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Abstract

The reducible Specht modules for the Hecke algebra H ;(S,) have been classified except
when g = —1. We prove one half of a conjecture which we believe classifies the reducible
Specht modules when g = —1.

1 Introduction

Fix a field F of characteristic p > 0 and an element g € F*. For n > 0, the Hecke algebra
Hy, = Hr 4(Sy) of the symmetric group &, is defined to be the unital associative [F-algebra with
generators 11, ..., T,—1 subject to the relations

(Ti—g)(Ti+1)=0 forl<i<n-1,
TJT].HT] = T]'+1T]'T]'+1 forl < ] <n-— 2,
TiT]':T]'TZ' for1<z<j—1<n—2

For each partition A of n, Dipper and James defined an H,,-module S* known as a Specht mod-
ule. An important open problem in representation theory is to determine the decomposition
matrices of the Hecke algebras; this is equivalent to determining the composition factors of
the Specht module S* for each partition A. An interesting special case of this problem is the
question of which Specht modules are irreducible. For the symmetric group algebra FS,,, the
answer to this question is completely known, and for the Hecke algebra H,, the answer is
known except in the case where g = -1 [JM1, L1, F1, F2, JLM, L2]. For the case where g = -1
and p = 0, a conjectured classification has been put forward by the first author and Mathas, and
the purpose of the present paper is to prove half of this conjecture; that is, we prove that the
supposedly reducible Specht modules really are reducible. We also present for the first time a
conjectured classification of irreducible Specht modules for the case where g = —1 and p > 0
(which agrees with the already known classifications for the cases p = 2,3). Our characteristic
zero result, together with the first author’s work [F3] on the case of positive characteristic,
shows that half of this conjecture is true too.
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The layout of the paper is as follows. In Section 2 we give some background on partitions
and Specht modules, and state the main result of this paper, Theorem 2.4. In Section 3 we
describe some results and techniques for proving reducibility of Specht modules, and use
these to prove Theorem 2.4 subject to the proof of Proposition 3.5; this is a technical result on
homomorphisms, which requires a long proof. In Section 4 we give detailed background on
homomorphisms between Specht modules and prove Proposition 3.5.

2 The main theorem

Throughout Section 2, we assume that g = —1 and that IF has characteristic p > 0. Recall that
a composition of n is a sequence A = (A1, Ay, ...) of non-negative integers such that },°; A; = n. If
in addition A1 > Ay > -+, we say that A is a partition of n. When writing a partition, we usually
omit zeroes, and group together equal positive parts with a superscript. We let £(1) denote the
number of non-zero parts of A, and we write |A| to mean }.°; A;.

The Young diagram of A is the set

{(ro)|1<c< A} cIN?,

whose elements we call the nodes of A. Throughout this paper, we identify A with its Young
diagram; so for example we may write A C u to mean that A; < y; for all i. We use the English
convention for drawing Young diagrams, in which the first coordinate increases down the page
and the second increases from left to right.

A node u € A is said to be removable if A \ u is a partition, and a node v ¢ A is said to be
addable if A U v is a partition. The 2-residue of a node (r,c) € N2, which we shall simply call the
residue, is defined to be (c — r) (mod 2). The partition A is said to be 2-reqular if A; > A;44 for all
1 <i<{(A), and is said to be 2-restricted if A; — A1 < 1foralli > 1. If A is not 2-regular, we
will say it is 2-singular.

If A is a partition, we write S* for the Specht module, as defined by Dipper and James [DJ1].
If A is 2-regular then S* has a unique irreducible quotient D?, and the set {D* | A is 2-regular}
is a complete set of non-isomorphic irreducible H,-modules. The conjugate A" of a partition A
is defined to be the partition whose Young diagram is given by {(c,7) | 1 < ¢ < A,}. Conjugation
is useful in this paper because of the following result.

Lemma 2.1. Suppose A is a partition of n. Then S* is irreducible if and only if SV is irreducible.

As far as we can tell, this lemma appears for the first time in Mathas’s book [M, p. 89],
though it was surely known to earlier authors.

2.1 Irreducible Specht modules in characteristic zero

We now discuss the problem of classifying irreducible Specht modules. In this section we
assume that IF has characteristic zero.

The classification of irreducible Specht modules labelled by 2-regular partitions is well
known. In characteristic zero this takes the following simple form.

Proposition 2.2. [[M1, Theorem 4.15] Let A be a partition of n and suppose that A is 2-reqular. Then
SA is irreducible if and only if A; — Ay is odd for all 1 < i < £(A).
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We say that A is alternating if it satisfies the condition of Proposition 2.2. Using this proposi-
tion and Lemma 2.1, it remains only to classify the irreducible Specht modules S* when A and A’
are both 2-singular; we call such a partition doubly-singular. A conjecture for this classification
has been given by the first author and Mathas. First we need to make a definition.

Definition. Let A be a doubly-singular partition of n. Set
e gto be maximal such that A, — A1 > 2,
e b to be maximal such that A, = Ay, > 1, and
e ¢ to be maximal such that A,,. > 0.
Say that A is an FM-partition if the following conditions all hold.
e Ai— A1 <1foralli#a.
o Ay >a—-12>b.
e A1 >---> A

e If c = 0 then all addable nodes of A except possibly those in the first row and first column
have the same residue.

e If ¢ > 0, then all addable nodes of A have the same residue.

Conjecture 2.3. Let H,, = Hp,—1(S,) where char(F) = 0, and let A be a doubly-singular partition of
n. The H,-module S* is irreducible if and only if A or A’ is an FM-partition.

The main result of this paper is the proof of half of this conjecture.

Theorem 2.4. Let H,, = Hg,—1(S,) where char(F) = 0, and let A be a doubly-singular partition of n.
If the H,-module S* is irreducible then A or A is an FM-partition.

Example. Since the definition of an FM-partition is somewhat complicated, we provide some
examples. The partition (11,10%,93,8,7,2,1) is an FM-partition, witha = 9,b = 6 and ¢ = 2. The
addable nodes all have residue 1, as can be seen from the following Young diagram, in which
nodes are labelled with their residues.

o[1]o]1]o]1]o]1]0]1]0]
1/o[1]o[1]o]1]0]1]0
o[1][o]1]o[1]o]1]0]1
1/o[1]o[1]o]1]0]1]0
o[1]o]1]o]1]o]1]0
1[o1]ol1]o]1]0]1
o[1]o]1]o[1]0]1]0
1[o[1]o]1]o]1]0
o[1]o]1]o]1]0
1[0

0]

Additionally, any ‘rectangular” partition (d*) with d > a — 1 is an FM-partition (withb =a -1
and ¢ = 0), and an argument due to Mathas shows that Conjecture 2.3 holds for rectangular
partitions.
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In spite of Lemma 2.1, the conjugate of an FM-partition is not always an FM-partition, and
this is why we need A or A" in Conjecture 2.3. For example, the conjugate (11, 10, 9°,8,7,4, 1) of
the partition above is not an FM-partition, since it fails the first condition.

2.2 Irreducible Specht modules in positive characteristic

We make some brief comments on the case where F has positive characteristic p (and
g = —1). In this case, the classification of irreducible Specht modules remains unsolved, but
here we conjecture a solution.

For the case of Specht modules labelled by 2-regular or 2-restricted partitions, a more
complicated version of Proposition 2.2 (also covered by [JM1, Theorem 4.15]) holds, so the
difficulty lies with doubly-singular partitions. In this case, Theorem 2.4 still holds, thanks to
the theory of decomposition maps [G]; however, there are FM-partitions which label reducible
Specht modules in positive characteristic. In order to formulate a conjecture, we need to recall
another definition. Recall that if A is a partition and (7, c) is a node of A, then the (7, ¢)-hook length
of A is the integer

hee(A)=Ay—r+ Al —c+1.

Given a positive integer s, we say that A is an s-core if none of the hook lengths of A are divisible
by s. Now we have the following result, proved by the first author in [F3].

Theorem 2.5. Suppose [F has characteristic p and g = —=1. If A is a doubly-singular partition which is
not a 2p-core, then the H,-module S* is reducible.

Based on computer calculations, we now make the following conjecture.

Conjecture 2.6. Let H,, = Hr,—1(S,) where char(FF) = p > 0, and let A be a doubly-singular partition
of n. The Hy-module S" is irreducible if and only if A is a 2p-core and A or A’ is an FM-partition.

Theorems 2.4 and 2.5 show that the ‘only if” part of this conjecture is true. The results of [F3]
also show that for a given prime p there are only finitely many FM-partitions which are also
2p-cores. So in order to verify the ‘if” part of Conjecture 2.6 in a given non-zero characteristic,
there are only finitely many Specht modules to consider. The case p = 2 (which amounts to the
classification of irreducible Specht modules for the symmetric group in characteristic 2) is the
main result of [JM2]. Using computer programs written in GAP [GAP2008], the first author
has been able to verify the conjecture also for p = 3,5and 7.

3 The proof of Theorem 2.4

Throughout Section 3, we assume that g = —1 and that [Fis a field of characteristic 0. Our aim
is to prove Theorem 2.4, that s, if A is a doubly-singular partition of n and the Hp —1(S,)-module
S is irreducible then A or A’ is an FM-partition.

3.1 Techniques for proving reducibility

We begin by describing some methods — some well-known and some new — which can be
used to prove the reducibility of a Specht module.
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3.1.1 Ladders

For k > 1, the kth ladder in IN? is defined to be the set of nodes
Lo={G,j)eN?|i+j=k+1}.

We say that £ is a longer ladder than L if | > k.

The kth ladder of a partition A is the intersection of L with the Young diagram of A. We
say that the kth ladder of A is broken if the nodes it contains are not consecutive in £; that is,
thereexist 1 <r<s<t<ksuchthat(rk+1—-r)and (t,k+1—1¢)liein [A] but (s, k+ 1 —s) does
not.

The following proposition is the main result of [FL].

Proposition 3.1. [FL, Theorem 2.1] Suppose that A has a broken ladder. Then S" is reducible.

A more helpful description of the condition in Proposition 3.1 is as follows: A has a broken
ladder if there exist 1 < a < bsuch that A, — A,41 = 2 and Ay = Apyq > 0.

3.1.2 Regularisation and homomorphisms

Recall that the dominance order = on partitions is defined by saying that u > A if and only if

1 1
/«li>z7\i foralll > 1.
i=1 i=1

If A is a partition, let AR denote the partition whose Young diagram is obtained by moving
the nodes of A as high as possible in their ladders. Itis easy to see that A% is a 2-regular partition,
and that A% > A. We also have A% = (A")R for any A.

For example, if A = (3,2%), then AR = (5,3,1); this can be seen from the following diagrams,
in which we label the nodes of these two partitions with the numbers of the ladders in which
they appear.

1[2]3] 1[2]3]4]5]
213 2134
314 3]

4[5

The importance of regularisation lies in the following result.
Lemma 3.2. [J, Theorem 6.21] Let A be a partition of n. Then DY occurs as a composition factor of
S* with multiplicity 1. If D” is a composition factor of S* then v = AR,

This result is particularly useful when classifying irreducible Specht modules, since it

implies that if S* is irreducible, then S* = DY, One application of this is as follows.

Corollary 3.3. Suppose A and i are partitions of n, such that AR ¢y and Homgy (S#, S*) # 0. Then
S is reducible.

Proof. Since Homg, (S*, SA) # 0, the H,-modules S* and S* have a common composition factor,
D" say. By Lemma 3.2 we have v > [JR > u,sov # AR. S0 S has at least two composition
factors. O
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We shall apply Corollary 3.3 using two different explicit constructions of homomorphisms.
The first is a g-analogue, due to the second author, of the ‘one-node homomorphisms” con-
structed by Carter and Payne in [CP].

Definition. Say that a partition A is CP-reducible if A has
e an addable node lying in ladder £;,;, and
e aremovable node lying in ladder £},

where m > [ and | = m (mod 2).

[L2, Theorem 4.1.1] shows that if A is a CP-reducible partition of 7, then there is a partition
u of n with p i AR, and a non-zero H,-homomorphism from St to either S* or S". Hence by
Lemma 2.1 and Corollary 3.3 we have the following.

Proposition 3.4. [FL, Proposition 4.6] Suppose that A is CP-reducible. Then S is reducible.

Now we give the second result we require on homomorphisms. This also defines a certain
family of pairs of partitions where the corresponding homomorphism space is non-zero; how-
ever, the partitions in question are rather less natural than in the Carter-Payne case, and the
result below was proved solely for the purposes of the present paper.

Definition. Say that a partition A is hom-reducible if there exists x > 0 such that (x + 1, Ay41 + 1)
is an addable node of A, and the partition v = (Ay11, Ax42, .. .) has the form

(g+f+sy,g+f+s-1,9+f+s-2,...,9+5,99-1,...,2)
where s, s, f, g are integers such that f > 0, ¢ > 2,s" > s > 2 and either
e sand s’ are odd; or
e s=2,s"isevenand f = 0.

Proposition 3.5. Suppose A is a partition of n which is hom-reducible, and let x be as in the definition
of hom-reducible. Define a partition u by

A+l (i=x+1,x+2)
wi=3Ai =2 (i=1£€A))

A (otherwise).
Then Homgy, (S, S*) # 0.

The partitions appearing in Proposition 3.5 may be visualised using the following diagram
(in which we take s = s’ =5, ¢ = 4, f = 2). The dotted nodes at the bottom of the diagram are
present in A, while those at the top right are present in p.
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The proof of Proposition 3.5 is somewhat lengthy, and we postpone it to Section 4, where
we introduce all the necessary background concerning homomorphisms.

Proposition 3.6. Suppose that A is hom-reducible. Then S* is reducible.

Proof. Since A is hom-reducible, we may define the partition y as in Proposition 3.5 so that
Homg, (S¥,S") # 0. Furthermore, the condition s’ > s guarantees that u is obtained from A by
moving two nodes to longer ladders, so by [F1, Lemma 2.1], AR (¢ i and hence S" is reducible
by Corollary 3.3. |

3.1.3 Fock space techniques

Definition. Say that a partition A with £(A) = [ is LLT-reducible if A is 2-singular, has no broken
ladders and satisfies:

e M >1+1;
o A >2
e thereexists1 < x <[with Ay — Ay > 1.
Proposition 3.7. Suppose A is LLT-reducible. Then S" is reducible.

Before proving Proposition 3.7 we give some background. In [FL], the authors show how
Ariki’s Theorem [A] may be used to prove that certain Specht modules are reducible. We
summarise the relevant results here. For details, and to put these results into context, we refer
the reader to [FL, Section 5].

Suppose that A is a partition. If u is a partition such that y € A and y; — pi41 is odd for
1 <i< {(A), we will say that u is alternating in A. In this case, we define a sequence of partitions
po= po ul, u?, ... by setting u/*! to be the partition obtained from p/ by adding all addable
nodes that are contained in A. Now define a A-tableau T = T(A, u) as follows. Begin by filling
in each node of i with a 0, then, for j > 1 fill in each node of p/ \ p/=! with j. We write T, for
the (r, c)-entry of the tableau T (see Section 4.1 below for basic definitions concerning tableaux).
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Now for each node (r,c) € A, let j = T, and define
Ny = |{m <r |Tm,)\m <J, T, # j(mod 2)}’ - |{m <r |Tm,Am <j, Tma, =j(mod 2)}|.

Let N(A, 1) = Xrepen Nre-

Example. Let A = (13, 125,7,4,3) and u=(13,12,11,10,9,8,7,2,1). The tableaux T, N are shown
in the two diagrams below, and we see that N(A, u) = 10.

ololoJo]o]o]o]o]o]o]o]0]0O] o[o]oJoJo]oJo]o]o]o]o]0]0O]

0/0]0j/0]|0|0]0]|0|0O]|0O|0O]O 0j0]0j0]|0|0j0O]|0O|0O]|O|O]O

0/0]0]0]|0|0]|0|0]0O|0|0O]1 0/0]0]/0]|0|0]0O]0O]0]|0O|0O]|2

0/0/0/0]0[/0|0]|0j0|0]1]2 0/0]0]/0|0|0]0]0]0O|0O|2]|1
T=/0/0{0]|0/0][0]|0|0]|0[1]|2]3 N=|0]/0[/0/0[0]|0]|0]|0]|0|2]1|2

0/0/0/0]|0[/0|0]|0]1|2]|3]4 0/0/0/0]0]0]0]|0]2]1[2]71

0/0/0/0]0]0]0 0/0j0|0]|0]0]0

0]0]1]2 0(0]3]2

0]1]2 0132

The following lemma follows from [FL, Lemma 5.4 & Lemma 5.5].

Lemma 3.8. Let A be a partition of n. Suppose that p and [i are alternating in A. If N(A, u) # N(A, fi)
then S is reducible.

We can now prove Proposition 3.7.

Proof of Proposition 3.7. Suppose that A is LLT-reducible. Let! = £(A) and let x < [ be maximal
such that A, — A4 > 1; since A has no broken ladders, we have A; — Aj;1 = 1forx+1<i<
Now we consider two cases.

e Suppose first that A1 +1 > A; + [. Define o as follows. Set g1 to be maximal such that
o1 < Atand o1 +1 = A; + 1 (mod 2). For 2 < i £ x, define 0; to be maximal such that
0; < min{A;, 0,1 — 1} and 0; +i = A; + [ (mod 2). Since A has no broken ladders and
AM+1> A+, wehave A;+i > A;+1forall 1 <i<x, and using this it is easy to show by
induction thato; > Aj+[—iforall1 <i < x. Inparticular, oy > Aj+I1—x > Aj+1-x-1 = A,4q.
So we can define two partitions u and i by setting

‘U = (01102/ e ,Gx, Ax+1/ /\x+2/ e /Al)/
‘a = (011621"‘/GXIAX+1 _ZIAX+2 _2/"'1/\1 _2)'

By construction, y and fi are alternating in A, and we claim that N(A, u) # N(A, fi). The
entries in T(A, pt) and T(A, fi) agree except in the last two entries inrows x+1, ..., [, which

are in T(A, 1), and in T(A, fi). So the definition of N'(A, u) gives
N, @) = N, ) = (z-x)|{1 <m<x| T, = 1}'.

Choose 1 < ¢ < x minimal such that o, # A,. Then by construction A, — g, = 1 and
Tga, = 1. Hence N(A, i) = N(A, ) > 0 and S" is reducible by Lemma 3.8.
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e Now suppose that A; + 1 < A; + 1. Define p and fi by

[LLZ()\1,/\1—1,...,/\1—X+1,)\1—x,...,/\1—l+1),
ﬂz(Al,/\l—1,...,/\1—x+1,A1—x—2,...,A1—l—1).

Again we claim that p and [i satisfy the conditions of Lemma 3.8. Since A1 +1 < A; +1, the
nodes (1, A1), (I, A1 —=1+1)and (I, A1 — ) all lie in A, so since A has no broken ladders, ;1 and
fi are both alternating in A. Again, T(A, u) and T(A, fi) agree exceptinrows x +1,...,1. If
weletk = A—Ay+1—-1,thentowsx+1,...,lof T(A, ) have the form [0] - [0 1][2]- [k],

while in T(A, i) these rows have the form [0 [ [0[1][2]- [k+2] Hence

NGB = N ) = (=) [{t <m < x| Ty, = k+1]].

It remains to show that T}, 1, = k+1 for some 1 < m < x, which is equivalent to saying that
the ladder £ = £, ,, intersects non-trivially with the set of nodes {(m,A;;) | 1 < m < x}.
Certainly £ intersects with {(x,¢) | 1 < ¢ < A} since Ay —Ay41 > 1, so choose r > 1 minimal
such that £ intersects with {(r,¢) | 1 < ¢ < A,}. Thenr > 1 since A1 + 1 < A; + ], so the fact
that 7 is minimal means that (r, A,) lies on L as required. O

3.1.4 Induction and restriction

Definition. For i € {0,1} let A() be the partition obtained by removing all removable nodes of
residue 7 from A.

The proof of the following proposition is a simple consequence of [K, Lemma 11.3], which
is the g-analogue of [BK, Lemma 2.13].

Proposition 3.9. [FL, Lemma 3.13] Suppose i € {0,1}. If S\ is reducible then so is S,

Obviously this result will enable us to prove Theorem 2.4 by induction. In order to do this,
we make the following definition.

Definition. Say that A is inductively reducible if for some i € {0,1} we have A() # A and one of
the following holds.

e A0 is 2-regular or 2-restricted and 5" is reducible.

e 1@ is doubly-singular and neither A®) nor A" is an FM-partition.

3.2 Analysis of partitions

The aim of this section is to complete the proof of Theorem 2.4, modulo the proof of
Proposition 3.5. The strategy is simple: we show that a Specht module which is not shown to
be reducible by any of the techniques in §3.1 is labelled by an FM-partition or the conjugate of
one. That is, we prove the following result.

Proposition 3.10. Suppose A is a partition of n which satisfies the following conditions:

o A is doubly-singular;
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A does not have a broken ladder;

neither A nor A’ is CP-reducible;

A is not hom-reducible;

neither A nor A’ is LLT-reducible;
o A is not inductively reducible.
Then either A or A" is an FM-partition.

Throughout this section we fix a partition A with £(A) = [ satisfying the hypotheses of
Proposition 3.10. We begin by introducing some additional notation.

Definition. Suppose v is a partition. If v is not 2-restricted, we define:
e a*(v) to be minimal such that vy — ve@p)+1 = 2;
e a.(v) to be maximal such that v, ) — Va,0)41 = 2;
e c(v) to be maximal such that v )+c) > 0.

If a*(v) = a.(v) we will write a(v) = a*(v) = a.(v).
If v is not 2-regular, we define b(v) to be maximal such that vy, = vyu)41 > 0.

Now consider our chosen partition A. Since A has no broken ladders, we have a.(1) >
a*(A) > b(A) and a*(A”) > b(A).

Definition. Say that A is pointed if b(A) + 1 = a*(A). Note that A is pointed if and only if A" is
pointed. If A is pointed, we call the removable node in row a*(A) the point.

Lemma 3.11. If A is not pointed then all removable nodes of A have the same residue. If A is pointed
then all remouvable nodes of A except possibly the point have the same residue.

Proof. First note that any removable node (, c) of A which is not the point has an addable node
adjacent to it: if < a*(A), then the node (r + 1, c) must be addable, while if r > b(A) + 1 then the
node (r,¢ + 1) is addable.

Now suppose there are two removable nodes (7, c) and (7, ¢’) of different residues, neither
of which is the point, lying in ladders k, k’ say. Since the residues of the nodes are not the same
we have k # k" and we suppose without loss of generality that k < k. There is an addable node
adjacent to (7, ¢’), and this must lie in ladder k¥’ + 1. Since k" +1 > kand k' + 1 = k (mod 2), A is
CP-reducible; contradiction. O

Corollary 3.12. All addable nodes of A except possibly those in the first row and first column have the
same residue.

Proof. Every addable node except possibly those in the first row or column has a removable
node (which is not the point) adjacent to it. m|



The reducible Specht modules for the Hecke algebra He,-1(S,) 11

Definition. Define y to be the partition obtained from A by removing all removable nodes
if all the removable nodes have the same residue, and all removable nodes except the point
otherwise.

Note that u # A, so since A is not inductively reducible, either u or y’ must be either
alternating or an FM-partition.
The following properties of u follow easily from the definitions.

Lemma 3.13.
e Suppose that u is not 2-restricted. Then a*(A) = a*(u).

e Suppose that u is not 2-regular. Then Apzy = Lp(y)-
e Suppose that A; # 2 or that u; = A;. Then u is not 2-restricted and a.(A) = a.(u).

e Suppose that Ay > A, or that Ay = A3 or that uy = Ay. Then u is not 2-regular.

Lemma 3.14. Suppose that all addable nodes of A have the same residue and that A; # 2 or A; = ;. If
u is an FM-partition then A is an FM-partition.

Proof. By Lemma 3.13 we have
a(N) = @ () = () = a.(A),
Apry = Ab(y) >a(u)—1=a(A)-1.

It remains only to show that A1 > --- > A.y). If ¢(A) < 1 there is nothing to check, so assume
that c(A) > 2. Then c(u) = ¢(A) =1 > 1, so all the addable nodes of  have the same residue.
This means that the node (1, A1 + 1) cannot be an addable node of 1, so A; > A>. Now since we
have pq > -++ > p1y-1 and A does not have a broken ladder, we must have Ay > -+ > A . O

Lemma 3.15. Suppose that A; > 3 and p is an FM-partition. Then A is an FM-partition.
Proof. Using Lemma 3.13, we have

a’'(A) = a’(u) = a.(p) = a.(d),
Ay = Hp) = a(p) =1 =a(A) -1,

c(A) = c(u) = 0.
Since a(A) — 1 > b(A) and all addable nodes of A (except possibly for those in the first row and
the first column) have the same residue, A is also an FM-partition. O

Lemma 3.16. Suppose Ay > land A; > 2. Then A is an FM-partition.

Proof. Since A is not LLT-reducible we have a*(1) = a.(1) = [. Since A; > [ and A is not
2-regular this implies that A; > 3 and therefore a*(u) = a.(u) = I and c¢(u) = 0. If b(A) = 1 then
A=((I+1)211-1,...,3)is an FM-partition, so assume b(1) > 1. Then p is doubly-singular, so
either p or y’ is an FM-partition. In fact, we claim that y must be an FM-partition. If u’ is an
FM-partition then we have c(y’) <1 (because uj = pj =1) and a*(¢’) = a.(y’), so that

Hb(‘u):Hl—c(yl)>/\1—2>l—l:a([.l)—l.

Hence pp) > a(p) — 1 and p is also an FM-partition.
Now Lemma 3.15 implies that A is also an FM-partition. |
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Lemma 3.17. Suppose that A1 > land Ay = 1. Then A or A is an FM-partition.

Proof. Since A; > [, the addable node (1, A1 + 1) lies in a longer ladder than the removable node
(1,1). Since A is not CP-reducible, these nodes must have different residues, so the addable
node (1, A1 + 1) has the same residue as the addable nodes (/,2) and (I + 1,1). So by Corollary
3.12 all the addable nodes of A have the same residue.

Now we claim that u is doubly-singular. By Lemma 3.13 u is not 2-restricted, and the only
way p could be 2-regular is if Ay = A, > Az. But if this is the case then the removable nodes
(2,A1) and (I,1) of A have different residues, so (2, A1) must be the point; and this means that
p1 = p2, so [ is not 2-regular.

So either u or y’ is an FM-partition. If y is an FM-partition, then by Lemma 3.14 A is an
FM-partition. If p’ is an FM-partition, then (from the argument in the last paragraph) either

AL F 201 ”2’(/\’) = Ay 8O by Lemma 3.14 A’ is an FM-partition. |

(A7) }(;v

Lemma 3.18. Suppose that Ay = Ay = land A; = 2. If u is an FM-partition then A or A’ is an
FM-partition.

Proof. Firstnote thatsince A1 = Ay and A; = 2, we cannot have a*(A) = a.(A), because this would
give A = (2,1-1,1-2,...,2) so that p is 2-regular. So a*() < a.(A); since u is an FM-partition,
we have a*(u) = a.(u) = a*(A).

Let x > 0 be minimal such that Ay4q = Ay and let v = (Ayyq, ..., Ap). Since a*(u) = a.(u), v
has the form

v=(g+f+s),g+f+s-1,...,9+5,4...,2)

where g > 2, f > 0ands,s’” > 2. If A = v then A1 = A, so, since p is an FM-partition, c(u) = 1;
thatis, g = 2. Then )\;( = I-1=a"(A")—1and A’ is an FM-partition. Assume then that A # v.
Then we have

x+s+f+g-1=], g+s’'+f=Am 2 —x+1=1-x+1,

which gives s’ > s.

Suppose all removable nodes of A have the same residue. Then s and s” are both odd, so A
is hom-reducible, a contradiction.

Next suppose that not all removable nodes of A have the same residue. Then f = 0and s, s’
are even. Let o be the partition obtained by removing the point of A; then ¢ is doubly-singular,
so either ¢ or ¢’ is an FM-partition. In particular, either a*(0) = a.(0) or a*(¢’) = a.(¢”), which
means that either s or s’ equals 2. Since s’ > s, we get s = 2, so again A is hom-reducible;
contradiction. O

By combining the results in this section, we can prove Proposition 3.10.

Proof of Proposition 3.10. Suppose A is a partition with the given properties. Then A’ has the
same properties, and we may replace A with A’ if necessary.

If Ay > I, then by Lemma 3.16 or Lemma 3.17, either A or A’ is an FM-partition. So we may
assume A; < I. Applying the same argument to A’, we may assume that A; = I.

Now by Lemma 3.17 applied to both A and A’, we can assume that A; > 2 and A1 = A».
Now the only way u could be 2-regular or 2-restricted is if A = (?,1-1,1-2,...,2), which
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is an FM-partition. So we can assume that y is doubly-singular. Hence either u or p’ is an
FM-partition. Replacing A with A’ if necessary, we can assume u is an FM-partition. And now
we are done using Lemma 3.15 or Lemma 3.18. m]

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. The proof is by induction on |A|. If A = @ the theorem is trivially true.
Suppose that A is a doubly-singular partition of n > 1 such that neither A nor A’ is an FM-
partition, and suppose that Theorem 2.4 holds for all partitions of m < n. By Proposition 3.10
at least one of the following statements holds for A.

e A has a broken ladder.

e Aor A is CP-reducible.

e A is hom-reducible.

e Aor A is LLT reducible.

e A isinductively reducible.

If any of the first four statements hold then S* is reducible by Lemma 2.1, Proposition 3.1,
Proposition 3.4, Proposition 3.6 or Proposition 3.7. So suppose A is inductively reducible. Then
there exists i € {0, 1} such that A® # A and A® satisfies one of the following conditions.

e A is 2-regular and is not alternating.
e 1@ is 2-regular and is not alternating.
e A is doubly-singular and neither A® nor A" is an FM-partition.

By Proposition 2.2 or the inductive hypothesis, s"” is reducible. Then S" is reducible by
Proposition 3.9. o

To complete the proof of Theorem 2.4 it remains only to give the deferred proof of Proposi-
tion 3.5.

4 Homomorphisms between Specht modules

4,1 Tableaux

If u is a composition of 1, a u-tableau is defined to be a filling of the nodes of u with integers;
if T is a tableau, we write T, for the (7,c)-entry. The type of a tableau is the composition A,
where A; is the number of nodes filled with the integer i, for each i. A tableau is row-standard if
the entries are weakly increasing along the rows. We write 7 (u, A) for the set of row-standard
u-tableaux of type A. If u is a partition, we say that a u-tableau is semistandard if the entries are
weakly increasing along the rows and strictly increasing down the columns; we write 7o(u, A)
for the set of semistandard pi-tableaux of type A. We remark that 7o(u, A) is empty unless u > X,
where 1 is the partition obtained by arranging the parts of A in decreasing order.
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4.2 Permutation modules and Specht modules

Now take [F to be an arbitrary field with g € [F*. For each composition A of n, we let
M* denote the ‘permutation module’ defined by Dipper and James; if A is a partition, then
the Specht module S* is a submodule of M. If y, A are compositions of n and T is a row-
standard p-tableau of type A, then there is an H,-homomorphism O : M# — M". The set
{@T | TeT(u, /\)} is a basis for Homg,, (MH“, M*) [DJ1, Theorem 3.4].

These homomorphisms may be used to define the Specht module. Suppose A and u are
partitions of n,and 1 < d < £(A) and 1 <t < Ay41. Define the composition A(d, t) by

A+t (i=4d)
Ad, 1) =N —t (i=d+1)
A (otherwise).

Then there is a unique row-standard A-tableau of type A(d, t) with the property that for every
i # d+1 all the entries in row i are equal to i. The corresponding homomorphism from M* to
MM is denoted .

The Kernel Intersection Theorem [D]1, Theorem 7.5] says that

0A)-1 Mgy

st = ﬂ Ker(ihg,)-

d=1 t

B

I
—_

Remark. Our notation is not universally used: the partition A(d, t) is referred to elsewhere in
the literature as v(d, t); we use the notation A(d, t) in order to emphasise the dependence on A.
In addition, the homomorphism 1) ; is sometimes denoted l,bfi Or Yyt

If u is a partition and A a composition of n and T € 7 (u, A), we shall often consider the
restriction of Or to S#, which we denote ®1. We write EHomWn(S“,MA) for the subspace of
Homygy, (S*, MM spanned by all the Or; by [DJ2, Corollary 8.7], {®r| T € To(u, A)} is a basis for
EHomg, (S#, M"); in particular, EHomg, (S#, M%) = 0 unless p > .

Remark. In fact, EHomgy, (S“,MA) is almost always equal to Homq{n(S“,M/\); the exception is
the case of most interest in this paper, when g = —1 and p is 2-singular.

We also remark that the homomorphisms denoted Or, Or are denoted Or, Or elsewhere in
the literature. Since we shall almost exclusively be considering the restricted homomorphism,
we use the less cluttered notation for this.

4.3 Constructing homomorphisms between Specht modules

Suppose now that A, u are partitions of n, and © € Homg, (S¥, M"). By the Kernel Inter-
section Theorem, we have im(®) C S* if and only if ¢4, © ® = 0 for all d,t. We shall only
be considering the cases where ® € EHomgy, (S*, M*); we write EHomg, (S*, S*) for the set of
© € EHomy (S*, M%) for which im(®) C S*.

It turns out that it is possible to give an expression for ¢;; o ©1, which shows in particular
that 14, o ©r € EHomy, (S*, M}@). One consequence of this which will save a lot of effort

later is that we automatically have ¢;; o ©1 = 0 unless p = A(d, t).
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In order to give our expression for 1;; o ©r, we need to recall quantum integers and
quantum binomial coefficients. For m > 0 define

ml=1+g+---+g"",
and [m]! = T2, [i]. If g is an indeterminate, then for integers m, j, set

[m]! '
m: Tim—q m>7>0)
! 0 (otherwise).

Then [7{1] is a polynomial in g; so we can extend the definition of ['Z] to the case where g is
algebraic by defining it to be the specialisation of this polynomial.
In this paper, we are only concerned with the case g = —1, in which case we have

0 (if mis even)
[m] = L
1 (if mis odd),

and the majority of the quantum binomial coefficients we consider will be of the form [T] = [m],
which will simplify calculations considerably.
For atableau T, let T; denote the number of entries equal to i in row jof T. Let T]?i =Y i T;f,

and define terms such as T].<i similarly. Now we can describe the composition ¢;; o Or.

Proposition 4.1. [L2, Proposition 2.14] Suppose that T is a row-standard u-tableau of type A. Choose
dwith1l < d < {(A) and t with 1 <t < Agyq. Let S be the set of row-standard tableaux of type A(d, t)
obtained by replacing t of the entries in T which are equal to d+1 with d. Then

o)
d Sd :
oor= T[]

SeS\ j=1 j

.

A difficulty with Proposition 4.1 is that it expresses 1;; 0 Or in terms of homomorphisms
labelled by tableaux which are not necessarily semistandard. In order to be able to use this
result to show that a composition {4, 0 © is zero, we need the following result, which allows a
homomorphism ©r to be written in terms of other tableaux. In this proposition, we wr1te Z,
for the set of non-negative integers; given ¢ € Z,, we write g;_1 for the partial sum Zl 1 8i-

Proposition 4.2. [L3, Theorem 4.2] Suppose (i is a partition and v a composition of n,and S € T (i, v).
1. Suppose 1 <r < {(u) —1and that 1 <d < {(v). Let

G = {geZa) ‘g =0, Zf(l)gl—Sf+1andgi<5£forl<i<€(v)}.

For g € G, let Uy be the row-standard tableau formed from S by moving all entries equal to d from
row r + 1 to row r and for i # d moving g; entries equal to i from row r to row r + 1. Then

{(v) ;
_ < = <i SZ + Q;
_ r+1 _ iS r g
( 1) r+1q ( ) r+1 St E qu 1 | |[]g r+1[ +271- l]@ug.

3€G i=1
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2. Suppose 1 <r < (u) — land py = pyy1 and that 1 < d < £(v). Let
G= {g €21 [gs=0, £ g = S and g; < S, for 1< i < 5(v)}.

For g € G, let Uy be the row-standard tableau formed form S by moving all entries equal to d from
row r to row v + 1 and for i # d moving g; entries equal to i from row r + 1 to row r. Then

d sd do>d 5 v >i Si + 9;
Qg = (_1)S,q—(;)q—s,s, Zq_gdfl Hqgisr [ rTai @ug.
9<G i=1 Si
Remarks.
e We shall be considering only the case 4 = —1, in which case the unwieldy formulee in

d
SH—l+

1
Proposition 4.2 simplify a little; for example, the product (—1)Sf+1 q_( 1) in (1) becomes
d
(.
e Since the first draft of this paper was written, the first author has proved a more general
result giving linear relations between tableau homomorphisms [F4], which yields an

explicit fast algorithm for ‘semistandardising” a homomorphism. However, the result
above will be sufficient in this paper.

The following result [LM, Theorem 3.1] or [D, Prop. 10.4] often allows us to simplify our
calculations.

Proposition 4.3. Suppose that A and u are partitions of n and that for some x > 0 we have A; = u; for
1<i<x Let A = (g1, Avsa, .. .) and i = (U1, Yxs2, - - -), and let m = |A| = |al|. Then

dimy EHomg, (S*,5") = dimp EHomy, (SF, SY).
We will also make use of the next result.

Lemma 4.4. Suppose V is a A-tableau such that for some k there are m entries equal to k which all lie in
rows of length strictly less than m. Then ®y = 0.

Proof. Choose y minimal such that V]; # 0. We may apply Proposition 4.2 repeatedly to write
Oy as a linear combination of homomorphisms indexed by tableaux obtained by moving all
entries equal to k in V upwards until they are all contained in row y. But by assumption there
are no such tableaux. i

4.4 Notation for tableaux

We list here a few items of notation which we shall use below.

. d; .
e If V,W are row-standard tableaux, we shall use the notation V —5 W to mean that W is
. . . . . da;r,
obtained from V by replacing a in row r with a [d], and we write V Z3 W to mean
that W is obtained by replacing two [d+1s with [d s, in rows r and s (where r may equal s).

e If Tisa tableauand 1 <i < j, we write T, j, for the tableau consisting of rows ..., jof T.

o If T, U are tableaux of the same shape and 1 < i < j, we write T|;.|U to mean that the
entries of T and U are the same except in rows i, ..., J.
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4.5 Some simple relations between tableau homomorphisms when g = -1

Now we give some simple consequences of Proposition 4.2 which we shall use repeatedly.
We assume in this subsection that 4 = —1; this will mean that our relations take a particularly
simple form.

Lemma 4.5. Suppose i is a partition and i > 1 is such that piy1 = u; — 1. Suppose V,W, X are
p-tableaux such that V|il1|W|i+11’X and

Vi = feF it elel iy = bl oy, = el fabib)
wherea < b < c. Then Oy = -Op — Ox.
Proof. Applying Proposition 4.2, we get
oy = (-1)B*ey + (-1)(ey,
where m = pj,1, Y|ii1|Z|ii1'V and
Vi = EEtte) 2, = (bl b

Proposition 4.2 again (together with the fact that [2] = 0 when g = —1) gives
0y = (-)Dey, 0, =(1)ey,
and the fact that (") # (";") (mod 2) for any m gives the result. m

Lemma 4.6. Suppose 1 is a partition and i > 1 is such that ui.1 = py; — 1. Suppose V, W, X,Y are
u-tableaux such that V|

(W1, [X|. LY and

1
i+1

1177+

aj - alc|d aj - alb|d
Viiivty = 7 I b ‘/ Wity = 7 A ‘/

aj - alblc aj - alblb
Xiir1y = [T Ar ‘, Yaie)) =T Tp e[ d ‘,

wherea <b <c<d. Then ©®y = —-Op — Ox — Oy.

Proof. As in the proof of Lemma 4.5, we apply Proposition 4.2 to @y to move the [b]s up to
row 1, and then again to move the [a s up to row 1. |

Lemma 4.7. Suppose p is a partition with y; = piv for some i, and V, W are u-tableaux such that
V] 2|W and

[yl

Vi = [} ar Tt Wain =TTyl

wherea < b < ¢ <d. Then Oy = On.
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Proof. By Proposition 4.2(2), both homomorphisms equal —®x, where

Xii+1y = Z ‘alc bl

O

Lemma 4.8. Suppose i is a partitionand 1 < a < b—1such that y, = pp_1, and that X, Y are p-tableaux
with X|bf1|Y and

a | - a b a | e a la+1
at+l| - a+l|a+2 at+l| - a+l|a+2|a+2
a+2| e a+2|a+3 a+2| - a+2|a+3|a+3

Xiap-1y = 1 Yaer-n =1 R
b=2 - b-2|b-1 b=2[ - b—2|b-1]b-1
b-1] - b-1| b b-1] - b-1b | b

Then ©x = —Oy.
Proof. Define the tableau Z by Z | bﬁ1|X and

a | e a |a+l

atl] o a+1] b | b

a+2| e a+2|a+2
Zap-1y = :

b-2| e b-2|b-2

b—1| oo b-1{b-1

We define a sequence of tableaux X = Xj, Xp_1, ..., Xs42, wherefork = b—1, ...,a+2, X) is formed
from Xj41 by swapping the | k |in row k — 1 and the [b]in row k. Applying Proposition 4.2(2),
we find that ©x, = -0y, ,. We then apply Proposition 4.2(2) to X,+> to move the @ from row

1 to row 2, so that @ ., = —@7. Hence @x = (-1)**'*1@;.
We do a similar thing for Y: fork=b—1,--- ,a + 2 we move the two [k s from row k — 1 to

row k. We get Oy = (-1)"**@,, which gives the result. O

5 The proof of Proposition 3.5

We now use the results of the preceding section to give a proof of Proposition 3.5, thereby
completing the proof of our main theorem. We assume from now on that g = —1.
Proposition 3.5 follows from Proposition 4.3 and the following result.

Proposition 5.1. Fix integers s,s’, f, g with f > 0,9 >2,s" > s > 2and
e sand s’ are odd; or
o s=2,5isevenand f =0.

Define
y:((g+f+s’+1)2,(g+f+s')s_2,g+f+s’—1,g+f+s’—2,...,g+s',g,g—1,...,3),
A=(g+f+s),g+f+s-1,9+f+s-2,...,9+5,9,9-1,...,2),
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and let n = |A| = |u|. Then
EHomg, (S#,S") # 0.

The remainder of this paper is devoted to proving Proposition 5.1.

5.1 Proof of Proposition 5.1 when s and s’ are both odd
5.1.1 Constructing the homomorphism

Fix integers s, s’, f, g, A, u as in the statement of Proposition 5.1 and assume s and s” are odd.
Letl={(u) =s+ f + g —2. We will say a u-tableau (of arbitrary type) is usable if for every row
i, all except possibly the last two entries are equal to i. All the tableaux we consider will be
usable. Given a usable tableau of shape 1, we will often encode it simply by giving a tableau
of shape (2!), recording the last two entries in each row. Conversely, given a tableau of shape
(2!), we will talk about the ‘corresponding usable p-tableau’.

Now we need some more definitions. Suppose 2 < i < j < 5. Then there is a unique
(25" 1)-tableau S(i, j) of type (12,2572) such that

SG, M2 =i, SG, a2 =
SG, 11 <SG faa <SG, f)an <SG, a2 < G, ag <+ <SG, a1 )

Define
~ {%(5—1) (ifi=2and j = 3)

Mij = i+1 :
(-1)/ (otherwise).

Later we shall also need a slight variant of the above definition. Suppose 1 <d <s -1 and let

(2,0, 25‘2) d=1)
v =1(1,2,1,259) d=2)
(12,273,3,1,27%)  (d > 3);

that is, v* is the composition obtained from (12,2572) by increasing the dth part by 1 and
decreasing the (d+1)th part by 1. Now given i < j < s, there is a unique (2°~!)-tableau S%(j, f)
of type e satisfying (*). (In the case d = 1, we now allow the possibility that i = 1, but exclude
the possibility that i or j equals 2.)

Next, we need to consider tableaux of shape (2871) and type (257!). Given such a tableau T
and given 1 < i < g —1, we will say that T is split at row i if all the entries in rows 1,...,1 are
less than all the entries inrows i +1,...,g— 1. Let A denote the set of (2871)-tableaux T of type
(2871 for which:

e the entries in each row are weakly increasing;
e for each k, the entries in row k are at least k — 1;

e forall 2 < k < g — 2, the first entry in row k is strictly less than the second entry in row
k+1;

o if T is split at row k, then itis splitatallrowsk+1,k+2,...,¢g—-1.
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For example, when g = 5, the tableaux in (A are

1)1 1(2 2|2 1|2 1(3 2|3 1|3 33
212, |1]2], |1]1 1/3, |1]2) |11} [1]3 11}
313 313 313 2|3 2|3 2|2 2(2 2]2

If T € A, we define sgn(T) to be (—1)?, where a is the first row at which T is split.
Now we can construct the semistandard u-tableaux which we will combine to give our
homomorphism. Set

I = {(i,j) |2<i<j<s,andeitherjisoddori23}.
Given (i, j) € I and T € A, construct a tableau of shape (2°*/*82) as follows:

o the first s — 1 rows are just the rows of S(i, j);
e fors <k <s+ f —1, the entries in row k are both equal to k + 1;

e rowss+ f,...,s+ f + g — 2 are the rows of T, with each entry increased by s + f.

Let U(i, j, T) be the corresponding usable u-tableau, and let (j, j, T) denote the corresponding
homomorphism from S* to M.
Then we claim that
©= Y ) mijsgn(T)O,jT)
(i,j)el TeA
gives a homomorphism in EHomg, (S¥, S1). One can check that all the U(i, j, T) are semistan-
dard, so © is certainly non-zero. All we then need to do is check that i;; 0 ® = 0 for all 4, t. By
dominance considerations (see the remarks in the second paragraph of §4.3), the only pairs (d, t)
that we need to consider are (d,1) for 1 <d <s+ f+g—2,and (d,2) fors+1 <d <s+ f+g—2.

Example. Suppose (s,s’, f,g) = (5,5,2,5). Then (2,5) € 7, and the tableau

2(3
1/1
2(3
414

T =

lies in A. We have my5 = 1 and sgn(T) = -1, and

1(1 1)1 (1|1 )11 j1]1]1]1]2

212(212]2]2|2]2]2]|2]2]3|5

31313/3|3|3|3]|3]3[3|3|4
1|2 414|4(4|4(4]|4|4(4]|4/4]|5
315 5/5/5/5|5]5|5|5]5]|5]|6]6

5(2’5)_34’ u(2’5’T)_66666666677

415 7171717177717 ]9]10

8/8|8/8|8

919]19]10

10[11)11

For later use, we extend the notation above: given 1 < d < s — 1, we define ut (1,7, T) and
o4, j,T) in the same way, but using the tableau S4(i, j) instead of S(i, j); as above, we allow
i = d = 1but exclude the cases where d = 1 and i or j is equal to 2.
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5.1.2 Rows1tos

Throughout this section, we let m = g+ f +s’. To prove that ;; c® =0for1 <d<s-1,
we need to compute ;1 0 (i, j, T) for each i, j. This is given by the following result.

Proposition 5.2. Suppose (i,j) € I, T € Aand1 <d <s—1. Then ;1 0 0O(,d, T) equals:

(a) (-1)"@%i,d,T), ifji=d;
(b) (-1)"@"(i,d,T), ifi<dand j = d+1;
(c) 0, ifi<d>4andj#d,d+1;
(d) (-1y"*1e4(2,d,T), ifi=d>3and j=d+1;
(e) (-1)"™'@"d, },T), ifi=dand j>d+2;
) ~)"e'd, ), ifi=d+1 >3
(g) 0, ifi>d+2>5
(h) (-1)"™1e312,3,T), ifd=3,i=2and j>5;
(i) 0, ifi=d=2and j=3;
(G) (-1)"™@2(2,i,T), ifd=2andi>4;
(k) 0, ifd=1andi=2;
) (-)"e'1,j,T), ifd=1andi=3;
(m) (=1)"'@'(1,i,T) + (-1)"+*1@'(1, j, T), ifd=1andi> 4.

Given this, it is straightforward to check the following corollary.

Corollary 5.3. Suppose T € A. Then for 1 <d < s — 1, we have

Y4, © [ Z m; j0(, j, T)] =0.

(=

Hence g1 0©@ =0for1<d<s-1.

Proof of Proposition 5.2.

(a) Thisisasimple application of Proposition 4.1 and Proposition 4.2. All the[d+1]sin U(i,d, T)
lie in rows d and d+1, and we have

d |- d |d+1jd+1
d+1] -+ d+1|d+2|d+2[

UeG,d, Ty a+1y =

So applying Proposition 4.1, we get

Wg100(,d, T) = [m-116°(i,d,T) + Oy,
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(b)

()
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where U(i,d, T) L Ud@i,d, T) and U(i,d, T) i V. To express Oy in terms of semistan-

dard homomorphisms, we apply Proposition 4.2(1) (with r = d), and we obtain
Oy = —[m —2]0%(i,d, T).
Now the result follows, using the fact that [m — 1] — [m - 2] = (=1)"™.

U(@i,d+1,T) has s in rows 2,d,d+1, and Proposition 4.1 gives
g1 © O, d+1,T) = (-1)"©"(i,d, T) + [m]®v + O,

where U(i,d+1, T) &4 Vand U(i,d+1,T) dd+l W. Proposition 4.2 gives Oy = —[m—2]0y,
and the fact that [m] = [m — 2] gives the result.

This is a simple application of Proposition 4.1 and Lemma 4.4: Proposition 4.1 expresses
Y4100(, j, T) as a linear combination of homomorphisms labelled by tableaux containing
m+1 s, all contained in rows of length m; by Lemma 4.4, these homomorphisms are
equal to zero.

The s in U(d,d+1,T) lie in rows 2, d and d+1. Proposition 4.1 gives

Va1 00d,d+1,T) = (-1)"* 'Oy + [m]Ow + O,

where
Ud,d+1,T) 23 v, U@dd+1,T) 25w, U d+1,T) “5 x.
Proposition 4.2 gives @x = —[m — 2]@, and so we just need to show that @y =

(-1)%e%Q2,4,T). Applying Proposition 4.2(2) in rows 1 and 2 and then Lemma 4.5, we
find that ®y = ©y + 07, where

1) - 1|2 11 ooeeeeees 112
Yoz =[2][ 2(3[d,  Zas=[2] 71373
3] 3|d 3| ‘3 dld

and Y|§|Z|§|U(d, d+1,T). By Lemma 4.4 we have ®z = 0, so we concentrate on Gy.
For k = 4,---,d — 1 the kth row of Y consists entirely of ks. So we can repeatedly
apply Proposition 4.2(2) to move the |4 | in row 3 down to row d — 1, and we get Oy =

(-1)704(2,d,T), as required.

If d > 3, then this is a simple application of Proposition 4.1 and Proposition 4.2: all the
[d+1)s in U(i, j, T) lie in rows d and d+1, and Proposition 4.1 gives

l;bd,l o ®(d/ j/ T) = [m]@d(d/ j/ T) + ®W/

where U(d, j, T) didil W. Proposition 4.2 gives Oy = —[m — 11043, 7, T), and the fact that
[m] — [m — 1] = (=1)"*! gives the result.



The reducible Specht modules for the Hecke algebra He, —1(S,) 23

Now suppose d = 2. Then

U@R,j,Taz =

and Proposition 4.1 gives

1 ....... 12
2] [2[3]]
3] 13]4

P21 00(2,],T) = [m]@*(2,],T) + Oy,

where U(2,j,T) 2y, Proposition 4.2 gives @y = —[m—1]@%(2, j, T) plus a scalar multiple

of Oy, where

2

2[3]

Wiz =

i

and W|§|ll(2, 7, T). Since [m] — [m — 1] = (=1)"*!, we just need to show that ®y = 0. For

4<k<j-1wehave

We apply Lemma 4.7 inrows k, k+1, fork = 3,..., j—3 in turn, and we find that ® = Ox,

where

—2

...... ‘]'_2 -1

i

_ U
Xij-2,j-1) =[5

j-1

i

Now Proposition 4.2 gives ©x = 0, since we get a factor of [2] = 0.

(f) The tableau U(d+1, j, T) contains a in row 1, with the remaining [d+1}s in row d+1.

Proposition 4.1 yields

Pa100(d+1, ], T) = (-1)"©%(d, j, T) + Ow,

d;d+1

where U(d+1, j,T) — W. But O = 0 by Lemma 4.4, and we are done.

(g) In this case all the [d]s and [d+1s in U(i, j, T) lie in rows of length at most m; so by
Proposition 4.1 and Lemma 4.4 we have ;1 0 ©(, j, T) = 0.

(h) In this case

U2,j,T)a =

and Proposition 4.1 gives

2] 12[3]]]
3[-13]4] ,
41 14][5

1103,1 o 6(2/ j/ T) = [m]®V + ®W/

where U(2,],T) 38 Vand U(2,j,T) 34 W. Proposition 4.2 gives Oy = —[m — 1]®y, so
] J % g

we just need to show that Oy = ©3%2,3,7).

Applying Proposition 4.2 twice, we find that ©y = —®x, where X is obtained from V by
interchanging the [ j ] in row 2 with a [3] in row 3. We can apply Lemma 4.8 to X (with

a=3,b=j)and we obtain Ox = -03(2,3,7).
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(i) This is a simple application of Proposition 4.1 and Proposition 4.2; it is similar to case (a),
but using the identity [m] — [m — 2] = 0.

(j) The 3sin U(i, j, T) all appear in row 3, so Proposition 4.1 gives ¢, 1 0 O(i, j, T) = Oy, where
ug,jT) 2y, Applying Proposition 4.2, this equates to (—1)"®yw, where

1) ]1|1]:
Wazy =212 2 2
31137

(and W|§|U(i, 7, T)). Fork =4,...,i—1row k of W consists entirely of ks, so we can apply
Proposition 4.2(2) repeatedly to move the [ j]from row 3 down to row i — 1. We also apply

Proposition 4.2(2) in rows 1 and 2, and we find that @ = (-1)*1©y, where

=1 i1 j
i i |i+l
X(i—l,j—l) — |41 1-1.-1 H.-Z
IR

By Lemma 4.8, we have Ox = —@2(2, i,T), and we are done.

(k) This is a simple application of Proposition 4.1 and Proposition 4.2; it is similar to (a),
using the identity [m + 1] — [m — 1] = 0.

(I) This is a simple application of Proposition 4.1 and Proposition 4.2.

(m) Applying Proposition 4.1 and Proposition 4.2 gives 11,1 0 O(i, j, T) = (-1)"®y, where

1 ......... 1
2[--[2]i];j

Vi) =

and V|§|U(i, 7, T). Applying Lemma 4.6 gives

Oy = -Ow - BOx — By,

_ 2] 2[3]/] _[2] 2[3]i] 2] 2[3]3]
Wags = 3 37 7 X3 = 3 3] Y23 = 3 ‘3 il]

and V|§’W|§|X|§|Y In particular, for k = 4,...,i — 1 the kth row of any of these tableaux
consists entirely of ks.

For W, we can repeatedly apply Proposition 4.2(2) to move the | i | from row 3 down to
row i — 1. We get Oy = -1\, ).

We do the same for X to reach a tableau in which the row i — 1 has the form
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We can apply Lemma 4.8 to this tableau (with a = i —1, b = j) to obtain Ox =
—-(-1)'®'(1,i,T).
It remains to show that ®y = 0. Examining the tableau Y3, 1), we find that there is a

unique semistandard tableau with the same shape and content, so @y must equal a scalar
multiple of ®z, where Z3 ;_1) is this semistandard tableau and Z | i§1|Y‘ Then

=1 -1l i |
i| i| i [+l
Z(i—l,j—l) — |+ i+1|i+1|i+2
| =l =1D;

Applying Lemma 4.7 repeatedly, we can move the [ | from row i — 1 down to row j — 2;
we obtain a tableau in which rows j -2, j — 1 have the form

R |
]_1 ......... ]_1 ]
Now Proposition 4.2 tells us that the corresponding homomorphism is zero. m|

513 Rowsstos+ f

Proposition 5.4. Suppose s <d<s+ f—1,(i,j)€ LT and T € A. Then ;7 0 0O(i, j, T) = 0.

Proof. We apply Proposition 4.1. Note that the [d+1]s in U(i, j, T) occur in rows d,d+1. Row d
contains y — 2[d s and two [d+1}s, and all the remaining [d s are in higher rows, so we get

Ya1 000, ), T) = [ua — 11Oy + O,

where U(, j, T) LS V and U(, j, T) didtl W. But Proposition 4.2 immediately gives O

—[pq — 3]®y, and we are done.

Proposition 5.5. Supposes + 1 <d <s+ f,(i,j) € Land T € A. Then 1z, 00O(, j, T) = 0.

Proof. This follows from Proposition 4.1 and Lemma 4.4. |

514 Rowss+ ftos+ f+g—1

In the next few sections we prove the following, which will complete the proof of Proposi-
tion 5.1 when s, s’ are odd.

Proposition 5.6. Suppose that (i,j) € I, thats+ f <d < s+ f + g—2and that t =1 or 2. Then

Y © (Z sgn(T)O(, j, T)] =0.

TeA
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Note that the case t = 2,d = s + f has already been covered in Proposition 5.5.

If T € A, then the [d+1Js in U(i, j, T) lie within rows s + f,...,d+1. Givens + f <k <d+1, we
write ai, by for the entries at the end of row k of U(i, j, T), withay < by; thatis, ax = Trs_fr11+5+f,
by = Tks—fr12+5+ f.

Now assume d < s + f + g — 3 (the easier case d = s + f + ¢ — 2 is addressed below). The
multiset {ax, bx | s + f < k < d+1} contains two each of the integers s + f + 1,...,d+1, together
with two larger integers a, b. We partition A according to these integers g, b: givend+1 <a <D,
we define A to be the set of T € A such that {ay, by | s + f < k < d+1} includes the integers a
and b. We prove the following refinement of Proposition 5.6.

Proposition 5.7. Suppose (i,j) € L and that s+ f <d < s+ f+g—-3,t=1o0r2and d+1 <a <b.
Then

Va0 [ Y sgn(1)eg, T)] -

TeAb

We consider several different cases, according to whether d equalss+ f ors+ f + ¢ —2, and
whether a < b.

515 Thecases+ f+1<d<s+f+g-3,a<b

We start by defining some subsets of A*’:

A =T € A | (a4, b4, ag1, bas1) = (d, d,d+1,d+1)};

Ay ={T € A" | (ag, b4, 841, ba1) = (@, d+1,d+1,a)};

AL ={T € A | (a, b4, 041, ban) = (d,d+1,d+1,b)};

AL = {T € A" | (a4,b4, 8001, bas1) = (d,d,d+1, a)}

AL =T € A | (a4, b4, 841, ba1) = (@, 0, d+1,d+1)};

AL ={T € A | (a3, b4, 041, ba1) = (d,d,d+1,b)};

A =T € A" | (a4, b4, 041, bas1) = (d,b,d+1,d+1)};

AL ={T € A | (a,bg, 041, b401) = (d,0,d+1,b), ag 5 = dJ;

A ={T € A | (a, b4, a4:1,b401) = (d,b,d+1,0), agp = dJ;

AL = {T € A" | (a4,b4,8001,b441) = (d,a,d+1,b), by = d, by = d+1 for some k <1 < d};
AW ={T € A | (a, b4, 0441, ban1) = (@, b,d+1,0), by = d, by = d+1 for some k <[ < d};
A ={T € A | (a3, b4, 841, bas1) = (d,8,d+1,b), by = d+1, by = d for some k <[ <d};
A =T € A" | (a4, b4, 041, ba1) = (d,b,d+1,a), by = d+1, by = d for some k < < d.

Using the definition of A, it is easy to check that these sets partition A*?. (Note that because
a < b, a tableau T € A’ cannot have (4441, b4:1) = (a,b), because then T would not lie in A:
T would be split at row d —s — f + 1 but not at row d — s — f + 2. Similarly, we cannot have
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{a4,b4,a441,b441) = {d+1,d+1,4a,b} as multisets.) Now Proposition 5.7 in this case will follow
from the following two results.

Proposition 5.8. Suppose i, j,d,a, b are as above with a < b.

1L IfT e AV UAY UAL, then g 0O, j,T) = 0.
2. There is a bijection T — T’ from ﬂi’b to ﬂg’b such that
a1 0 (sgn(T)O(, j, T) + sgn(T")O(, j, T')) = 0 foreach T € AL,
3. There is a bijection T + T’ from AL" to AL such that
a1 0 (sgn(T)O(, j, T) + sgn(T)O(, j, T')) = 0 for each T € AL
4. There is a bijection T — T’ from ﬂg’b to ﬂ‘;’b such that
Yg1 0 (sgn(T)O(, j, T) + sgn(T")O(, j, T')) = 0 foreach T € ﬂg’b.
5. There are bijections
b b b b b b
Ay — Ay Ay — Ay Ay — A
Tf_)T’ T|_)T// T|_>Tl//
such that
Y410 (sgn(T)OG, j, T) + sgn(T")O(, j, T') + sgn(T)O(, j, T”) + sgn(T")O(, j, T"')) = 0
foreach T € .?{‘;’Ob .
Proof.
1. IfT e ﬂq’b, then we get 1,1 0 (i, j, T) = 0 by Proposition 4.1 and Lemma 4.4.
If T € AL or AL, then Proposition 4.1 gives
Ya1 00, j, T) = [1a]lOv + Ow,
where V &4 ug,j,T) ddil W. But Proposition 4.2 gives O = —[ug — 2]Oy, so ;1 ©
0@, T) =0.
2. Given T € ﬂi’b, there is one in a row k < d of U(i, j, T). We define T’ by replacing

this entry with [d], and replacing (a4, by, 4441, b441) with (d,a,d+1,d+1). It is easy to
check that this really does define a bijection from ﬂi’b to ﬂg’b. Moreover, it is clear that
sgn(T’) = sgn(T). Now consider ;1 0 ©(i, j, T). Applying Proposition 4.1, we replace a
with a [d]in row k or row d+1. But in the latter case the resulting homomorphism

is zero, by Lemma 4.4. So we have ;1 0 O(i, j, T) = (-1)*®y, where U(i, j, T) ﬂ) V.

On the other hand, we have ¢, 0 ©(, j, T") = ©Ow, where U(i, j, T') LW, Applying

Proposition 4.2 to W, we get Oy = (-1)4a~1@y; so Yi10 (0O, T)+0(, j,T") =0, as
required.
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3. This is identical to (2), with the roles of 4 and b interchanged.

4. From the definition of A, we find that ﬂg’b consists of a single tableau T, and ﬂg’b consists
of a single tableau T’. T’ is obtained from T simply by interchanging the [a]and [b]in
rows d and d+1 of U(i, j, T), and we have sgn(T) = sgn(T’). Now we apply Proposition 4.1
to compute 141 © O(;, j, T); note that since we have a5,y = d, we must have b,y = d+1.
Hence when we replace a with a[d]in row s + f, we get a factor of [2] = 0. So we just

have 1;1 0 ©(, j, T) = Oy, where U(i, j, T) d;d—+>1 V. Similarly 131 0 ©(, j, T’) = Ow where

uga,j, ') s W; applying Proposition 4.2 to V, we get @y = (-1)*"1@x, where X is

obtained by interchanging the| d |in row d+1 and the|[a |in row d. Similarly @y = (-1)"@x
(the difference in signs arising because a4 < b), and so {1 © (©(, j, T) + ©(i, j, T')) = 0, as
required.

5. Given T, we obtain T’ by interchanging the [a | and [b]in rows d,d+1. We obtain T” by
interchanging the [d]and in rows k and /, and we obtain T"”” by doing both of these

changes. It is easy to see that these maps are bijections, and that sgn(T) = sgn(T’) =
sgn(T”") = sgn(T""’). Proposition 4.1 gives
41000, T) = (-1 'Oy +Ox,
Ya100(, j,T') = (=D 'Ow + Ox,
Y1003 T") = (-1)"Oy + Oy,
¢d,1 o ®(lr j/ T’N) = (_1)”d®w + ®Y2/
where &l dik d;1 d;k
uejT) — vV e=ue "), UG jT)— W= UG, T")
and
UG im™s Xy, UGHT) ™SS X, UGLT) S Y, UGLT) S T
Using Proposition 4.2 as in (4) above, we get ©x, = —Ox, and ©y, = —By,, so that

Y10 (0@, T)+0(, ), T) + 0, j,T") + ©(, j, T")) = 0. O

Proposition 5.9. Suppose i, j,d,a, b are as above with a < b.
1 IfT € UL AY, then g 0 O, j, T) = 0.

2. There is a bijection T — T’ from &Zl‘i’ob to ﬂilb such that

Yaz © (sgn(T)O(, j, T) +sgn(T)@G, j, T)) = 0 foreach T € ﬂ?g'

3. There is a bijection T + T’ from ﬂ’izb to ﬂ‘i; such that
a2 0 (sgn(T)O(G, j, T) + sgn(T)O(, j, T')) = 0 foreach T € A,

Proof.
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LITeA ? for 1 < i < 7, then the result follows by Proposition 4.1 and Lemma 4.4. So
suppose T € ﬂg or ﬂ9 , and consider applying Proposition 4.1. The [d+1]s in U(i, j, T) lie
in rows s + f and d+1. If we replace with [d]in row s + f, then we get a factor of

[2] = 0; on the other hand, if we replace two [d+1]s with [d s in row d+1, then the resulting
homomorphism is zero by Lemma 4.4.

2. The bijection T + T’ is the same as in Proposition 5.8(5). Now consider applying
Proposition 4.1. The [d+1)s in U(, j, T) all lie in row d+1 except for one, which lies in row [.

If we replace two of the [d+1]s in row d+1 with[d s, then by Lemma 4.4 the corresponding
homomorphism is zero, so Proposition 4.1 gives

Yup 000, j,T) = (-0,
.. d;1,d+1 o o .
where U(i, j, T) = X. Proposition 4.1 similarly gives
V42000, j,T') = (1) ' Ox
where U(i, j, T) TLEL X7, Now we apply Proposition 4.2 to X and X’, in both cases

moving the @ from row d+1 to row d. We find that ®x = —®x/, and hence ¢, o
(O, T)+0C(,jT)) =0, as required.

3. This case is identical to the previous case, except that (=1)#~1 should be replaced with
(—1)Ha. O
51.6 Thecases+ f+1<d<s+f+g-3,a=b

Now we consider the case a = b. The method is the same as in the last section, but we need
to define some different subsets of A%*:

A = {T € A | (ag, b, 041, bas1) = (d, d,d+1, d+1)}

Ay ={T € A | (a4,b, 001, ba1) = (d,d+1,d+1,a)};

AL ={T € A | (a4,ba,00:1, bas1) = (d,d, d+1,0)} ;

A ={T € A (a4, b1, 001, ba1) = (d,a,d+1,d+1)};

AL =T € A (ag, by, a3.1,ba1) = (@, d,0,0), agpy = d+1};

A = {T € ﬂ“| (@4, b4, 8441, b441) = (d,d+1,a,0), a5, ¢ = d};

A = {T € A | (aq, by, a441,b4:1) = (d,a,d+1,a), by =d, b; = d+1 for some k < I < d};
AL = {T € A | (ag, ba, 041, bas1) = (d,a0,d+1,a), b = d+1, b = d for some k <1 < d}
AL {T € A | (a4, ba, 0401, bas1) = (d,d,a,0), by = d+1, by = d+1 for some k <1 < d},-
A =T € A | (a4, b4, 001, ba1) = (d,d+1,a,a), by = d, b = d+1 for some k < < dJ;
A = {T € ﬂ““| (ag,b4,0441,ba41) = (d,d+1,a,a), by = d+1, by =d forsome k <1 < d};
A = {T € ﬂ”| (@4, b4, 8441, ba41) = (d,a,d+1,0), ag s = d}
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ﬂq;‘ = {T € A" | (a4,b4,0441,b441) = (d+1,d+1,a,a) and eithera; 1 <dord =s+ f + 1};
ﬂéllf = {T € AY | (ad—llad—lladl bdr ﬂd+1,bd+1) = (d/ dl d+1/ d+1/ ula) and d > s + f + 1} .

Note that AZ*, A", A", Ajy, Al A3 and Ay are empty unless a = d + 2, and in this case

A" and A" each contain just one tableau. A}, always contains only one tableau.
Proposition 5.7 in this case follows from the next two results.

Proposition 5.10. Suppose i, j,d, a are as above.

a,n a,n a,n a,n a,n
1 fT e AX UAY UAL VAL UA

e then Y41 00(i, j, T) = 0.

2. There is a bijection T + T’ from A" to A" such that

g1 0 (sgn(T)O(, j, T) + sgn(T)O(, j,T')) = 0 foreach T € A"

3. There is a bijection T + T’ from A" to A" such that

Va1 0 (sgn(T)O(, j, T) + sgn(T)O(, j, T')) = 0 for each T € A"

4. There is a bijection T + T’ from A" to Ag" such that

g1 0 (sgn(T)O(, j, T) + sgn(T")O(, j, T')) = 0 foreach T € A"

5. There are bijections
a,a a,a a,a a,a
A — Ay A A
T— T T+— T"

such that

Yaq o (sgn(T)O(, j, T) + sgn(T")O(, j, T') + sgn(T)O(, j, T”)) =0 foreach T € Ay".

Proof.
1. The cases where T € A" U A" are dealt with as in Proposition 5.8(1). In the case where
T € A},, consider applying Proposition 4.1. If we replace a with a [d]in row s + f,
then we get a factor of [2]. On the other hand, if we replace a with a|d|in row d+1
and then apply Proposition 4.2 to move this [d | up to row d, we again get a factor of [2].

a,a

a,a
In the case where T € Ay or Ay, we get

Yi100G, ), T) = [us — 11Oy + O
with V &4 ug,j,T) ddil W. But Proposition 4.2 gives Ow = —[uy — 3]Ow, so that
Y3100, j,T)=0.

2. This is identical to cases (2,3) in Proposition 5.8.
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3. If A" and A" are non-empty, then A:” contains a single tableau T, and Ay” consists of
a single tableau T”. T” is obtained from T’ by replacing a with a |d |in row s + f of

U(i, j, T), and replacing a | d | with a in row d, and we have sgn(T) = sgn(T").

Consider applying Proposition 4.1 to compute ¢41 © ©(i, j, T). There are two |[d+1fs in
row s + f of U(i, j, T), and the remaining [d+1Js lie in row d+1. If we replace a with
a |d|in row d+1, then by Lemma 4.4 the resulting homomorphism is zero. So we get

Y1 00(,j,T) = (-1)"Oy, where U(i, j, T) .
For T’, we get
E[}d,l © ®(Z/ jr TI) = [Hd]®v + @W/

where V &2 u@, 1) LW, Applying Proposition 4.2, we get O = —[uy — 3]0y,
and since (-1)* + [x] — [x — 3] = 0 for any x, we have ¢;; 0 (©(, j,T) + ©(, j,T")) = 0, as
required.

4. Given T, we define T’ by interchanging the | d | in row k of U(i, j, T) and the in row [.
Applying Proposition 4.1, we have

Ya1 00, j,T) = (-1)" 10y + Ow
lpd,l © 6(11 j/ T/) = (_1)Hd®V + ®X

where

uG, ;S v ESUGLT) UGS W UG T) S X

Applying Proposition 4.2, we get ®w = Ox = 0 (Proposition 4.2 gives a factor of [2] in
both cases), and so we have y;1 0 (©(i, j, T) + ©(i, j, T")) = 0.

5. Given T, define T’ by replacing the last [d ] in row d of U(j, j, T) with a [d+1], and the
in row k with a[d]. Define T by replacing the last [d]in row d of U(i, j, T) with a [d+1],
and the in row [ with a[d]. Again, it is easy to see that we have bijections, and that
sgn(T) = sgn(T’) = sgn(T").

Consider applying Proposition 4.1 to compute 151 0 ©(, j, T). If we replace a with a
in row d+1, then by Lemma 4.4 the resulting homomorphism is zero; so

Ya1 000, ), T) = (=1)*(Oy + Ow),

where V &5 i, j, 1) 25 w.
For T’, T"” we have

Wa1 003, j,T') = (-1)!'@x + [u4]®y + Oy
Y1000, 5,T")= (-D"Ox + [us]®w + Oz,

where

uG, iy x, UG v, UG TSy,

uG,j 2 x,  uG Ty B w, uG )i z
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Proposition 4.2 gives

Oy = —[ugs — 3]0y, Oz = —[us — 310w,

so that
Ya10(0OG ,T)+ 0@, j,T)+0(,j,T")) = 0. O

Proposition 5.11. Suppose i, j,d, a are as above.

1L IfTe A" UAY UAY UA UAS UAY UAS UAY UAY, then gp 0 0(, j, T) = 0.

147

2. There is a bijection T + T’ from A to A} such that

Va2 o (sgn(T)O(, j, T) + sgn(T")O(, j, T')) = 0 foreach T € ﬂ‘i’g.

3. There is a bijection T v T’ from A" U A" to A}y such that

a2 0 (sgn(DO(, j, T) + sgn(T)O(, j, T')) = 0 foreach T € A" U AG".

Proof.

LITeA" VA UAL UAS UAY, then ¢y, 0 O, j, T) = 0 by Proposition 4.1 and

147
Lemma 4.4.

If T € A", then we must have by = d+1. When we apply Proposition 4.1, if we replace
with|d |in row k, then we get a factor of [2] = 0. On the other hand, if we replace two
d+1js with [d s in rows d, d+1, then the resulting homomorphism is zero by Lemma 4.4.

If T € A, A" or A5, consider applying Proposition 4.1. If we replace two [d+1]s with
s in row d+1, then the resulting homomorphism is zero by Lemma 4.4; so we need only
consider changing a single intoa|d |in row d+1. Now when we apply Proposition 4.2
to the resulting tableau to move the | d | from row d+1 to row d, we get a factor of [2] = 0.

And so we have ¢, 0 ©(i, j, T) = 0.

. Given T, we define T’ by exchanging the |d | in row k with the in row [. Again, it

is clear that this defines a bijection and that sgn(T) = sgn(T”). Now consider applying
Proposition 4.1 to ©(i, j, T). If we change replace two [d+1]s with [d]s in rows d,d+1,
then the resulting homomorphism is zero by Lemma 4.4; so the only terms which can
possibly be non-zero are those which involve replacing with [d]in row k. The same
statement applies to T’, and it is then immediate from Proposition 4.1 that ¢;,0©(, j, T) =

—ap 0O, j,T).

. Suppose T € A" or Ay". Because T € A we have eitherd = s+ f +1oray_; < d. Soif we

define T’ by replacing the two [d+1]s above row d with [d s, and replacing the last two [d s

in row d with [d+1]s, then T’ € A This gives a bijection from A" U A" to Aj;, and we

claim that sgn(T) = —sgn(T”). Clearly T is split at row d —s — f + 1 and not at any higher
row, so sgn(T) = (-=1)¥=f*1. T" is split at row d — s — f and not at any higher row (because
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if there are any higher rows, then the first entry in row d — s — f is less than d — s — f by
assumption), so sgn(T”’) = (=1)d=s1,

So all we need to do is show that ¢;, 0 ©(i, j, T) = P42 0 ©(I, j, T”). Using Proposition 4.1
and Lemma 4.4, we find that ¢;, 0 ©(i, j, T) = Ox, where X is obtained from U(i, j, T) by
replacing the two [d+1]s above row d with [d s. On the other hand,

Yap 000, j,T') = [H;](ax + [1g — 11Oy + Oy,

where i
ugi,jT) — X, ug,j, ')

Proposition 4.2 gives

d;d,d+1 d;d+1,d+1
—>

Y/ u(l/ j/ TI) — L

Oy = —[uq — 31Ok, Oz = —[Hd2_3]®x,

and now the easy identity [;] —[x-1][x-3] - [x ; 3] =1 gives the result. O

51.7 Thecased=s+f, ¢>3,t=1,a<b

This case and the next are simpler than previous cases, so we spare the reader some of the
details. We define the following sets which partition A*?:

AY = {T € A| (@4, by, 0401, ba1) = (@+1,0,d+1,b)};
A ={T € A| (a4, b4, 8441, bgn1) = (@d+1,b,d+1,0)};
AL =T € A | (a4, 04,8001, bas1) = (@,b,d+1,d+1)}.
Now we have the following, from which Proposition 5.7 follows in this case.
Proposition 5.12. Suppose d = s + f, and i, j,a,b are as above with a < b. There are bijections
ﬂblz,b SN ﬂg,b ﬂtll,b N ﬂg,b
T—T T—T"
such that
Yg1 0 (sgn(1)O(, j, T) + sgn(T)O(, j, T') + sgn(T)O(, , T")) = 0 foreach T € .?l‘;’b.
Proof. The bijections in question are the obvious ones; we get sgn(T) = sgn(T") = sgn(T"').
Applying Proposition 4.1 followed by Proposition 4.2, we have
Ya100(, j,T)= (~1)Oy + (-1 7"\,
Ya100GT) = (-D)"Ow+ (-1)"Ox,
Y1003, T7) = (-1)"Oy +  (-1)"Ow,
where
uG, i1 45, uG, ) LS w
and X has d,d+1 at the end of row d, and 4, b at the end of row d+1. Since s’ is odd, pg, t+1

have opposite parities, and so we get

Y1003, T)+03,j,T')+0(,j,T") =0. O
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51.8 Thecased=s+f, ¢>3,t=1,a=b

In this case there are only two or three tableaux in A**: for any a, there are tableaux T and
T" which have (a4, b4, 4441, b441) equal to (d+1,d+1,a,a) and (a,a,d+1,d+1) respectively; and if
a = d + 2 there is a tableau T” with (a;, by, 441, b441) = (d+1,d+1,a,a).

For the tableaux T and T/, we have

#Jd,l © ®(l/ j/ T) = (_1)Hd®V/
Y4100, ), T) = (-1)"*+10Qy,
where U(i, j, T) LS V. Since 4 and 4,1 have opposite parities and sgn(T) = sgn(T”), we get
Yaa o (sgn(1)O(, j, T) + sgn(T")O(, j, T')) = 0.
In the case a = d + 2, we also have
Ebd,l o 6(11 j/ T”) =0
using the same argument as in in Proposition 5.10(1).
So Proposition 5.7 follows in this case.
519 Thecased=s5+f+g¢g—-2,¢>3

In this case there are just two [d+1)s in U(i, j, T), and we do not have the integers a,b. We
define the following sets, which partition A:

Ay ={T € A| (az, bg) = (d+1,d+1) and eitheraz_y <d or g = 3};
Ay ={T € A| (@4-1,b4-1,84,bg) = (d,d,d+1,d+1) and g > 3};
As =T € Al (@4, bg) = (d,d+1), ag.y = dJ;
Ay ={T € A| (ag, bs) = (d,d), ag.y = d+1};
As ={T € A| (az, bg) = (d,d), by = d+1, b = d+1 for some k < < dJ;
Ag = {T € .?(| (a4,b7) = (d,d+1), by =d, by =d+1 forsome k < I < d};
Ay ={T € A| (ag, bg) = (d,d+1), by = d+1, by = d for some k < < d.
Proposition 5.13. Suppose i, j are as above, and d = s + f + g — 2.
1. If T € Ay or Ay, then Yz1 0 0O(i, j, T) = 0.
2. There is a bijection T + T’ from Az to Ay such that

Yg1 0 (sgn(1)O(, j, T) + sgn(T)O(, j, T')) = 0 foreach T € As.
3. There are bijections

As — Ay As — Ay
T—T T—T"
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such that
Y410 (sgn(T)O(, j, T) + sgn(T)O(, j, T') + sgn(T)O(, j, T")) = 0 foreach T € As.
Proof.

1. When we apply Proposition 4.1, get a factor of [2] = 0, since uy = 3.

2. This is very similar to case (3) of Proposition 5.10. The difference here is that there is no
tableau W; but in this case we have 1, = 3, so that (=1)* + [u4] = 0 and the computation
still works.

3. This is very similar to case (5) of Proposition 5.10. In this case there are no tableaux Y, Z,
but the computation goes through because u; = 3. m|

Proposition 5.14. Suppose i, j are as above, and d = s + f + g — 2.
1. If T € Ay or Az, then Yz 0 O(i, j, T) = 0.
2. There is a bijection T — T’ from Ag to Ay such that

Y42 0 (sgn(T)O(, j, T) + sgn(T)O(, j, T')) = 0 foreach T € A

3. There is a bijection T — T’ from Ay U As to Ay such that

Yg2 0 (sgn(T)O(, j, T) + sgn(T")O(, j, T')) = 0 foreach T € Ay U As.

Proof.
1. The proof here is very similar to the proof of Proposition 5.11(1).

2. The proof here is the same as for Proposition 5.11(2).

3. The proof here is very similar to the proof of Proposition 5.11(3), but simpler, because
there are no tableaux Y, Z. The calculation still goes through because 11; = 3. |

51.10 Thecased=s+f,t=1,¢=2

In this case, A consists of a single tableau T = , and for any i, j the last row of U(i, j, T)

consists of p; — 2 [ds followed by two [d+1js. Applying Proposition 4.1, we get a factor of
[Ag—1]=[2+5"—-1] =0, since s’ is odd; so ;1 0 O(, j, T) = 0.

5.2 Proof of Proposition 5.1 whens =2,s" isevenand f =0

We now address the cases where s = 2, 5" is even and f = 0. We let A be the set of tableaux
of shape and type (257!) defined in §5.1.1. Given T € A, construct a (28)-tableau by increasing
each entry by 2 and adding a row at the top. Let U(T) be the corresponding usable
u-tableau, and ©(r) the corresponding homomorphism.
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Example. Suppose s’ =4 and ¢ = 5, and

1(4
13
T = 2Tol
314
Then T € A, and
1(1(1|1|1(1({1]1]1]|2
212(2(21(212(2|2|3|6
u(r) =[3[3[3]3][5
4141414
5|5|6
Now we claim that the sum
Z sgn(T)Our)
TeA

gives a non-zero homomorphism from S* to S*, which completes the proof of Proposition 5.1.
The proof of this is very similar to the proof in the previous case, in particular the parts in
Sections 5.1.4-5.1.10. We leave the reader to check the details.

We remark that Proposition 5.1 seems to be true more generally: one can take f > 0 and
s’ > s even, and it seems to be the case that there is still a non-zero homomorphism from S to
S*. But it does not seem quite so easy to write this homomorphism down.
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