc guarantees that you can do this, i.e. that
positions bk and sk − e are occupied while positions bk − e and sk are empty, as long as k takes the
values 1, . . . , c in order. Let Aλ be the partition defined by the resulting abacus display. It is quite
easy to see that Aλ is independent of the choice of abacus display. Define Bλ in the same way, but
replacing the condition ‘sc < bc+1’ with ‘sc+1 < bc+1’.

Example. Suppose e = 5, and λ = (142, 13, 72, 62, 53, 4, 32, 211):

0 1 2 3 4u u uu u u u uu u u uu u uu u u uu u uu u
.

We have s = x = 1, (b1, . . . , bl) = (6, 11, 21, 26, 36) and (s1, s2, . . . ) = (13, 18, 22, 25, 28, 29, . . . ). So in the
definition of Aλ we take c = 2, while in the definition of Bλ we take c = 3. We find that

Aλ =

0 1 2 3 4u u u uu u u uu u uu u u uu u u uu u uu u
= (142, 13, 72, 62, 55, 42, 3, 22, 17);

Bλ =

0 1 2 3 4u u u uu u u uu u uu u u uu u u uu u uu u
= (142, 13, 72, 63, 53, 43, 3, 22, 17).

It is easy to check that |Aλ| = |λ|. Also, if λ is e-singular then we have sc > bc, which implies that
Aλ exceeds λ in the lexicographic ordering of partitions. Hence applying the function A repeatedly



4 Matthew Fayers

will terminate in an e-regular partition Aλ. A similar statement holds for B, yielding an e-regular
partition Bλ. We shall prove the following statement, which yields an algorithm (in fact, a choice
of algorithms) for regularising on the abacus.

Proposition 1. For any λ, both Aλ and Bλ coincide with Gλ.

First we prove the following.

Lemma 2. Suppose λ is a partition. Then either Bλ = Aλ or Bλ = BAλ.

Proof. Choose an abacus displayA for λ, and let s, b1, . . . , bl and s1, s2, . . . be as in the definitions.
Let c be minimal such that sc < bc+1, and let d be minimal such that sd+1 < bd+1. Then d > c; if d = c
then obviously we have Aλ = Bλ, so assume that d > c, i.e. sc+1 > bc+1. Let C be the abacus display
for Aλ obtained as in the definition.

Now in C position bc+1 − e is empty; we claim that there must be beads in all positions bc+1 − e +
1, . . . , bc+1. This is obviously true for position bc+1, so consider a position y ∈ {bc+1−e+1, . . . , bc+1−1}.
If y is occupied inA, then it remains occupied when we pass to C, because on runners other than
runner x we only move beads down to positions earlier than bc+1. If position y is empty inA, then
we have y = sk for some k 6 c, so when we form C fromA we move a bead down into position y,
and we don’t move it any further.
A and C are exactly the same after position bc+1, and this implies that in C position s′ = bc+1 − e

is the last empty position with e occupied positions immediately after it. The occupied positions
below position s′ on the same runner (i.e. runner x) are bc+1, . . . , bl, and the empty spaces after
position s′ not on runner x are sc+1, sc+2, . . . . So to construct BAλ, we must find the first d′ such that
sc+d′+1 < bc+d′+1; from above, we have d′ = d− c. Therefore an abacus display for BAλ is constructed
from C by moving the beads in positions bc+1, . . . , bd each up one space, and moving a bead down
into position sk for k = c + 1, . . . , d in turn. We deduce that BAλ = Bλ. �

Corollary 3. For any partition λ, we have Aλ = Bλ.

Proof. This is immediate from Lemma 2, using induction on lexicographic order. �

Before proving Proposition 1, we give a lemma which relates moving a bead to ladder numbers.

Lemma 4. Suppose λ is a partition, and take an abacus display for λ with r beads. Suppose that ξ is a
partition whose abacus display is obtained by moving a bead from position t + e to position t, for some t. Let
m be the number of empty spaces before position t in either display.

1. Suppose positions t+1, . . . , t+ e−1 are occupied in both abacus displays. Then [ξ] ⊂ [λ], and [λ]\ [ξ]
consists of one node from each of the ladders numbered

r − t + em − e + 1, r − t + em − e + 2, . . . , r − t + em.

2. Suppose t < y < t + e, and positions t + 1, . . . , y − 1, y + 1, . . . , t + e − 1 are occupied in both abacus
displays, while position y is unoccupied. Then [ξ] ⊂ [λ], and [λ] \ [ξ] consists of one node from each
of the ladders numbered

r − y + em + 1, r − y + em + 2, . . . , r − y + em + e.
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Proof. It is straightforward enough to write down the actual nodes in each case. �

Proof of Proposition 1. We proceed by induction on |λ|, and for fixed |λ| by induction on lexico-
graphic order. Assuming that λ is e-singular, let µ = Aλ. By induction Aλ = Gµ, and so it suffices to
show that λ and µ have the same e-regularisation, i.e. that the numbers of nodes in corresponding
ladders are the same.

Assume the notation from the definition of Aλ, and suppose first that c > 1. Let ξ be the
partition obtained from λ by moving the bead from position b1 = s + e to position s. The fact that
c > 1 means that every position between s and b2 not on runner x is occupied. By the maximality
of s, this means that b2 = b1 + e, and in the abacus display for ξ, position s′ = b1 is empty and
immediately followed by e beads; since the abacus displays for λ and ξ agree after position b1, s′

must be maximal with this property. s′ lies on runner x, and the beads below it on the same runner
lie in positions b2, . . . , bl, while the empty spaces occurring after position s′ not on runner x lie in
positions s1, s2, . . . . So if we want to construct the partition Bξ, then we must find the smallest c′

such that sc′+1 < bc′+2. From what we already know, we see that c′ = c− 1. So an abacus display for
Bξ is obtained from the given display for ξ by moving the beads at positions b2, . . . , bc each up one
space, and then moving a bead from position sk − e to position sk for k = 1, . . . , c − 1 in turn. Hence
µ may be obtained from Bξ simply by moving a bead from position sc − e to position sc.

Let m be the number of empty spaces before position s (in any of these abacus displays). By
Lemma 4(1) (putting t = s) we see that the Young diagram of ξ may be obtained from the Young
diagram of λ by removing one node from each of ladders

r − s + em − e + 1, r − s + em − e + 2, . . . , r − s + em.

Now we apply Lemma 4(2) to µ and Bξ. We put t = sc − e, and write t as s + eu + v, with 0 < v < e.
Each of the positions t + 1, . . . , t + e − 1 apart from position y = s + e(u + 1) is occupied, by the
construction of µ. And we claim that position y is unoccupied; indeed, the definition of c means
that we have bc < sc−1 < sc < bc+1, so that bc 6 y < bc+1, and by construction, all the positions
bc, bc + e, . . . , bc+1 − e are empty in the abacus display for µ.

In order to apply Lemma 4, we need to compute the number of empty spaces before position t in
the abacus display for µ. Along with the m empty spaces before position s, there are an additional
u + 1 − c spaces on runner x (positions s, s + e, . . . , s + ue, minus positions b1 − e, . . . , bc − e), and an
additional c− 1 spaces not on runner x (namely, positions s1 − e, s2 − e, . . . , sc−1 − e). Hence there are
m + u empty spaces before position t. Now Lemma 4(2) tells us that the Young diagram for Bξ is
obtained from the Young diagram for µ by removing a node from each of the ladders

r − s + em − e + 1, r − s + em − e + 2, . . . , r − s + em.

By induction, ξ and Bξ have the same regularisation (namely Aξ = ABξ), and therefore λ and µ
have the same regularisation, as required.

The case where c = 1 is very similar, except that we do not need to compute Bξ; we just replace
Bξ with ξ in the above argument. �
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