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Abstract

The reducible Specht modules for the Hecke algebraHF,q(Sn) have been classified except
when q = −1. We prove one half of a conjecture which we believe classifies the reducible
Specht modules when q = −1.

1 Introduction

Fix a field F of characteristic p > 0 and an element q ∈ F×. For n > 0, the Hecke algebra
Hn = HF,q(Sn) of the symmetric groupSn is defined to be the unital associative F-algebra with
generators T1, . . . ,Tn−1 subject to the relations

(Ti − q)(Ti + 1) = 0 for 1 6 i 6 n − 1,

T jT j+1T j = T j+1T jT j+1 for 1 6 j 6 n − 2,

TiT j = T jTi for 1 6 i < j − 1 6 n − 2.

For each partition λ of n, Dipper and James defined anHn-module Sλ known as a Specht mod-
ule. An important open problem in representation theory is to determine the decomposition
matrices of the Hecke algebras; this is equivalent to determining the composition factors of
the Specht module Sλ for each partition λ. An interesting special case of this problem is the
question of which Specht modules are irreducible. For the symmetric group algebra FSn, the
answer to this question is completely known, and for the Hecke algebra Hn, the answer is
known except in the case where q = −1 [JM1, L1, F1, F2, JLM, L2]. For the case where q = −1
and p = 0, a conjectured classification has been put forward by the first author and Mathas, and
the purpose of the present paper is to prove half of this conjecture; that is, we prove that the
supposedly reducible Specht modules really are reducible. We also present for the first time a
conjectured classification of irreducible Specht modules for the case where q = −1 and p > 0
(which agrees with the already known classifications for the cases p = 2, 3). Our characteristic
zero result, together with the first author’s work [F3] on the case of positive characteristic,
shows that half of this conjecture is true too.
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The layout of the paper is as follows. In Section 2 we give some background on partitions
and Specht modules, and state the main result of this paper, Theorem 2.4. In Section 3 we
describe some results and techniques for proving reducibility of Specht modules, and use
these to prove Theorem 2.4 subject to the proof of Proposition 3.5; this is a technical result on
homomorphisms, which requires a long proof. In Section 4 we give detailed background on
homomorphisms between Specht modules and prove Proposition 3.5.

2 The main theorem

Throughout Section 2, we assume that q = −1 and that F has characteristic p > 0. Recall that
a composition of n is a sequence λ = (λ1, λ2, . . .) of non-negative integers such that

∑
∞

i=1 λi = n. If
in addition λ1 > λ2 > · · · , we say that λ is a partition of n. When writing a partition, we usually
omit zeroes, and group together equal positive parts with a superscript. We let `(λ) denote the
number of non-zero parts of λ, and we write |λ| to mean

∑
∞

i=1 λi.
The Young diagram of λ is the set

{(r, c) | 1 6 c 6 λr } ⊂N
2,

whose elements we call the nodes of λ. Throughout this paper, we identify λ with its Young
diagram; so for example we may write λ ⊆ µ to mean that λi 6 µi for all i. We use the English
convention for drawing Young diagrams, in which the first coordinate increases down the page
and the second increases from left to right.

A node u ∈ λ is said to be removable if λ \ u is a partition, and a node v < λ is said to be
addable if λ ∪ v is a partition. The 2-residue of a node (r, c) ∈ N2, which we shall simply call the
residue, is defined to be (c− r) (mod 2). The partition λ is said to be 2-regular if λi > λi+1 for all
1 6 i < `(λ), and is said to be 2-restricted if λi − λi+1 6 1 for all i > 1. If λ is not 2-regular, we
will say it is 2-singular.

If λ is a partition, we write Sλ for the Specht module, as defined by Dipper and James [DJ1].
If λ is 2-regular then Sλ has a unique irreducible quotient Dλ, and the set {Dλ

| λ is 2-regular}
is a complete set of non-isomorphic irreducibleHn-modules. The conjugate λ′ of a partition λ
is defined to be the partition whose Young diagram is given by {(c, r) | 1 6 c 6 λr}. Conjugation
is useful in this paper because of the following result.

Lemma 2.1. Suppose λ is a partition of n. Then Sλ is irreducible if and only if Sλ
′

is irreducible.

As far as we can tell, this lemma appears for the first time in Mathas’s book [M, p. 89],
though it was surely known to earlier authors.

2.1 Irreducible Specht modules in characteristic zero

We now discuss the problem of classifying irreducible Specht modules. In this section we
assume that F has characteristic zero.

The classification of irreducible Specht modules labelled by 2-regular partitions is well
known. In characteristic zero this takes the following simple form.

Proposition 2.2. [JM1, Theorem 4.15] Let λ be a partition of n and suppose that λ is 2-regular. Then
Sλ is irreducible if and only if λi − λi+1 is odd for all 1 6 i < `(λ).
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We say that λ is alternating if it satisfies the condition of Proposition 2.2. Using this proposi-
tion and Lemma 2.1, it remains only to classify the irreducible Specht modules Sλ whenλ andλ′

are both 2-singular; we call such a partition doubly-singular. A conjecture for this classification
has been given by the first author and Mathas. First we need to make a definition.

Definition. Let λ be a doubly-singular partition of n. Set

• a to be maximal such that λa − λa+1 > 2,

• b to be maximal such that λb = λb+1 > 1, and

• c to be maximal such that λa+c > 0.

Say that λ is an FM-partition if the following conditions all hold.

• λi − λi+1 6 1 for all i , a.

• λb > a − 1 > b.

• λ1 > · · · > λc.

• If c = 0 then all addable nodes of λ except possibly those in the first row and first column
have the same residue.

• If c > 0, then all addable nodes of λ have the same residue.

Conjecture 2.3. Let Hn = HF,−1(Sn) where char(F) = 0, and let λ be a doubly-singular partition of
n. TheHn-module Sλ is irreducible if and only if λ or λ′ is an FM-partition.

The main result of this paper is the proof of half of this conjecture.

Theorem 2.4. LetHn = HF,−1(Sn) where char(F) = 0, and let λ be a doubly-singular partition of n.
If theHn-module Sλ is irreducible then λ or λ′ is an FM-partition.

Example. Since the definition of an FM-partition is somewhat complicated, we provide some
examples. The partition (11, 103, 93, 8, 7, 2, 1) is an FM-partition, with a = 9, b = 6 and c = 2. The
addable nodes all have residue 1, as can be seen from the following Young diagram, in which
nodes are labelled with their residues.

0 1 0 1 0 1 0 1 0 1 0
0101010101

0 1 0 1 0 1 0 1 0 1
0101010101

0 1 0 1 0 1 0 1 0
101010101

0 1 0 1 0 1 0 1 0
01010101

0 1 0 1 0 1 0
01

0

Additionally, any ‘rectangular’ partition (da) with d > a − 1 is an FM-partition (with b = a − 1
and c = 0), and an argument due to Mathas shows that Conjecture 2.3 holds for rectangular
partitions.
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In spite of Lemma 2.1, the conjugate of an FM-partition is not always an FM-partition, and
this is why we need λ or λ′ in Conjecture 2.3. For example, the conjugate (11, 10, 95, 8, 7, 4, 1) of
the partition above is not an FM-partition, since it fails the first condition.

2.2 Irreducible Specht modules in positive characteristic

We make some brief comments on the case where F has positive characteristic p (and
q = −1). In this case, the classification of irreducible Specht modules remains unsolved, but
here we conjecture a solution.

For the case of Specht modules labelled by 2-regular or 2-restricted partitions, a more
complicated version of Proposition 2.2 (also covered by [JM1, Theorem 4.15]) holds, so the
difficulty lies with doubly-singular partitions. In this case, Theorem 2.4 still holds, thanks to
the theory of decomposition maps [G]; however, there are FM-partitions which label reducible
Specht modules in positive characteristic. In order to formulate a conjecture, we need to recall
another definition. Recall that if λ is a partition and (r, c) is a node of λ, then the (r, c)-hook length
of λ is the integer

hr,c(λ) = λr − r + λ′c − c + 1.

Given a positive integer s, we say that λ is an s-core if none of the hook lengths of λ are divisible
by s. Now we have the following result, proved by the first author in [F3].

Theorem 2.5. Suppose F has characteristic p and q = −1. If λ is a doubly-singular partition which is
not a 2p-core, then theHn-module Sλ is reducible.

Based on computer calculations, we now make the following conjecture.

Conjecture 2.6. LetHn = HF,−1(Sn) where char(F) = p > 0, and let λ be a doubly-singular partition
of n. TheHn-module Sλ is irreducible if and only if λ is a 2p-core and λ or λ′ is an FM-partition.

Theorems 2.4 and 2.5 show that the ‘only if’ part of this conjecture is true. The results of [F3]
also show that for a given prime p there are only finitely many FM-partitions which are also
2p-cores. So in order to verify the ‘if’ part of Conjecture 2.6 in a given non-zero characteristic,
there are only finitely many Specht modules to consider. The case p = 2 (which amounts to the
classification of irreducible Specht modules for the symmetric group in characteristic 2) is the
main result of [JM2]. Using computer programs written in GAP [GAP2008], the first author
has been able to verify the conjecture also for p = 3, 5 and 7.

3 The proof of Theorem 2.4

Throughout Section 3, we assume that q = −1 and thatF is a field of characteristic 0. Our aim
is to prove Theorem 2.4, that is, ifλ is a doubly-singular partition of n and theHF,−1(Sn)-module
Sλ is irreducible then λ or λ′ is an FM-partition.

3.1 Techniques for proving reducibility

We begin by describing some methods – some well-known and some new – which can be
used to prove the reducibility of a Specht module.
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3.1.1 Ladders

For k > 1, the kth ladder inN2 is defined to be the set of nodes

Lk =
{
(i, j) ∈N2

∣∣∣ i + j = k + 1
}
.

We say that Ll is a longer ladder than Lk if l > k.
The kth ladder of a partition λ is the intersection of Lk with the Young diagram of λ. We

say that the kth ladder of λ is broken if the nodes it contains are not consecutive in Lk; that is,
there exist 1 6 r < s < t 6 k such that (r, k + 1 − r) and (t, k + 1 − t) lie in [λ] but (s, k + 1 − s) does
not.

The following proposition is the main result of [FL].

Proposition 3.1. [FL, Theorem 2.1] Suppose that λ has a broken ladder. Then Sλ is reducible.

A more helpful description of the condition in Proposition 3.1 is as follows: λ has a broken
ladder if there exist 1 6 a < b such that λa − λa+1 > 2 and λb = λb+1 > 0.

3.1.2 Regularisation and homomorphisms

Recall that the dominance order Q on partitions is defined by saying that µ Q λ if and only if

l∑
i=1

µi >
l∑

i=1

λi for all l > 1.

If λ is a partition, let λR denote the partition whose Young diagram is obtained by moving
the nodes ofλ as high as possible in their ladders. It is easy to see thatλR is a 2-regular partition,
and that λR Q λ. We also have λR = (λ′)R for any λ.

For example, if λ = (3, 23), then λR = (5, 3, 1); this can be seen from the following diagrams,
in which we label the nodes of these two partitions with the numbers of the ladders in which
they appear.

3
4
54

3
2
1 2 3 1 2 3 4 5

432
3

The importance of regularisation lies in the following result.

Lemma 3.2. [J, Theorem 6.21] Let λ be a partition of n. Then DλR occurs as a composition factor of
Sλ with multiplicity 1. If Dν is a composition factor of Sλ then ν Q λR.

This result is particularly useful when classifying irreducible Specht modules, since it
implies that if Sλ is irreducible, then Sλ � DλR . One application of this is as follows.

Corollary 3.3. Suppose λ and µ are partitions of n, such that λR S µ and HomHn(Sµ,Sλ) , 0. Then
Sλ is reducible.

Proof. Since HomHn(Sµ,Sλ) , 0, theHn-modules Sµ and Sλ have a common composition factor,
Dν say. By Lemma 3.2 we have ν Q µR Q µ, so ν , λR. So Sλ has at least two composition
factors. �
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We shall apply Corollary 3.3 using two different explicit constructions of homomorphisms.
The first is a q-analogue, due to the second author, of the ‘one-node homomorphisms’ con-
structed by Carter and Payne in [CP].

Definition. Say that a partition λ is CP-reducible if λ has

• an addable node lying in ladder Lm, and

• a removable node lying in ladder Ll,

where m > l and l ≡ m (mod 2).

[L2, Theorem 4.1.1] shows that if λ is a CP-reducible partition of n, then there is a partition
µ of n with µ S λR, and a non-zeroHn-homomorphism from Sµ to either Sλ or Sλ

′

. Hence by
Lemma 2.1 and Corollary 3.3 we have the following.

Proposition 3.4. [FL, Proposition 4.6] Suppose that λ is CP-reducible. Then Sλ is reducible.

Now we give the second result we require on homomorphisms. This also defines a certain
family of pairs of partitions where the corresponding homomorphism space is non-zero; how-
ever, the partitions in question are rather less natural than in the Carter–Payne case, and the
result below was proved solely for the purposes of the present paper.

Definition. Say that a partition λ is hom-reducible if there exists x > 0 such that (x + 1, λx+1 + 1)
is an addable node of λ, and the partition ν = (λx+1, λx+2, . . . ) has the form(

(g + f + s′)s, g + f + s′ − 1, g + f + s′ − 2, . . . , g + s′, g, g − 1, . . . , 2
)

where s, s′, f , g are integers such that f > 0, g > 2, s′ > s > 2 and either

• s and s′ are odd; or

• s = 2, s′ is even and f = 0.

Proposition 3.5. Suppose λ is a partition of n which is hom-reducible, and let x be as in the definition
of hom-reducible. Define a partition µ by

µi =


λi + 1 (i = x + 1, x + 2)

λi − 2 (i = `(λ))

λi (otherwise).

Then HomHn(Sµ,Sλ) , 0.

The partitions appearing in Proposition 3.5 may be visualised using the following diagram
(in which we take s = s′ = 5, g = 4, f = 2). The dotted nodes at the bottom of the diagram are
present in λ, while those at the top right are present in µ.
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g−1

f

s

g s′ f

The proof of Proposition 3.5 is somewhat lengthy, and we postpone it to Section 4, where
we introduce all the necessary background concerning homomorphisms.

Proposition 3.6. Suppose that λ is hom-reducible. Then Sλ is reducible.

Proof. Since λ is hom-reducible, we may define the partition µ as in Proposition 3.5 so that
HomHn(Sµ,Sλ) , 0. Furthermore, the condition s′ > s guarantees that µ is obtained from λ by
moving two nodes to longer ladders, so by [F1, Lemma 2.1], λR S µ and hence Sλ is reducible
by Corollary 3.3. �

3.1.3 Fock space techniques

Definition. Say that a partition λ with `(λ) = l is LLT-reducible if λ is 2-singular, has no broken
ladders and satisfies:

• λ1 > l + 1;

• λl > 2;

• there exists 1 6 x < l with λx − λx+1 > 1.

Proposition 3.7. Suppose λ is LLT-reducible. Then Sλ is reducible.

Before proving Proposition 3.7 we give some background. In [FL], the authors show how
Ariki’s Theorem [A] may be used to prove that certain Specht modules are reducible. We
summarise the relevant results here. For details, and to put these results into context, we refer
the reader to [FL, Section 5].

Suppose that λ is a partition. If µ is a partition such that µ ⊆ λ and µi − µi+1 is odd for
1 6 i < `(λ), we will say that µ is alternating in λ. In this case, we define a sequence of partitions
µ = µ0, µ1, µ2, . . . by setting µ j+1 to be the partition obtained from µ j by adding all addable
nodes that are contained in λ. Now define a λ-tableau T = T(λ, µ) as follows. Begin by filling
in each node of µ with a 0, then, for j > 1 fill in each node of µ j

\ µ j−1 with j. We write Tr,c for
the (r, c)-entry of the tableau T (see Section 4.1 below for basic definitions concerning tableaux).
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Now for each node (r, c) ∈ λ, let j = Tr,c and define

Nr,c =
∣∣∣∣{m < r

∣∣∣ Tm,λm < j, Tm,λm . j (mod 2)
}∣∣∣∣ − ∣∣∣∣{m < r

∣∣∣ Tm,λm < j, Tm,λm ≡ j (mod 2)
}∣∣∣∣ .

LetN(λ, µ) =
∑

(r,c)∈λ Nr,c.

Example. Letλ = (13, 125, 7, 4, 3) andµ = (13, 12, 11, 10, 9, 8, 7, 2, 1). The tableaux T,N are shown
in the two diagrams below, and we see thatN(λ, µ) = 10.

T =

0000000000000
0 0 0 0 0 0 0 0 0 0 0 0

100000000000
0 0 0 0 0 0 0 0 0 0 1 2

321000000000
0 0 0 0 0 0 0 0 1 2 3 4

0000000
0 0 1 2

210

N =

0000000000000
0 0 0 0 0 0 0 0 0 0 0 0

200000000000
0 0 0 0 0 0 0 0 0 0 2 −1

2−12000000000
0 0 0 0 0 0 0 0 2 −1 2 −1

0000000
0 0 3 −2

−230

The following lemma follows from [FL, Lemma 5.4 & Lemma 5.5].

Lemma 3.8. Let λ be a partition of n. Suppose that µ and µ̃ are alternating in λ. IfN(λ, µ) , N(λ, µ̃)
then Sλ is reducible.

We can now prove Proposition 3.7.

Proof of Proposition 3.7. Suppose that λ is LLT-reducible. Let l = `(λ) and let x < l be maximal
such that λx − λx+1 > 1; since λ has no broken ladders, we have λi − λi+1 = 1 for x + 1 6 i < l.
Now we consider two cases.

• Suppose first that λ1 + 1 > λl + l. Define σ as follows. Set σ1 to be maximal such that
σ1 6 λ1 and σ1 + 1 ≡ λl + l (mod 2). For 2 6 i 6 x, define σi to be maximal such that
σi 6 min{λi, σi−1 − 1} and σi + i ≡ λl + l (mod 2). Since λ has no broken ladders and
λ1 + 1 > λl + l, we have λi + i > λl + l for all 1 6 i 6 x, and using this it is easy to show by
induction that σi > λl+l−i for all 1 6 i 6 x. In particular, σx > λl+l−x > λl+l−x−1 = λx+1.
So we can define two partitions µ and µ̃ by setting

µ = (σ1, σ2, . . . , σx, λx+1, λx+2, . . . , λl),

µ̃ = (σ1, σ2, . . . , σx, λx+1 − 2, λx+2 − 2, . . . , λl − 2).

By construction, µ and µ̃ are alternating in λ, and we claim that N(λ, µ) , N(λ, µ̃). The
entries in T(λ, µ) and T(λ, µ̃) agree except in the last two entries in rows x + 1, . . . , l, which
are 0 0 in T(λ, µ), and 1 2 in T(λ, µ̃). So the definition ofN(λ, µ) gives

N(λ, µ̃) −N(λ, µ) = (l − x)
∣∣∣∣{1 6 m 6 x

∣∣∣ Tm,λm = 1
}∣∣∣∣ .

Choose 1 6 g 6 x minimal such that σg , λg. Then by construction λg − σg = 1 and
Tg,λg = 1. HenceN(λ, µ̃) −N(λ, µ) > 0 and Sλ is reducible by Lemma 3.8.
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• Now suppose that λ1 + 1 < λl + l. Define µ and µ̃ by

µ = (λ1, λ1 − 1, . . . , λ1 − x + 1, λ1 − x, . . . , λ1 − l + 1),

µ̃ = (λ1, λ1 − 1, . . . , λ1 − x + 1, λ1 − x − 2, . . . , λ1 − l − 1).

Again we claim that µ and µ̃ satisfy the conditions of Lemma 3.8. Since λ1 + 1 < λl + l, the
nodes (1, λ1), (l, λ1− l + 1) and (l, λ1− l) all lie in λ, so since λ has no broken ladders, µ and
µ̃ are both alternating in λ. Again, T(λ, µ) and T(λ, µ̃) agree except in rows x + 1, . . . , l. If
we let k = λl−λ1 + l−1, then rows x+1, . . . , l of T(λ, µ) have the form 0 0 1 2 k ,
while in T(λ, µ̃) these rows have the form 0 0 1 2 k+2 . Hence

N(λ, µ̃) −N(λ, µ) = (l − x)
∣∣∣∣{1 6 m 6 x

∣∣∣ Tm,λm = k + 1
}∣∣∣∣ .

It remains to show that Tm,λm = k+1 for some 1 6 m 6 x, which is equivalent to saying that
the ladder L = Ll+λl intersects non-trivially with the set of nodes {(m, λm) | 1 6 m 6 x}.
CertainlyL intersects with {(x, c) | 1 6 c 6 λx} since λx−λx+1 > 1, so choose r > 1 minimal
such that L intersects with {(r, c) | 1 6 c 6 λr}. Then r > 1 since λ1 + 1 < λl + l, so the fact
that r is minimal means that (r, λr) lies on L as required. �

3.1.4 Induction and restriction

Definition. For i ∈ {0, 1} let λ(i) be the partition obtained by removing all removable nodes of
residue i from λ.

The proof of the following proposition is a simple consequence of [K, Lemma 11.3], which
is the q-analogue of [BK, Lemma 2.13].

Proposition 3.9. [FL, Lemma 3.13] Suppose i ∈ {0, 1}. If Sλ
(i)

is reducible then so is Sλ.

Obviously this result will enable us to prove Theorem 2.4 by induction. In order to do this,
we make the following definition.

Definition. Say that λ is inductively reducible if for some i ∈ {0, 1} we have λ(i) , λ and one of
the following holds.

• λ(i) is 2-regular or 2-restricted and Sλ
(i)

is reducible.

• λ(i) is doubly-singular and neither λ(i) nor λ(i)′ is an FM-partition.

3.2 Analysis of partitions

The aim of this section is to complete the proof of Theorem 2.4, modulo the proof of
Proposition 3.5. The strategy is simple: we show that a Specht module which is not shown to
be reducible by any of the techniques in §3.1 is labelled by an FM-partition or the conjugate of
one. That is, we prove the following result.

Proposition 3.10. Suppose λ is a partition of n which satisfies the following conditions:

• λ is doubly-singular;
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• λ does not have a broken ladder;

• neither λ nor λ′ is CP-reducible;

• λ is not hom-reducible;

• neither λ nor λ′ is LLT-reducible;

• λ is not inductively reducible.

Then either λ or λ′ is an FM-partition.

Throughout this section we fix a partition λ with `(λ) = l satisfying the hypotheses of
Proposition 3.10. We begin by introducing some additional notation.

Definition. Suppose ν is a partition. If ν is not 2-restricted, we define:

• a∗(ν) to be minimal such that νa∗(ν) − νa∗(ν)+1 > 2;

• a∗(ν) to be maximal such that νa∗(ν) − νa∗(ν)+1 > 2;

• c(ν) to be maximal such that νa∗(ν)+c(ν) > 0.

If a∗(ν) = a∗(ν) we will write a(ν) = a∗(ν) = a∗(ν).
If ν is not 2-regular, we define b(ν) to be maximal such that νb(ν) = νb(ν)+1 > 0.

Now consider our chosen partition λ. Since λ has no broken ladders, we have a∗(λ) >
a∗(λ) > b(λ) and a∗(λ′) > b(λ′).

Definition. Say that λ is pointed if b(λ) + 1 = a∗(λ). Note that λ is pointed if and only if λ′ is
pointed. If λ is pointed, we call the removable node in row a∗(λ) the point.

Lemma 3.11. If λ is not pointed then all removable nodes of λ have the same residue. If λ is pointed
then all removable nodes of λ except possibly the point have the same residue.

Proof. First note that any removable node (r, c) of λwhich is not the point has an addable node
adjacent to it: if r < a∗(λ), then the node (r + 1, c) must be addable, while if r > b(λ) + 1 then the
node (r, c + 1) is addable.

Now suppose there are two removable nodes (r, c) and (r′, c′) of different residues, neither
of which is the point, lying in ladders k, k′ say. Since the residues of the nodes are not the same
we have k , k′ and we suppose without loss of generality that k < k′. There is an addable node
adjacent to (r′, c′), and this must lie in ladder k′ + 1. Since k′ + 1 > k and k′ + 1 ≡ k (mod 2), λ is
CP-reducible; contradiction. �

Corollary 3.12. All addable nodes of λ except possibly those in the first row and first column have the
same residue.

Proof. Every addable node except possibly those in the first row or column has a removable
node (which is not the point) adjacent to it. �
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Definition. Define µ to be the partition obtained from λ by removing all removable nodes
if all the removable nodes have the same residue, and all removable nodes except the point
otherwise.

Note that µ , λ, so since λ is not inductively reducible, either µ or µ′ must be either
alternating or an FM-partition.

The following properties of µ follow easily from the definitions.

Lemma 3.13.
• Suppose that µ is not 2-restricted. Then a∗(λ) = a∗(µ).

• Suppose that µ is not 2-regular. Then λb(λ) = µb(µ).

• Suppose that λl , 2 or that µl = λl. Then µ is not 2-restricted and a∗(λ) = a∗(µ).

• Suppose that λ1 > λ2 or that λ2 = λ3 or that µ2 = λ2. Then µ is not 2-regular.

Lemma 3.14. Suppose that all addable nodes of λ have the same residue and that λl , 2 or λl = µl. If
µ is an FM-partition then λ is an FM-partition.

Proof. By Lemma 3.13 we have

a∗(λ) = a∗(µ) = a∗(µ) = a∗(λ),

λb(λ) = λb(µ) > a(µ) − 1 = a(λ) − 1.

It remains only to show that λ1 > · · · > λc(λ). If c(λ) 6 1 there is nothing to check, so assume
that c(λ) > 2. Then c(µ) = c(λ) − 1 > 1, so all the addable nodes of µ have the same residue.
This means that the node (1, λ1 + 1) cannot be an addable node of µ, so λ1 > λ2. Now since we
have µ1 > · · · > µc(λ)−1 and λ does not have a broken ladder, we must have λ1 > · · · > λc(λ). �

Lemma 3.15. Suppose that λl > 3 and µ is an FM-partition. Then λ is an FM-partition.

Proof. Using Lemma 3.13, we have

a∗(λ) = a∗(µ) = a∗(µ) = a∗(λ),

λb(λ) = µb(µ) > a(µ) − 1 = a(λ) − 1,

c(λ) = c(µ) = 0.

Since a(λ) − 1 > b(λ) and all addable nodes of λ (except possibly for those in the first row and
the first column) have the same residue, λ is also an FM-partition. �

Lemma 3.16. Suppose λ1 > l and λl > 2. Then λ is an FM-partition.

Proof. Since λ is not LLT-reducible we have a∗(λ) = a∗(λ) = l. Since λ1 > l and λ is not
2-regular this implies that λl > 3 and therefore a∗(µ) = a∗(µ) = l and c(µ) = 0. If b(λ) = 1 then
λ = ((l + 1)2, l, l − 1, . . . , 3) is an FM-partition, so assume b(λ) > 1. Then µ is doubly-singular, so
either µ or µ′ is an FM-partition. In fact, we claim that µ must be an FM-partition. If µ′ is an
FM-partition then we have c(µ′) 6 1 (because µ′1 = µ′2 = l) and a∗(µ′) = a∗(µ′), so that

µb(µ) = µ1 − c(µ′) > λ1 − 2 > l − 1 = a(µ) − 1.

Hence µb(µ) > a(µ) − 1 and µ is also an FM-partition.
Now Lemma 3.15 implies that λ is also an FM-partition. �
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Lemma 3.17. Suppose that λ1 > l and λl = 1. Then λ or λ′ is an FM-partition.

Proof. Since λ1 > l, the addable node (1, λ1 +1) lies in a longer ladder than the removable node
(l, 1). Since λ is not CP-reducible, these nodes must have different residues, so the addable
node (1, λ1 + 1) has the same residue as the addable nodes (l, 2) and (l + 1, 1). So by Corollary
3.12 all the addable nodes of λ have the same residue.

Now we claim that µ is doubly-singular. By Lemma 3.13 µ is not 2-restricted, and the only
way µ could be 2-regular is if λ1 = λ2 > λ3. But if this is the case then the removable nodes
(2, λ1) and (l, 1) of λ have different residues, so (2, λ1) must be the point; and this means that
µ1 = µ2, so µ is not 2-regular.

So either µ or µ′ is an FM-partition. If µ is an FM-partition, then by Lemma 3.14 λ is an
FM-partition. If µ′ is an FM-partition, then (from the argument in the last paragraph) either
λ′
`(λ′) , 2 or µ′

`(λ′) = λ′
`(λ′); so by Lemma 3.14 λ′ is an FM-partition. �

Lemma 3.18. Suppose that λ1 = λ2 = l and λl = 2. If µ is an FM-partition then λ or λ′ is an
FM-partition.

Proof. First note that sinceλ1 = λ2 andλl = 2, we cannot have a∗(λ) = a∗(λ), because this would
give λ = (l2, l − 1, l − 2, . . . , 2) so that µ is 2-regular. So a∗(λ) < a∗(λ); since µ is an FM-partition,
we have a∗(µ) = a∗(µ) = a∗(λ).

Let x > 0 be minimal such that λx+1 = λb(λ) and let ν = (λx+1, . . . , λl). Since a∗(µ) = a∗(µ), ν
has the form

ν =
(
(g + f + s′)s, g + f + s′ − 1, . . . , g + s′, g, . . . , 2

)
where g > 2, f > 0 and s, s′ > 2. If λ = ν then λ1 = λ2 so, since µ is an FM-partition, c(µ) = 1;
that is, g = 2. Then λ′b(λ′) = l− 1 = a∗(λ′)− 1 and λ′ is an FM-partition. Assume then that λ , ν.
Then we have

x + s + f + g − 1 = l, g + s′ + f = λx+1 > λ1 − x + 1 = l − x + 1,

which gives s′ > s.
Suppose all removable nodes of λ have the same residue. Then s and s′ are both odd, so λ

is hom-reducible, a contradiction.
Next suppose that not all removable nodes of λ have the same residue. Then f = 0 and s, s′

are even. Let σ be the partition obtained by removing the point of λ; then σ is doubly-singular,
so either σ or σ′ is an FM-partition. In particular, either a∗(σ) = a∗(σ) or a∗(σ′) = a∗(σ′), which
means that either s or s′ equals 2. Since s′ > s, we get s = 2, so again λ is hom-reducible;
contradiction. �

By combining the results in this section, we can prove Proposition 3.10.

Proof of Proposition 3.10. Suppose λ is a partition with the given properties. Then λ′ has the
same properties, and we may replace λ with λ′ if necessary.

If λ1 > l, then by Lemma 3.16 or Lemma 3.17, either λ or λ′ is an FM-partition. So we may
assume λ1 6 l. Applying the same argument to λ′, we may assume that λ1 = l.

Now by Lemma 3.17 applied to both λ and λ′, we can assume that λl > 2 and λ1 = λ2.
Now the only way µ could be 2-regular or 2-restricted is if λ = (l2, l − 1, l − 2, . . . , 2), which
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is an FM-partition. So we can assume that µ is doubly-singular. Hence either µ or µ′ is an
FM-partition. Replacing λ with λ′ if necessary, we can assume µ is an FM-partition. And now
we are done using Lemma 3.15 or Lemma 3.18. �

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. The proof is by induction on |λ|. If λ = ∅ the theorem is trivially true.
Suppose that λ is a doubly-singular partition of n > 1 such that neither λ nor λ′ is an FM-
partition, and suppose that Theorem 2.4 holds for all partitions of m < n. By Proposition 3.10
at least one of the following statements holds for λ.

• λ has a broken ladder.

• λ or λ′ is CP-reducible.

• λ is hom-reducible.

• λ or λ′ is LLT reducible.

• λ is inductively reducible.

If any of the first four statements hold then Sλ is reducible by Lemma 2.1, Proposition 3.1,
Proposition 3.4, Proposition 3.6 or Proposition 3.7. So suppose λ is inductively reducible. Then
there exists i ∈ {0, 1} such that λ(i) , λ and λ(i) satisfies one of the following conditions.

• λ(i) is 2-regular and is not alternating.

• λ(i)′ is 2-regular and is not alternating.

• λ(i) is doubly-singular and neither λ(i) nor λ(i)′ is an FM-partition.

By Proposition 2.2 or the inductive hypothesis, Sλ
(i)

is reducible. Then Sλ is reducible by
Proposition 3.9. �

To complete the proof of Theorem 2.4 it remains only to give the deferred proof of Proposi-
tion 3.5.

4 Homomorphisms between Specht modules

4.1 Tableaux

If µ is a composition of n, a µ-tableau is defined to be a filling of the nodes of µwith integers;
if T is a tableau, we write Tr,c for the (r, c)-entry. The type of a tableau is the composition λ,
where λi is the number of nodes filled with the integer i, for each i. A tableau is row-standard if
the entries are weakly increasing along the rows. We write T (µ, λ) for the set of row-standard
µ-tableaux of type λ. If µ is a partition, we say that a µ-tableau is semistandard if the entries are
weakly increasing along the rows and strictly increasing down the columns; we write T0(µ, λ)
for the set of semistandard µ-tableaux of type λ. We remark thatT0(µ, λ) is empty unless µ Q

−→

λ,
where

−→

λ is the partition obtained by arranging the parts of λ in decreasing order.
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4.2 Permutation modules and Specht modules

Now take F to be an arbitrary field with q ∈ F×. For each composition λ of n, we let
Mλ denote the ‘permutation module’ defined by Dipper and James; if λ is a partition, then
the Specht module Sλ is a submodule of Mλ. If µ, λ are compositions of n and T is a row-
standard µ-tableau of type λ, then there is an Hn-homomorphism Θ̌T : Mµ

→ Mλ. The set{
Θ̌T

∣∣∣ T ∈ T (µ, λ)
}

is a basis for HomHn(Mµ,Mλ) [DJ1, Theorem 3.4].
These homomorphisms may be used to define the Specht module. Suppose λ and µ are

partitions of n, and 1 6 d < `(λ) and 1 6 t 6 λd+1. Define the composition λ(d, t) by

λ(d, t)i =


λi + t (i = d)

λi − t (i = d+1)

λi (otherwise).

Then there is a unique row-standard λ-tableau of type λ(d, t) with the property that for every
i , d+1 all the entries in row i are equal to i. The corresponding homomorphism from Mλ to
Mλ(d,t) is denoted ψd,t.

The Kernel Intersection Theorem [DJ1, Theorem 7.5] says that

Sλ =

`(λ)−1⋂
d=1

λd+1⋂
t=1

ker(ψd,t).

Remark. Our notation is not universally used: the partition λ(d, t) is referred to elsewhere in
the literature as ν(d, t); we use the notation λ(d, t) in order to emphasise the dependence on λ.
In addition, the homomorphism ψd,t is sometimes denoted ψt

d or ψd,λd+1−t.

If µ is a partition and λ a composition of n and T ∈ T (µ, λ), we shall often consider the
restriction of Θ̌T to Sµ, which we denote ΘT. We write EHomHn(Sµ,Mλ) for the subspace of
HomHn(Sµ,Mλ) spanned by all the ΘT; by [DJ2, Corollary 8.7],

{
ΘT | T ∈ T0(µ, λ)

}
is a basis for

EHomHn(Sµ,Mλ); in particular, EHomHn(Sµ,Mλ) = 0 unless µ Q
−→

λ.

Remark. In fact, EHomHn(Sµ,Mλ) is almost always equal to HomHn(Sµ,Mλ); the exception is
the case of most interest in this paper, when q = −1 and µ is 2-singular.

We also remark that the homomorphisms denoted Θ̌T,ΘT are denoted ΘT, Θ̂T elsewhere in
the literature. Since we shall almost exclusively be considering the restricted homomorphism,
we use the less cluttered notation for this.

4.3 Constructing homomorphisms between Specht modules

Suppose now that λ, µ are partitions of n, and Θ ∈ HomHn(Sµ,Mλ). By the Kernel Inter-
section Theorem, we have im(Θ) ⊆ Sλ if and only if ψd,t ◦ Θ = 0 for all d, t. We shall only
be considering the cases where Θ ∈ EHomHn(Sµ,Mλ); we write EHomHn(Sµ,Sλ) for the set of
Θ ∈ EHomHn(Sµ,Mλ) for which im(Θ) ⊆ Sλ.

It turns out that it is possible to give an expression for ψd,t ◦ΘT, which shows in particular
that ψd,t ◦ ΘT ∈ EHomHn(Sµ,Mλ(d,t)). One consequence of this which will save a lot of effort
later is that we automatically have ψd,t ◦ΘT = 0 unless µ Q

−−−−−−→

λ(d, t).
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In order to give our expression for ψd,t ◦ ΘT, we need to recall quantum integers and
quantum binomial coefficients. For m > 0 define

[m] = 1 + q + · · · + qm−1,

and [m]! =
∏m

i=1[i]. If q is an indeterminate, then for integers m, j, set[
m
j

]
=


[m]!

[ j]![m − j]!
(m > j > 0)

0 (otherwise).

Then
[m

k

]
is a polynomial in q; so we can extend the definition of

[m
k

]
to the case where q is

algebraic by defining it to be the specialisation of this polynomial.
In this paper, we are only concerned with the case q = −1, in which case we have

[m] =

0 (if m is even)

1 (if m is odd),

and the majority of the quantum binomial coefficients we consider will be of the form
[m

1

]
= [m],

which will simplify calculations considerably.
For a tableau T, let Ti

j denote the number of entries equal to i in row j of T. Let T>i
j =

∑
k>i Tk

j ,

and define terms such as T<i
j similarly. Now we can describe the composition ψd,t ◦ΘT.

Proposition 4.1. [L2, Proposition 2.14] Suppose that T is a row-standard µ-tableau of type λ. Choose
d with 1 6 d < `(λ) and t with 1 6 t 6 λd+1. Let S be the set of row-standard tableaux of type λ(d, t)
obtained by replacing t of the entries in T which are equal to d+1 with d. Then

ψd,t ◦ΘT =
∑
S∈S


`(µ)∏
j=1

qTd
> j(S

d
j−Td

j )
[Sd

j

Td
j

]ΘS.

A difficulty with Proposition 4.1 is that it expresses ψd,t ◦ ΘT in terms of homomorphisms
labelled by tableaux which are not necessarily semistandard. In order to be able to use this
result to show that a composition ψd,t ◦Θ is zero, we need the following result, which allows a
homomorphism ΘT to be written in terms of other tableaux. In this proposition, we write Z+

for the set of non-negative integers; given g ∈ Zl
+, we write ḡd−1 for the partial sum

∑d−1
i=1 gi.

Proposition 4.2. [L3, Theorem 4.2] Suppose µ is a partition and ν a composition of n, and S ∈ T (µ, ν).

1. Suppose 1 6 r 6 `(µ) − 1 and that 1 6 d 6 `(ν). Let

G =
{

g ∈ Z`(ν)
+

∣∣∣∣ gd = 0,
∑`(ν)

i=1 gi = Sd
r+1 and gi 6 Si

r for 1 6 i 6 `(ν)
}
.

For g ∈ G, let Ug be the row-standard tableau formed from S by moving all entries equal to d from
row r + 1 to row r and for i , d moving gi entries equal to i from row r to row r + 1. Then

ΘS = (−1)Sd
r+1q−(

Sd
r+1+1

2 )q−Sd
r+1S<d

r+1

∑
g∈G

qḡd−1

`(ν)∏
i=1

qgiS<i
r+1

[
Si

r+1 + gi

gi

]
ΘUg .
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2. Suppose 1 6 r 6 `(µ) − 1 and µr = µr+1 and that 1 6 d 6 `(ν). Let

G =
{

g ∈ Z`(ν)
+

∣∣∣∣ gd = 0,
∑`(ν)

i=1 gi = Sd
r and gi 6 Si

r+1 for 1 6 i 6 `(ν)
}
.

For g ∈ G, let Ug be the row-standard tableau formed form S by moving all entries equal to d from
row r to row r + 1 and for i , d moving gi entries equal to i from row r + 1 to row r. Then

ΘS = (−1)Sd
r q−(

Sd
r
2 )q−Sd

r S>d
r

∑
g∈G

q−ḡd−1

`(ν)∏
i=1

qgiS>i
r

[
Si

r + gi

gi

]
ΘUg .

Remarks.
• We shall be considering only the case q = −1, in which case the unwieldy formulæ in

Proposition 4.2 simplify a little; for example, the product (−1)Sd
r+1q−(

Sd
r+1+1

2 ) in (1) becomes

(−1)(
Sd

r+1
2 ).

• Since the first draft of this paper was written, the first author has proved a more general
result giving linear relations between tableau homomorphisms [F4], which yields an
explicit fast algorithm for ‘semistandardising’ a homomorphism. However, the result
above will be sufficient in this paper.

The following result [LM, Theorem 3.1] or [D, Prop. 10.4] often allows us to simplify our
calculations.

Proposition 4.3. Suppose that λ and µ are partitions of n and that for some x > 0 we have λi = µi for
1 6 i 6 x. Let λ̄ = (λx+1, λx+2, . . .) and µ̄ = (µx+1, µx+2, . . .), and let m = |λ̄| = |µ̄|. Then

dimF EHomHn(Sµ,Sλ) = dimF EHomHm(Sµ̄,Sλ̄).

We will also make use of the next result.

Lemma 4.4. Suppose V is a λ-tableau such that for some k there are m entries equal to k which all lie in
rows of length strictly less than m. Then ΘV = 0.

Proof. Choose y minimal such that Vk
y , 0. We may apply Proposition 4.2 repeatedly to write

ΘV as a linear combination of homomorphisms indexed by tableaux obtained by moving all
entries equal to k in V upwards until they are all contained in row y. But by assumption there
are no such tableaux. �

4.4 Notation for tableaux

We list here a few items of notation which we shall use below.

• If V,W are row-standard tableaux, we shall use the notation V
d; r
−→ W to mean that W is

obtained from V by replacing a d+1 in row r with a d , and we write V
d; r,s
−→ W to mean

that W is obtained by replacing two d+1s with d s, in rows r and s (where r may equal s).

• If T is a tableau and 1 6 i 6 j, we write T〈i, j〉 for the tableau consisting of rows i, . . . , j of T.

• If T,U are tableaux of the same shape and 1 6 i 6 j, we write T
∣∣∣ij∣∣∣U to mean that the

entries of T and U are the same except in rows i, . . . , j.
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4.5 Some simple relations between tableau homomorphisms when q = −1

Now we give some simple consequences of Proposition 4.2 which we shall use repeatedly.
We assume in this subsection that q = −1; this will mean that our relations take a particularly
simple form.

Lemma 4.5. Suppose µ is a partition and i > 1 is such that µi+1 = µi − 1. Suppose V,W,X are
µ-tableaux such that V

∣∣∣ i
i+1

∣∣∣W∣∣∣ i
i+1

∣∣∣X and

V〈i,i+1〉 =
a a c c
b b , W〈i,i+1〉 =

a a b c
b b c , X〈i,i+1〉 =

a a b b
b b c c ,

where a < b < c. Then ΘV = −ΘW −ΘX.

Proof. Applying Proposition 4.2, we get

ΘV = (−1)(
m
2)+1ΘY + (−1)(

m+1
2 )ΘZ,

where m = µi+1, Y
∣∣∣ i
i+1

∣∣∣Z∣∣∣ i
i+1

∣∣∣V and

Y〈i,i+1〉 =
b b c
a a c , Z〈i,i+1〉 =

a b b
a a c c .

Proposition 4.2 again (together with the fact that [2] = 0 when q = −1) gives

ΘY = (−1)(
m
2)ΘW, ΘZ = (−1)(

m−1
2 )ΘX,

and the fact that
(m+1

2
)
.

(m−1
2

)
(mod 2) for any m gives the result. �

Lemma 4.6. Suppose µ is a partition and i > 1 is such that µi+1 = µi − 1. Suppose V,W,X,Y are
µ-tableaux such that V

∣∣∣ i
i+1

∣∣∣W∣∣∣ i
i+1

∣∣∣X∣∣∣ i
i+1

∣∣∣Y and

V〈i,i+1〉 =
a a c d
b b , W〈i,i+1〉 =

a a b d
b b c ,

X〈i,i+1〉 =
a a b c
b b d , Y〈i,i+1〉 =

a a b b
b b c d ,

where a < b < c < d. Then ΘV = −ΘW −ΘX −ΘY.

Proof. As in the proof of Lemma 4.5, we apply Proposition 4.2 to ΘV to move the b s up to
row 1, and then again to move the a s up to row 1. �

Lemma 4.7. Suppose µ is a partition with µi = µi+1 for some i, and V,W are µ-tableaux such that
V
∣∣∣ i
i+1

∣∣∣W and

V〈i,i+1〉 =
a a b d
b b c , W〈i,i+1〉 =

a a b b
b b c d ,

where a < b < c < d. Then ΘV = ΘW.
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Proof. By Proposition 4.2(2), both homomorphisms equal −ΘX, where

X〈i,i+1〉 =
a a c d
b b . �

Lemma 4.8. Supposeµ is a partition and 1 6 a < b−1 such thatµa = µb−1, and that X,Y areµ-tableaux
with X

∣∣∣ a
b−1

∣∣∣Y and

X〈a,b−1〉 =

a a b
a+1 a+1 a+2
a+2 a+2 a+3

b−2 b−2 b−1
b−1 b−1 b

, Y〈a,b−1〉 =

a a a+1
a+1 a+1 a+2 a+2
a+2 a+2 a+3 a+3

b−2 b−2 b−1 b−1
b−1 b−1 b b

.

Then ΘX = −ΘY.

Proof. Define the tableau Z by Z
∣∣∣ a
b−1

∣∣∣X and

Z〈a,b−1〉 =

a a a+1
a+1 a+1 b b
a+2 a+2 a+2

b−2 b−2 b−2
b−1 b−1 b−1

.

We define a sequence of tableaux X = Xb,Xb−1, . . . ,Xa+2, where for k = b−1, . . . , a+2, Xk is formed
from Xk+1 by swapping the k in row k − 1 and the b in row k. Applying Proposition 4.2(2),
we find that ΘXk = −ΘXk−1 . We then apply Proposition 4.2(2) to Xa+2 to move the b from row
1 to row 2, so that ΘXa+2 = −ΘZ. Hence ΘX = (−1)a+b+1ΘZ.

We do a similar thing for Y: for k = b − 1, · · · , a + 2 we move the two k s from row k − 1 to
row k. We get ΘY = (−1)a+bΘZ, which gives the result. �

5 The proof of Proposition 3.5

We now use the results of the preceding section to give a proof of Proposition 3.5, thereby
completing the proof of our main theorem. We assume from now on that q = −1.

Proposition 3.5 follows from Proposition 4.3 and the following result.

Proposition 5.1. Fix integers s, s′, f , g with f > 0, g > 2, s′ > s > 2 and

• s and s′ are odd; or

• s = 2, s′ is even and f = 0.

Define

µ =
(
(g + f + s′ + 1)2, (g + f + s′)s−2, g + f + s′ − 1, g + f + s′ − 2, . . . , g + s′, g, g − 1, . . . , 3

)
,

λ =
(
(g + f + s′)s, g + f + s′ − 1, g + f + s′ − 2, . . . , g + s′, g, g − 1, . . . , 2

)
,
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and let n = |λ| = |µ|. Then
EHomHn(Sµ,Sλ) , 0.

The remainder of this paper is devoted to proving Proposition 5.1.

5.1 Proof of Proposition 5.1 when s and s′ are both odd

5.1.1 Constructing the homomorphism

Fix integers s, s′, f , g, λ, µ as in the statement of Proposition 5.1 and assume s and s′ are odd.
Let l = `(µ) = s + f + g − 2. We will say a µ-tableau (of arbitrary type) is usable if for every row
i, all except possibly the last two entries are equal to i. All the tableaux we consider will be
usable. Given a usable tableau of shape µ, we will often encode it simply by giving a tableau
of shape (2l), recording the last two entries in each row. Conversely, given a tableau of shape
(2l), we will talk about the ‘corresponding usable µ-tableau’.

Now we need some more definitions. Suppose 2 6 i < j 6 s. Then there is a unique
(2s−1)-tableau S(i, j) of type (12, 2s−2) such that

S(i, j)1,2 = i, S(i, j)2,2 = j,

S(i, j)1,1 6 S(i, j)2,1 6 S(i, j)3,1 6 S(i, j)3,2 6 S(i, j)4,1 6 · · · 6 S(i, j)s−1,2. (∗)

Define

mi j =

 1
2 (s − 1) (if i = 2 and j = 3)

(−1) j+1 (otherwise).

Later we shall also need a slight variant of the above definition. Suppose 1 6 d 6 s − 1 and let

νd =


(2, 0, 2s−2) (d = 1)

(1, 2, 1, 2s−3) (d = 2)

(12, 2d−3, 3, 1, 2s−d−1) (d > 3);

that is, νd is the composition obtained from (12, 2s−2) by increasing the dth part by 1 and
decreasing the (d+1)th part by 1. Now given i < j 6 s, there is a unique (2s−1)-tableau Sd(i, j)
of type νd satisfying (∗). (In the case d = 1, we now allow the possibility that i = 1, but exclude
the possibility that i or j equals 2.)

Next, we need to consider tableaux of shape (2g−1) and type (2g−1). Given such a tableau T
and given 1 6 i 6 g − 1, we will say that T is split at row i if all the entries in rows 1, . . . , i are
less than all the entries in rows i + 1, . . . , g− 1. LetA denote the set of (2g−1)-tableaux T of type
(2g−1) for which:

• the entries in each row are weakly increasing;

• for each k, the entries in row k are at least k − 1;

• for all 2 6 k 6 g − 2, the first entry in row k is strictly less than the second entry in row
k + 1;

• if T is split at row k, then it is split at all rows k + 1, k + 2, . . . , g − 1.
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For example, when g = 5, the tableaux inA are

1 1
22

3 3
,

1 2
21

3 3
,

2 2
11

3 3
,

1 2
31

2 3
,

1 3
21

2 3
,

2 3
11

2 2
,

1 3
31

2 2
,

3 3
11

2 2
.

If T ∈ A, we define sgn(T) to be (−1)a, where a is the first row at which T is split.
Now we can construct the semistandard µ-tableaux which we will combine to give our

homomorphism. Set

I =
{
(i, j)

∣∣∣ 2 6 i < j 6 s, and either j is odd or i > 3
}
.

Given (i, j) ∈ I and T ∈ A, construct a tableau of shape (2s+ f+g−2) as follows:

• the first s − 1 rows are just the rows of S(i, j);

• for s 6 k 6 s + f − 1, the entries in row k are both equal to k + 1;

• rows s + f , . . . , s + f + g − 2 are the rows of T, with each entry increased by s + f .

Let U(i, j,T) be the corresponding usable µ-tableau, and let Θ(i, j,T) denote the corresponding
homomorphism from Sµ to Mλ.

Then we claim that
Θ =

∑
(i, j)∈I

∑
T∈A

mi, j sgn(T)Θ(i, j,T)

gives a homomorphism in EHomHn(Sµ,Sλ). One can check that all the U(i, j,T) are semistan-
dard, so Θ is certainly non-zero. All we then need to do is check that ψd,t ◦Θ = 0 for all d, t. By
dominance considerations (see the remarks in the second paragraph of §4.3), the only pairs (d, t)
that we need to consider are (d, 1) for 1 6 d 6 s + f + g− 2, and (d, 2) for s + 1 6 d 6 s + f + g− 2.

Example. Suppose (s, s′, f , g) = (5, 5, 2, 5). Then (2, 5) ∈ I, and the tableau

T =

2 3
11

2 3
44

lies inA. We have m2,5 = 1 and sgn(T) = −1, and

S(2, 5) =

1 2
53

3 4
54

, U(2, 5,T) =

2111111111111
2 2 2 2 2 2 2 2 2 2 2 3 5

433333333333
4 4 4 4 4 4 4 4 4 4 4 5

665555555555
6 6 6 6 6 6 6 6 6 7 7

10977777777
8 8 8 8 8

10999
10 11 11

.

For later use, we extend the notation above: given 1 6 d 6 s − 1, we define Ud(i, j,T) and
Θd(i, j,T) in the same way, but using the tableau Sd(i, j) instead of S(i, j); as above, we allow
i = d = 1 but exclude the cases where d = 1 and i or j is equal to 2.
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5.1.2 Rows 1 to s

Throughout this section, we let m = g + f + s′. To prove that ψd,1 ◦Θ = 0 for 1 6 d 6 s − 1,
we need to compute ψd,1 ◦Θ(i, j,T) for each i, j. This is given by the following result.

Proposition 5.2. Suppose (i, j) ∈ I, T ∈ A and 1 6 d 6 s − 1. Then ψd,1 ◦Θ(i, d,T) equals:

(a) (−1)mΘd(i, d,T), if j = d;

(b) (−1)mΘd(i, d,T), if i < d and j = d+1;

(c) 0, if i < d > 4 and j , d, d+1;

(d) (−1)m+d+1Θd(2, d,T), if i = d > 3 and j = d+1;

(e) (−1)m+1Θd(d, j,T), if i = d and j > d + 2;

(f) (−1)mΘd(d, j,T), if i = d+1 > 3;

(g) 0, if i > d + 2 > 5;

(h) (−1)m+1Θ3(2, 3,T), if d = 3, i = 2 and j > 5;

(i) 0, if i = d = 2 and j = 3;

(j) (−1)m+iΘ2(2, i,T), if d = 2 and i > 4;

(k) 0, if d = 1 and i = 2;

(l) (−1)mΘ1(1, j,T), if d = 1 and i = 3;

(m) (−1)m+iΘ1(1, i,T) + (−1)m+i+1Θ1(1, j,T), if d = 1 and i > 4.

Given this, it is straightforward to check the following corollary.

Corollary 5.3. Suppose T ∈ A. Then for 1 6 d 6 s − 1, we have

ψd,1 ◦

 ∑
(i, j)∈I

mi, jΘ(i, j,T)

 = 0.

Hence ψd,1 ◦Θ = 0 for 1 6 d 6 s − 1.

Proof of Proposition 5.2.
(a) This is a simple application of Proposition 4.1 and Proposition 4.2. All the d+1s in U(i, d,T)

lie in rows d and d+1, and we have

U(i, d,T)〈d,d+1〉 =
d d d+1 d+1

d+1 d+1 d+2 d+2
.

So applying Proposition 4.1, we get

ψd,1 ◦Θ(i, d,T) = [m − 1]Θd(i, d,T) + ΘV,
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where U(i, d,T)
d; d
−→ Ud(i, d,T) and U(i, d,T)

d; d+1
−→ V. To express ΘV in terms of semistan-

dard homomorphisms, we apply Proposition 4.2(1) (with r = d), and we obtain

ΘV = −[m − 2]Θd(i, d,T).

Now the result follows, using the fact that [m − 1] − [m − 2] = (−1)m.

(b) U(i, d+1,T) has d+1s in rows 2, d, d+1, and Proposition 4.1 gives

ψd,1 ◦Θ(i, d+1,T) = (−1)mΘd(i, d,T) + [m]ΘV + ΘW,

where U(i, d+1,T)
d; d
−→ V and U(i, d+1,T)

d; d+1
−→ W. Proposition 4.2 gives ΘW = −[m−2]ΘV,

and the fact that [m] = [m − 2] gives the result.

(c) This is a simple application of Proposition 4.1 and Lemma 4.4: Proposition 4.1 expresses
ψd,1◦Θ(i, j,T) as a linear combination of homomorphisms labelled by tableaux containing
m + 1 d s, all contained in rows of length m; by Lemma 4.4, these homomorphisms are
equal to zero.

(d) The d+1s in U(d, d+1,T) lie in rows 2, d and d+1. Proposition 4.1 gives

ψd,1 ◦Θ(d, d+1,T) = (−1)m+1ΘV + [m]ΘW + ΘX,

where
U(d, d+1,T)

d; 2
−→ V, U(d, d+1,T)

d; d
−→W, U(d, d+1,T)

d; d+1
−→ X.

Proposition 4.2 gives ΘX = −[m − 2]ΘW, and so we just need to show that ΘV =

(−1)dΘd(2, d,T). Applying Proposition 4.2(2) in rows 1 and 2 and then Lemma 4.5, we
find that ΘV = ΘY + ΘZ, where

Y〈1,3〉 =
1 1 2
2 2 3 d
3 3 d

, Z〈1,3〉 =
1 1 2
2 2 3 3
3 3 d d

and Y
∣∣∣13∣∣∣Z∣∣∣13∣∣∣U(d, d+1,T). By Lemma 4.4 we have ΘZ = 0, so we concentrate on ΘY.

For k = 4, · · · , d − 1 the kth row of Y consists entirely of ks. So we can repeatedly
apply Proposition 4.2(2) to move the d in row 3 down to row d − 1, and we get ΘY =

(−1)dΘd(2, d,T), as required.

(e) If d > 3, then this is a simple application of Proposition 4.1 and Proposition 4.2: all the
d+1s in U(i, j,T) lie in rows d and d+1, and Proposition 4.1 gives

ψd,1 ◦Θ(d, j,T) = [m]Θd(d, j,T) + ΘW,

where U(d, j,T)
d; d+1
−→ W. Proposition 4.2 gives ΘW = −[m − 1]Θd(d, j,T), and the fact that

[m] − [m − 1] = (−1)m+1 gives the result.
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Now suppose d = 2. Then

U(2, j,T)〈1,3〉 =
1 1 2
2 2 3 j
3 3 4

and Proposition 4.1 gives

ψ2,1 ◦Θ(2, j,T) = [m]Θ2(2, j,T) + ΘV,

where U(2, j,T)
2; 3
−→ V. Proposition 4.2 gives ΘV = −[m−1]Θ2(2, j,T) plus a scalar multiple

of ΘW, where

W〈2,3〉 =
2 2 3
3 3 4 j

and W
∣∣∣23∣∣∣U(2, j,T). Since [m] − [m − 1] = (−1)m+1, we just need to show that ΘW = 0. For

4 6 k 6 j − 1 we have
W〈k,k〉 = k k k+1 .

We apply Lemma 4.7 in rows k, k+1, for k = 3, . . . , j−3 in turn, and we find that ΘW = ΘX,
where

X〈 j−2, j−1〉 =
j−2 j−2 j−1 j
j−1 j−1 j

.

Now Proposition 4.2 gives ΘX = 0, since we get a factor of [2] = 0.

(f) The tableau U(d+1, j,T) contains a d+1 in row 1, with the remaining d+1s in row d+1.
Proposition 4.1 yields

ψd,1 ◦Θ(d+1, j,T) = (−1)mΘd(d, j,T) + ΘW,

where U(d+1, j,T)
d; d+1
−→ W. But ΘW = 0 by Lemma 4.4, and we are done.

(g) In this case all the d s and d+1s in U(i, j,T) lie in rows of length at most m; so by
Proposition 4.1 and Lemma 4.4 we have ψd,1 ◦Θ(i, j,T) = 0.

(h) In this case

U(2, j,T)〈2,4〉 =
2 2 3 j
3 3 4
4 4 5

,

and Proposition 4.1 gives

ψ3,1 ◦Θ(2, j,T) = [m]ΘV + ΘW,

where U(2, j,T)
3; 3
−→ V and U(2, j,T)

3; 4
−→ W. Proposition 4.2 gives ΘW = −[m − 1]ΘV, so

we just need to show that ΘV = Θ3(2, 3,T).

Applying Proposition 4.2 twice, we find that ΘV = −ΘX, where X is obtained from V by
interchanging the j in row 2 with a 3 in row 3. We can apply Lemma 4.8 to X (with
a = 3, b = j) and we obtain ΘX = −Θ3(2, 3,T).
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(i) This is a simple application of Proposition 4.1 and Proposition 4.2; it is similar to case (a),
but using the identity [m] − [m − 2] = 0.

(j) The 3s in U(i, j,T) all appear in row 3, so Proposition 4.1 gives ψ2,1 ◦Θ(i, j,T) = ΘV, where

U(i, j,T)
2; 3
−→ V. Applying Proposition 4.2, this equates to (−1)mΘW, where

W〈1,3〉 =
1 1 1 i
2 2 2 2
3 3 j

(and W
∣∣∣13∣∣∣U(i, j,T)). For k = 4, . . . , i − 1 row k of W consists entirely of ks, so we can apply

Proposition 4.2(2) repeatedly to move the j from row 3 down to row i−1. We also apply
Proposition 4.2(2) in rows 1 and 2, and we find that ΘW = (−1)i+1ΘX, where

X〈i−1, j−1〉 =

i−1 i−1 j
i i i+1

i+1 i+1 i+2

j−1 j−1 j

.

By Lemma 4.8, we have ΘX = −Θ2(2, i,T), and we are done.

(k) This is a simple application of Proposition 4.1 and Proposition 4.2; it is similar to (a),
using the identity [m + 1] − [m − 1] = 0.

(l) This is a simple application of Proposition 4.1 and Proposition 4.2.

(m) Applying Proposition 4.1 and Proposition 4.2 gives ψ1,1 ◦Θ(i, j,T) = (−1)mΘV, where

V〈1,2〉 =
1 1
2 2 i j

and V
∣∣∣12∣∣∣U(i, j,T). Applying Lemma 4.6 gives

ΘV = −ΘW −ΘX −ΘY,

where

W〈2,3〉 =
2 2 3 j
3 3 i , X〈2,3〉 =

2 2 3 i
3 3 j , Y〈2,3〉 =

2 2 3 3
3 3 i j

and V
∣∣∣23∣∣∣W∣∣∣23∣∣∣X∣∣∣23∣∣∣Y. In particular, for k = 4, . . . , i − 1 the kth row of any of these tableaux

consists entirely of ks.

For W, we can repeatedly apply Proposition 4.2(2) to move the i from row 3 down to
row i − 1. We get ΘW = (−1)iΘ1(1, j,T).

We do the same for X to reach a tableau in which the row i − 1 has the form

i−1 i−1 j .
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We can apply Lemma 4.8 to this tableau (with a = i − 1, b = j) to obtain ΘX =

−(−1)iΘ1(1, i,T).

It remains to show that ΘY = 0. Examining the tableau Y〈3,i−1〉, we find that there is a
unique semistandard tableau with the same shape and content, so ΘY must equal a scalar
multiple of ΘZ, where Z〈3,i−1〉 is this semistandard tableau and Z

∣∣∣ 3
i−1

∣∣∣Y. Then

Z〈i−1, j−1〉 =

i−1 i−1 i j
i i i i+1

i+1 i+1 i+1 i+2

j−1 j−1 j−1 j

.

Applying Lemma 4.7 repeatedly, we can move the j from row i − 1 down to row j − 2;
we obtain a tableau in which rows j − 2, j − 1 have the form

j−2 j−2 j−1 j
j−1 j−1 j

.

Now Proposition 4.2 tells us that the corresponding homomorphism is zero. �

5.1.3 Rows s to s + f

Proposition 5.4. Suppose s 6 d 6 s + f − 1, (i, j) ∈ I and T ∈ A. Then ψd,1 ◦Θ(i, j,T) = 0.

Proof. We apply Proposition 4.1. Note that the d+1s in U(i, j,T) occur in rows d, d+1. Row d
contains µd − 2 d s and two d+1s, and all the remaining d s are in higher rows, so we get

ψd,1 ◦Θ(i, j,T) = [µd − 1]ΘV + ΘW,

where U(i, j,T)
d; d
−→ V and U(i, j,T)

d; d+1
−→ W. But Proposition 4.2 immediately gives ΘW =

−[µd − 3]ΘV, and we are done. �

Proposition 5.5. Suppose s + 1 6 d 6 s + f , (i, j) ∈ I and T ∈ A. Then ψd,2 ◦Θ(i, j,T) = 0.

Proof. This follows from Proposition 4.1 and Lemma 4.4. �

5.1.4 Rows s + f to s + f + g − 1

In the next few sections we prove the following, which will complete the proof of Proposi-
tion 5.1 when s, s′ are odd.

Proposition 5.6. Suppose that (i, j) ∈ I, that s + f 6 d 6 s + f + g − 2 and that t = 1 or 2. Then

ψd,t ◦

∑
T∈A

sgn(T)Θ(i, j,T)

 = 0.
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Note that the case t = 2, d = s + f has already been covered in Proposition 5.5.
If T ∈ A, then the d+1s in U(i, j,T) lie within rows s + f , . . . , d+1. Given s + f 6 k 6 d+1, we

write ak, bk for the entries at the end of row k of U(i, j,T), with ak 6 bk; that is, ak = Tk−s− f+1,1+s+ f ,
bk = Tk−s− f+1,2 + s + f .

Now assume d 6 s + f + g − 3 (the easier case d = s + f + g − 2 is addressed below). The
multiset

{
ak, bk | s + f 6 k 6 d+1

}
contains two each of the integers s + f + 1, . . . , d+1, together

with two larger integers a, b. We partitionA according to these integers a, b: given d+1 < a 6 b,
we define Aa,b to be the set of T ∈ A such that

{
ak, bk | s + f 6 k 6 d+1

}
includes the integers a

and b. We prove the following refinement of Proposition 5.6.

Proposition 5.7. Suppose (i, j) ∈ I and that s + f 6 d 6 s + f + g − 3, t = 1 or 2 and d+1 < a 6 b.
Then

ψd,t ◦

 ∑
T∈Aa,b

sgn(T)Θ(i, j,T)

 = 0.

We consider several different cases, according to whether d equals s + f or s + f + g− 2, and
whether a < b.

5.1.5 The case s + f + 1 6 d 6 s + f + g − 3, a < b

We start by defining some subsets ofAa,b:

A
a,b
1 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d, d+1, d+1)
}

;

A
a,b
2 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d+1, d+1, a)
}

;

A
a,b
3 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d+1, d+1, b)
}

;

A
a,b
4 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d, d+1, a)
}

;

A
a,b
5 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, a, d+1, d+1)
}

;

A
a,b
6 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d, d+1, b)
}

;

A
a,b
7 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, b, d+1, d+1)
}

;

A
a,b
8 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, a, d+1, b), as+ f = d
}

;

A
a,b
9 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, b, d+1, a), as+ f = d
}

;

A
a,b
10 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, a, d+1, b), bk = d, bl = d+1 for some k < l < d
}

;

A
a,b
11 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, b, d+1, a), bk = d, bl = d+1 for some k < l < d
}

;

A
a,b
12 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, a, d+1, b), bk = d+1, bl = d for some k < l < d
}

;

A
a,b
13 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d, b, d+1, a), bk = d+1, bl = d for some k < l < d
}
.

Using the definition ofA, it is easy to check that these sets partitionAa,b. (Note that because
a < b, a tableau T ∈ Aa,b cannot have (ad+1, bd+1) = (a, b), because then T would not lie in A:
T would be split at row d − s − f + 1 but not at row d − s − f + 2. Similarly, we cannot have
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{ad, bd, ad+1, bd+1} = {d+1, d+1, a, b} as multisets.) Now Proposition 5.7 in this case will follow
from the following two results.

Proposition 5.8. Suppose i, j, d, a, b are as above with a < b.

1. If T ∈ Aa,b
1 ∪A

a,b
2 ∪A

a,b
3 , then ψd,1 ◦Θ(i, j,T) = 0.

2. There is a bijection T 7→ T′ fromAa,b
4 toAa,b

5 such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,b

4 .

3. There is a bijection T 7→ T′ fromAa,b
6 toAa,b

7 such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,b

6 .

4. There is a bijection T 7→ T′ fromAa,b
8 toAa,b

9 such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,b

8 .

5. There are bijections

A
a,b
10 −→ A

a,b
11 A

a,b
10 −→ A

a,b
12 A

a,b
10 −→ A

a,b
13

T 7−→ T′ T 7−→ T′′ T 7−→ T′′′

such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′) + sgn(T)Θ(i, j,T′′) + sgn(T′)Θ(i, j,T′′′)

)
= 0

for each T ∈ Aa,b
10 .

Proof.
1. If T ∈ Aa,b

1 , then we get ψd,1 ◦Θ(i, j,T) = 0 by Proposition 4.1 and Lemma 4.4.

If T ∈ Aa,b
2 orAa,b

3 , then Proposition 4.1 gives

ψd,1 ◦Θ(i, j,T) = [µd]ΘV + ΘW,

where V
d; d
←− U(i, j,T)

d; d+1
−→ W. But Proposition 4.2 gives ΘW = −[µd − 2]ΘV, so ψd,1 ◦

Θ(i, j,T) = 0.

2. Given T ∈ Aa,b
4 , there is one d+1 in a row k < d of U(i, j,T). We define T′ by replacing

this entry with d , and replacing (ad, bd, ad+1, bd+1) with (d, a, d+1, d+1). It is easy to

check that this really does define a bijection from Aa,b
4 to Aa,b

5 . Moreover, it is clear that
sgn(T′) = sgn(T). Now consider ψd,1 ◦ Θ(i, j,T). Applying Proposition 4.1, we replace a
d+1 with a d in row k or row d+1. But in the latter case the resulting homomorphism

is zero, by Lemma 4.4. So we have ψd,1 ◦ Θ(i, j,T) = (−1)µdΘV, where U(i, j,T)
d; k
−→ V.

On the other hand, we have ψd,1 ◦ Θ(i, j,T′) = ΘW, where U(i, j,T′)
d; d+1
−→ W. Applying

Proposition 4.2 to W, we get ΘW = (−1)µd−1ΘV; so ψd,1 ◦
(
Θ(i, j,T) + Θ(i, j,T′)

)
= 0, as

required.
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3. This is identical to (2), with the rôles of a and b interchanged.

4. From the definition ofA, we find thatAa,b
8 consists of a single tableau T, andAa,b

9 consists
of a single tableau T′. T′ is obtained from T simply by interchanging the a and b in
rows d and d+1 of U(i, j,T), and we have sgn(T) = sgn(T′). Now we apply Proposition 4.1
to compute ψd,1 ◦ Θ(i, j,T); note that since we have as+ f = d, we must have bs+ f = d+1.
Hence when we replace a d+1 with a d in row s + f , we get a factor of [2] = 0. So we just

have ψd,1 ◦Θ(i, j,T) = ΘV, where U(i, j,T)
d; d+1
−→ V. Similarly ψd,1 ◦Θ(i, j,T′) = ΘW where

U(i, j,T′)
d; d+1
−→ W; applying Proposition 4.2 to V, we get ΘV = (−1)µd−1ΘX, where X is

obtained by interchanging the d in row d+1 and the a in row d. Similarly ΘW = (−1)µdΘX

(the difference in signs arising because a < b), and so ψd,1 ◦
(
Θ(i, j,T) + Θ(i, j,T′)

)
= 0, as

required.

5. Given T, we obtain T′ by interchanging the a and b in rows d, d+1. We obtain T′′ by
interchanging the d and d+1 in rows k and l, and we obtain T′′′ by doing both of these
changes. It is easy to see that these maps are bijections, and that sgn(T) = sgn(T′) =

sgn(T′′) = sgn(T′′′). Proposition 4.1 gives

ψd,1 ◦Θ(i, j,T) = (−1)µd−1ΘV + ΘX1

ψd,1 ◦Θ(i, j,T′) = (−1)µd−1ΘW + ΘX2

ψd,1 ◦Θ(i, j,T′′) = (−1)µdΘV + ΘY1

ψd,1 ◦Θ(i, j,T′′′) = (−1)µdΘW + ΘY2 ,

where
U(i, j,T)

d; l
−→ V

d; k
←− U(i, j,T′′), U(i, j,T′)

d; l
−→W

d; k
←− U(i, j,T′′′)

and

U(i, j,T)
d; d+1
−→ X1, U(i, j,T′)

d; d+1
−→ X2, U(i, j,T′′)

d; d+1
−→ Y1, U(i, j,T′′′)

d; d+1
−→ Y2.

Using Proposition 4.2 as in (4) above, we get ΘX1 = −ΘX2 and ΘY1 = −ΘY2 , so that

ψd,1 ◦
(
Θ(i, j,T) + Θ(i, j,T′) + Θ(i, j,T′′) + Θ(i, j,T′′′)

)
= 0. �

Proposition 5.9. Suppose i, j, d, a, b are as above with a < b.

1. If T ∈
⋃9

i=1A
a,b
i , then ψd,2 ◦Θ(i, j,T) = 0.

2. There is a bijection T 7→ T′ fromAa,b
10 toAa,b

11 such that

ψd,2 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,b

10 .

3. There is a bijection T 7→ T′ fromAa,b
12 toAa,b

13 such that

ψd,2 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,b

12 .

Proof.
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1. If T ∈ Aa,b
i for 1 6 i 6 7, then the result follows by Proposition 4.1 and Lemma 4.4. So

suppose T ∈ Aa,b
8 orAa,b

9 , and consider applying Proposition 4.1. The d+1s in U(i, j,T) lie
in rows s + f and d+1. If we replace d+1 with d in row s + f , then we get a factor of
[2] = 0; on the other hand, if we replace two d+1s with d s in row d+1, then the resulting
homomorphism is zero by Lemma 4.4.

2. The bijection T 7→ T′ is the same as in Proposition 5.8(5). Now consider applying
Proposition 4.1. The d+1s in U(i, j,T) all lie in row d+1 except for one, which lies in row l.
If we replace two of the d+1s in row d+1 with d s, then by Lemma 4.4 the corresponding
homomorphism is zero, so Proposition 4.1 gives

ψd,2 ◦Θ(i, j,T) = (−1)µd−1ΘX,

where U(i, j,T)
d; l,d+1
−→ X. Proposition 4.1 similarly gives

ψd,2 ◦Θ(i, j,T′) = (−1)µd−1ΘX′

where U(i, j,T′)
d; l,d+1
−→ X′. Now we apply Proposition 4.2 to X and X′, in both cases

moving the d from row d+1 to row d. We find that ΘX = −ΘX′ , and hence ψd,2 ◦(
Θ(i, j,T) + Θ(i, j,T′)

)
= 0, as required.

3. This case is identical to the previous case, except that (−1)µd−1 should be replaced with
(−1)µd . �

5.1.6 The case s + f + 1 6 d 6 s + f + g − 3, a = b

Now we consider the case a = b. The method is the same as in the last section, but we need
to define some different subsets ofAa,a:

A
a,a
1 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d, d+1, d+1)
}

;

A
a,a
2 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d+1, d+1, a)
}

;

A
a,a
3 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d, d+1, a)
}

;

A
a,a
4 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, a, d+1, d+1)
}

;

A
a,a
5 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d, a, a), as+ f = d+1
}

;

A
a,a
6 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d+1, a, a), as+ f = d
}

;

A
a,a
7 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, a, d+1, a), bk = d, bl = d+1 for some k < l < d
}

;

A
a,a
8 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, a, d+1, a), bk = d+1, bl = d for some k < l < d
}

;

A
a,a
9 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d, a, a), bk = d+1, bl = d+1 for some k < l < d
}

;

A
a,a
10 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d+1, a, a), bk = d, bl = d+1 for some k < l < d
}

;

A
a,a
11 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, d+1, a, a), bk = d+1, bl = d for some k < l < d
}

;

A
a,a
12 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d, a, d+1, a), as+ f = d
}

;
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A
a,a
13 =

{
T ∈ Aa,a

∣∣∣ (ad, bd, ad+1, bd+1) = (d+1, d+1, a, a) and either ad−1 < d or d = s + f + 1
}

;

A
a,a
14 =

{
T ∈ Aa,a

∣∣∣ (ad−1, ad−1, ad, bd, ad+1, bd+1) = (d, d, d+1, d+1, a, a) and d > s + f + 1
}
.

Note thatAa,a
5 ,Aa,a

6 ,Aa,a
9 ,Aa,a

10 ,Aa,a
11 ,Aa,a

13 andAa,a
14 are empty unless a = d + 2, and in this case

A
a,a
5 andAa,a

6 each contain just one tableau. Aa,a
12 always contains only one tableau.

Proposition 5.7 in this case follows from the next two results.

Proposition 5.10. Suppose i, j, d, a are as above.

1. If T ∈ Aa,a
1 ∪A

a,a
2 ∪A

a,a
12 ∪A

a,a
13 ∪A

a,a
14 , then ψd,1 ◦Θ(i, j,T) = 0.

2. There is a bijection T 7→ T′ fromAa,a
3 toAa,a

4 such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,a

3 .

3. There is a bijection T 7→ T′ fromAa,a
5 toAa,a

6 such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,a

5 .

4. There is a bijection T 7→ T′ fromAa,a
7 toAa,a

8 such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,a

7 .

5. There are bijections

A
a,a
9 −→ A

a,a
10 A

a,a
9 −→ A

a,a
11

T 7−→ T′ T 7−→ T′′

such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′) + sgn(T)Θ(i, j,T′′)

)
= 0 for each T ∈ Aa,a

9 .

Proof.
1. The cases where T ∈ Aa,a

1 ∪A
a,a
2 are dealt with as in Proposition 5.8(1). In the case where

T ∈ Aa,a
12 , consider applying Proposition 4.1. If we replace a d+1 with a d in row s + f ,

then we get a factor of [2]. On the other hand, if we replace a d+1 with a d in row d+1
and then apply Proposition 4.2 to move this d up to row d, we again get a factor of [2].

In the case where T ∈ Aa,a
13 orAa,a

14 , we get

ψd,1 ◦Θ(i, j,T) = [µd − 1]ΘV + ΘW

with V
d; d
←− U(i, j,T)

d; d+1
−→ W. But Proposition 4.2 gives ΘW = −[µd − 3]ΘW, so that

ψd,1 ◦Θ(i, j,T) = 0.

2. This is identical to cases (2,3) in Proposition 5.8.
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3. IfAa,a
5 andAa,a

6 are non-empty, thenAa,a
5 contains a single tableau T, andAa,a

6 consists of
a single tableau T′. T′ is obtained from T′ by replacing a d+1 with a d in row s + f of
U(i, j,T), and replacing a d with a d+1 in row d, and we have sgn(T) = sgn(T′).

Consider applying Proposition 4.1 to compute ψd,1 ◦ Θ(i, j,T). There are two d+1s in
row s + f of U(i, j,T), and the remaining d+1s lie in row d+1. If we replace a d+1 with
a d in row d+1, then by Lemma 4.4 the resulting homomorphism is zero. So we get

ψd,1 ◦Θ(i, j,T) = (−1)µdΘV, where U(i, j,T)
d; s+ f
−→ V.

For T′, we get
ψd,1 ◦Θ(i, j,T′) = [µd]ΘV + ΘW,

where V
d; d
←− U(i, j,T′)

d; d+1
−→ W. Applying Proposition 4.2, we get ΘW = −[µd − 3]ΘV,

and since (−1)x + [x] − [x − 3] = 0 for any x, we have ψd,1 ◦
(
Θ(i, j,T) + Θ(i, j,T′)

)
= 0, as

required.

4. Given T, we define T′ by interchanging the d in row k of U(i, j,T) and the d+1 in row l.

Applying Proposition 4.1, we have

ψd,1 ◦Θ(i, j,T) = (−1)µd−1ΘV + ΘW

ψd,1 ◦Θ(i, j,T′) = (−1)µdΘV + ΘX

where

U(i, j,T)
d; l
−→ V

d; k
←− U(i, j,T′) U(i, j,T)

d; d+1
−→ W, U(i, j,T′)

d; d+1
−→ X.

Applying Proposition 4.2, we get ΘW = ΘX = 0 (Proposition 4.2 gives a factor of [2] in
both cases), and so we have ψd,1 ◦

(
Θ(i, j,T) + Θ(i, j,T′)

)
= 0.

5. Given T, define T′ by replacing the last d in row d of U(i, j,T) with a d+1 , and the d+1

in row k with a d . Define T′′ by replacing the last d in row d of U(i, j,T) with a d+1 ,
and the d+1 in row l with a d . Again, it is easy to see that we have bijections, and that
sgn(T) = sgn(T′) = sgn(T′′).

Consider applying Proposition 4.1 to compute ψd,1 ◦Θ(i, j,T). If we replace a d+1 with a
d in row d+1, then by Lemma 4.4 the resulting homomorphism is zero; so

ψd,1 ◦Θ(i, j,T) = (−1)µd(ΘV + ΘW),

where V
d; k
←− U(i, j,T)

d; l
−→W.

For T′,T′′ we have

ψd,1 ◦Θ(i, j,T′) = (−1)µd−1ΘX + [µd]ΘV + ΘY

ψd,1 ◦Θ(i, j,T′′) = (−1)µdΘX + [µd]ΘW + ΘZ,

where

U(i, j,T′)
d; l
−→ X, U(i, j,T′)

d; d
−→ V, U(i, j,T′)

d; d+1
−→ Y,

U(i, j,T′′)
d; k
−→ X, U(i, j,T′′)

d; d
−→W, U(i, j,T′′)

d; d+1
−→ Z.
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Proposition 4.2 gives

ΘY = −[µd − 3]ΘV, ΘZ = −[µd − 3]ΘW,

so that
ψd,1 ◦

(
Θ(i, j,T) + Θ(i, j,T′) + Θ(i, j,T′′)

)
= 0. �

Proposition 5.11. Suppose i, j, d, a are as above.

1. If T ∈ Aa,a
1 ∪A

a,a
2 ∪A

a,a
3 ∪A

a,a
4 ∪A

a,a
6 ∪A

a,a
7 ∪A

a,a
8 ∪A

a,a
12 ∪A

a,a
14 , then ψd,2 ◦Θ(i, j,T) = 0.

2. There is a bijection T 7→ T′ fromAa,a
10 toAa,a

11 such that

ψd,2 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,a

10 .

3. There is a bijection T 7→ T′ fromAa,a
5 ∪A

a,a
9 toAa,a

13 such that

ψd,2 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ Aa,a

5 ∪A
a,a
9 .

Proof.
1. If T ∈ Aa,a

1 ∪ A
a,a
2 ∪ A

a,a
3 ∪ A

a,a
4 ∪ A

a,a
14 , then ψd,2 ◦ Θ(i, j,T) = 0 by Proposition 4.1 and

Lemma 4.4.

If T ∈ Aa,a
6 , then we must have bk = d+1. When we apply Proposition 4.1, if we replace

d+1 with d in row k, then we get a factor of [2] = 0. On the other hand, if we replace two
d+1s with d s in rows d, d+1, then the resulting homomorphism is zero by Lemma 4.4.

If T ∈ Aa,a
7 , Aa,a

8 or Aa,a
12 , consider applying Proposition 4.1. If we replace two d+1s with

d s in row d+1, then the resulting homomorphism is zero by Lemma 4.4; so we need only
consider changing a single d+1 into a d in row d+1. Now when we apply Proposition 4.2
to the resulting tableau to move the d from row d+1 to row d, we get a factor of [2] = 0.
And so we have ψd,2 ◦Θ(i, j,T) = 0.

2. Given T, we define T′ by exchanging the d in row k with the d+1 in row l. Again, it
is clear that this defines a bijection and that sgn(T) = sgn(T′). Now consider applying
Proposition 4.1 to Θ(i, j,T). If we change replace two d+1s with d s in rows d, d+1,
then the resulting homomorphism is zero by Lemma 4.4; so the only terms which can
possibly be non-zero are those which involve replacing d+1 with d in row k. The same
statement applies to T′, and it is then immediate from Proposition 4.1 thatψd,2◦Θ(i, j,T) =

−ψd,2 ◦Θ(i, j,T′).

3. Suppose T ∈ Aa,a
5 orAa,a

9 . Because T ∈ Awe have either d = s + f + 1 or ad−1 < d. So if we
define T′ by replacing the two d+1s above row d with d s, and replacing the last two d s
in row d with d+1s, then T′ ∈ Aa,a

13 . This gives a bijection fromAa,a
5 ∪A

a,a
9 toAa,a

13 , and we
claim that sgn(T) = − sgn(T′). Clearly T is split at row d − s − f + 1 and not at any higher
row, so sgn(T) = (−1)d−s− f+1. T′ is split at row d− s− f and not at any higher row (because
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if there are any higher rows, then the first entry in row d − s − f is less than d − s − f by
assumption), so sgn(T′) = (−1)d−s− f .

So all we need to do is show that ψd,2 ◦Θ(i, j,T) = ψd,2 ◦Θ(i, j,T′). Using Proposition 4.1
and Lemma 4.4, we find that ψd,2 ◦Θ(i, j,T) = ΘX, where X is obtained from U(i, j,T) by
replacing the two d+1s above row d with d s. On the other hand,

ψd,2 ◦Θ(i, j,T′) =
[µd

2

]
ΘX + [µd − 1]ΘY + ΘZ,

where
U(i, j,T′)

d; d,d
−→ X, U(i, j,T′)

d; d,d+1
−→ Y, U(i, j,T′)

d; d+1,d+1
−→ Z.

Proposition 4.2 gives

ΘY = −[µd − 3]ΘX, ΘZ = −
[µd − 3

2

]
ΘX,

and now the easy identity
[x

2

]
− [x − 1][x − 3] −

[x − 3
2

]
= 1 gives the result. �

5.1.7 The case d = s + f , g > 3, t = 1, a < b

This case and the next are simpler than previous cases, so we spare the reader some of the
details. We define the following sets which partitionAa,b:

A
a,b
1 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d+1, a, d+1, b)
}

;

A
a,b
2 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (d+1, b, d+1, a)
}

;

A
a,b
3 =

{
T ∈ Aa,b

∣∣∣ (ad, bd, ad+1, bd+1) = (a, b, d+1, d+1)
}
.

Now we have the following, from which Proposition 5.7 follows in this case.

Proposition 5.12. Suppose d = s + f , and i, j, a, b are as above with a < b. There are bijections

A
a,b
1 −→ A

a,b
2 A

a,b
1 −→ A

a,b
3

T 7−→ T′ T 7−→ T′′

such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′) + sgn(T)Θ(i, j,T′′)

)
= 0 for each T ∈ Aa,b

1 .

Proof. The bijections in question are the obvious ones; we get sgn(T) = sgn(T′) = sgn(T′′).
Applying Proposition 4.1 followed by Proposition 4.2, we have

ψd,1 ◦Θ(i, j,T) = (−1)µdΘV + (−1)µd+1−1ΘX,

ψd,1 ◦Θ(i, j,T′) = (−1)µdΘW+ (−1)µd+1ΘX,

ψd,1 ◦Θ(i, j,T′′) = (−1)µd+1ΘV + (−1)µd+1ΘW,

where
U(i, j,T)

d; d
−→ V, U(i, j,T′)

d; d
−→W

and X has d, d+1 at the end of row d, and a, b at the end of row d+1. Since s′ is odd, µd, µd+1

have opposite parities, and so we get

ψd,1 ◦
(
Θ(i, j,T) + Θ(i, j,T′) + Θ(i, j,T′′)

)
= 0. �
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5.1.8 The case d = s + f , g > 3, t = 1, a = b

In this case there are only two or three tableaux inAa,a: for any a, there are tableaux T and
T′ which have (ad, bd, ad+1, bd+1) equal to (d+1, d+1, a, a) and (a, a, d+1, d+1) respectively; and if
a = d + 2 there is a tableau T′′ with (ad, bd, ad+1, bd+1) = (d+1, d+1, a, a).

For the tableaux T and T′, we have

ψd,1 ◦Θ(i, j,T) = (−1)µdΘV,

ψd,1 ◦Θ(i, j,T′) = (−1)µd+1ΘV,

where U(i, j,T)
d; d
−→ V. Since µd and µd+1 have opposite parities and sgn(T) = sgn(T′), we get

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0.

In the case a = d + 2, we also have

ψd,1 ◦Θ(i, j,T′′) = 0

using the same argument as in in Proposition 5.10(1).
So Proposition 5.7 follows in this case.

5.1.9 The case d = s + f + g − 2, g > 3

In this case there are just two d+1s in U(i, j,T), and we do not have the integers a, b. We
define the following sets, which partitionA:

A1 =
{
T ∈ A

∣∣∣ (ad, bd) = (d+1, d+1) and either ad−1 < d or g = 3
}

;

A2 =
{
T ∈ A

∣∣∣ (ad−1, bd−1, ad, bd) = (d, d, d+1, d+1) and g > 3
}

;

A3 =
{
T ∈ A

∣∣∣ (ad, bd) = (d, d+1), as+ f = d
}

;

A4 =
{
T ∈ A

∣∣∣ (ad, bd) = (d, d), as+ f = d+1
}

;

A5 =
{
T ∈ A

∣∣∣ (ad, bd) = (d, d), bk = d+1, bl = d+1 for some k < l < d
}

;

A6 =
{
T ∈ A

∣∣∣ (ad, bd) = (d, d+1), bk = d, bl = d+1 for some k < l < d
}

;

A7 =
{
T ∈ A

∣∣∣ (ad, bd) = (d, d+1), bk = d+1, bl = d for some k < l < d
}
.

Proposition 5.13. Suppose i, j are as above, and d = s + f + g − 2.

1. If T ∈ A1 orA2, then ψd,1 ◦Θ(i, j,T) = 0.

2. There is a bijection T 7→ T′ fromA3 toA4 such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ A3.

3. There are bijections

A5 −→ A6 A5 −→ A7

T 7−→ T′ T 7−→ T′′
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such that

ψd,1 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′) + sgn(T)Θ(i, j,T′′)

)
= 0 for each T ∈ A5.

Proof.
1. When we apply Proposition 4.1, get a factor of [2] = 0, since µd = 3.

2. This is very similar to case (3) of Proposition 5.10. The difference here is that there is no
tableau W; but in this case we have µd = 3, so that (−1)µd + [µd] = 0 and the computation
still works.

3. This is very similar to case (5) of Proposition 5.10. In this case there are no tableaux Y,Z,
but the computation goes through because µd = 3. �

Proposition 5.14. Suppose i, j are as above, and d = s + f + g − 2.

1. If T ∈ A2 orA3, then ψd,2 ◦Θ(i, j,T) = 0.

2. There is a bijection T 7→ T′ fromA6 toA7 such that

ψd,2 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ A6.

3. There is a bijection T 7→ T′ fromA4 ∪A5 toA1 such that

ψd,2 ◦
(
sgn(T)Θ(i, j,T) + sgn(T′)Θ(i, j,T′)

)
= 0 for each T ∈ A4 ∪A5.

Proof.
1. The proof here is very similar to the proof of Proposition 5.11(1).

2. The proof here is the same as for Proposition 5.11(2).

3. The proof here is very similar to the proof of Proposition 5.11(3), but simpler, because
there are no tableaux Y,Z. The calculation still goes through because µd = 3. �

5.1.10 The case d = s + f , t = 1, g = 2

In this case,A consists of a single tableau T = 1 1 , and for any i, j the last row of U(i, j,T)
consists of µd − 2 d s followed by two d+1s. Applying Proposition 4.1, we get a factor of
[λd − 1] = [2 + s′ − 1] = 0, since s′ is odd; so ψd,1 ◦Θ(i, j,T) = 0.

5.2 Proof of Proposition 5.1 when s = 2, s′ is even and f = 0

We now address the cases where s = 2, s′ is even and f = 0. We letA be the set of tableaux
of shape and type (2g−1) defined in §5.1.1. Given T ∈ A, construct a (2g)-tableau by increasing
each entry by 2 and adding a row 1 2 at the top. Let U(T) be the corresponding usable
µ-tableau, and Θ(T) the corresponding homomorphism.
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Example. Suppose s′ = 4 and g = 5, and

T =

1 4
31

2 2
43

.

Then T ∈ A, and

U(T) =

1 1 1 1 1 1 1 1 1 2
6322222222

3 3 3 3 5
4444

5 5 6

.

Now we claim that the sum ∑
T∈A

sgn(T)ΘU(T)

gives a non-zero homomorphism from Sµ to Sλ, which completes the proof of Proposition 5.1.
The proof of this is very similar to the proof in the previous case, in particular the parts in
Sections 5.1.4–5.1.10. We leave the reader to check the details.

We remark that Proposition 5.1 seems to be true more generally: one can take f > 0 and
s′ > s even, and it seems to be the case that there is still a non-zero homomorphism from Sµ to
Sλ. But it does not seem quite so easy to write this homomorphism down.
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